Skip to main content

The Genetics of Selenium Accumulation by Plants

  • Chapter
  • First Online:
Selenium in plants

Part of the book series: Plant Ecophysiology ((KLEC,volume 11))

Abstract

Genetics is broadly defined as the study of how genes control the characteristics of organisms. In this chapter, emphasis has been placed on differences in metabolic pathways, and their associated genes, that could account for variation in the ability of angiosperm species to tolerate large tissue selenium (Se) concentrations. The current view of the molecular biology of Se uptake and assimilation by plants is presented and differences between plant species likely to affect their ability to tolerate large tissue Se concentrations are identified. In particular, it is noted that plants that hyperaccumulate Se generally exhibit constitutive expression of genes encoding Se-transporters and enzymes involved in primary Se assimilation, biosynthesis of non-toxic Se metabolites and Se volatilisation. A plausible scheme for the evolution of differences in Se accumulation between angiosperm species is described. Since Se is an essential mineral element for animals, and the diets of many humans lack sufficient Se, the possibility of breeding crops with greater Se concentrations in their edible tissues is discussed. It is observed that, although Se concentrations in plants are largely determined by the phytoavailability of Se in the environment, there is significant intraspecific genetic variation in the Se concentrations of most edible crops that might be utilised to improve human diets. However, although molecular markers might be developed to known chromosomal quantitative trait loci (QTL) impacting Se concentration in edible tissues to assist breeding programmes, the actual genes underpinning this variation are largely unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agalou A, Roussis A, Spaink HP (2005) The Arabidopsis selenium-binding protein confers tolerance to toxic levels of selenium. Funct Plant Biol 32:881–890

    Article  CAS  Google Scholar 

  • Alford ÉR, Lindblom SD, Pittarello M et al (2014) Roles of rhizobial symbionts in selenium hyperaccumulation in Astragalus (Fabaceae). Am J Bot 101:1895–1905

    Article  PubMed  Google Scholar 

  • Alfthan G, Eurola M, Ekholm P et al (2015) Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: from deficiency to optimal selenium status of the population. J Trace Elem Med Biol 31:142–147

    Article  CAS  PubMed  Google Scholar 

  • Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20

    Article  Google Scholar 

  • Ávila FW, Yang Y, Faquin V et al (2014) Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts. Food Chem 165:578–586

    Article  PubMed  CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders – strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Bañuelos GS, Ajwa HA, Wu L et al (1997) Selenium-induced growth reduction in Brassica land races considered for phytoremediation. Ecotoxicol Environ Saf 36:282–287

    Article  PubMed  Google Scholar 

  • Bañuelos GS, Pasakdee S, Finley JW (2003) Growth response and selenium and boron distribution in broccoli varieties irrigated with poor quality water. J Plant Nutr 26:2537–2549

    Article  CAS  Google Scholar 

  • Bañuelos G, Terry N, LeDuc DL et al (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39:1771–1777

    Article  PubMed  CAS  Google Scholar 

  • Bañuelos G, LeDuc DL, Pilon-Smits EAH et al (2007) Transgenic Indian mustard overexpressing selenocysteine lyase or selenocysteine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605

    Article  PubMed  CAS  Google Scholar 

  • Barberon M, Berthomieu P, Clairotte M et al (2008) Unequal functional redundancy between the two Arabidopsis thaliana high-affinity sulphate transporters SULTR1;1 and SULTR1;2. New Phytol 180:608–619

    Article  CAS  PubMed  Google Scholar 

  • Barneby RC (1964) Atlas of North American Astragalus. Volumes I and II. The New York Botanical Garden, New York

    Google Scholar 

  • Bermúdez MA, Páez-Ochoa MA, Gotor C et al (2013) Arabidopsis S-sulfocysteine synthase activity is essential for chloroplast function and long-day light-dependent redox control. Plant Cell 22:403–416

    Article  Google Scholar 

  • Birringer M, Pilawa S, Flohé L (2002) Trends in selenium biochemistry. Nat Prod Rep 19:693–718

    Article  CAS  PubMed  Google Scholar 

  • Broadley MR, White PJ, Bryson RJ et al (2006) Biofortification of UK food crops with selenium. Proc Nutr Soc 65:169–181

    Article  CAS  PubMed  Google Scholar 

  • Brown TA, Shrift A (1982) Selenium: toxicity and tolerance in higher plants. Biol Rev 57:59–84

    Article  CAS  Google Scholar 

  • Byrne SL, Durandeau K, Nagy I et al (2010) Identification of ABC transporters from Lolium perenne L. that are regulated by toxic levels of selenium. Planta 231:901–911

    Article  CAS  PubMed  Google Scholar 

  • Cabannes E, Buchner P, Broadley MR et al (2011) A comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in Astragalus species. Plant Physiol 157:2227–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao MJ, Wang Z, Wirtz M et al (2013) SULTR3;1 is a chloroplast-localized sulphate transporter in Arabidopsis thaliana. Plant J 73:607–616

    Article  CAS  PubMed  Google Scholar 

  • Cappa JJ, Pilon-Smits EAH (2014) Evolutionary aspects of elemental hyperaccumulation. Planta 239:267–275

    Article  CAS  PubMed  Google Scholar 

  • Cappa JJ, Cappa PJ, El Mehdawi AF et al (2014) Characterization of selenium and sulfur accumulation across the genus Stanleya (Brassicaceae): a field survey and common-garden experiment. Am J Bot 101:830–839

    Article  PubMed  Google Scholar 

  • Cappa JJ, Yetter C, Fakra S et al (2015) Evolution of selenium hyperaccumulation in Stanleya (Brassicaceae) as inferred from phylogeny, physiology and X-ray microprobe analysis. New Phytol 205:583–595

    Article  CAS  PubMed  Google Scholar 

  • Carey A-M, Scheckel KG, Lombi E et al (2012) Grain accumulation of selenium species in rice (Oryza sativa L.) Environ Sci Technol 46:5557–5564

    Article  CAS  PubMed  Google Scholar 

  • Chao D-Y, Baraniecka P, Danku J et al (2014) Variation in sulfur and selenium accumulation is controlled by naturally occurring isoforms of the key sulfur assimilation enzyme ADENOSINE 5′-PHOSPHOSULFATE REDUCTASE2 across the Arabidopsis species range. Plant Physiol 166:1593–1608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Combs GF (2001) Selenium in global food systems. Br J Nutr 85:517–547

    Article  CAS  PubMed  Google Scholar 

  • de Souza MP, Pilon-Smits EAH, Terry N (2000) The physiology and biochemistry of selenium volatilization by plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 171–190

    Google Scholar 

  • Dhillon KS, Dhillon SK (2003) Distribution and management of seleniferous soils. Adv Agron 79:119–184

    Article  CAS  Google Scholar 

  • Drahoñovský J, Száková J, Mestek O et al (2016) Selenium uptake, transformation and inter-element interactions by selected wildlife plant species after foliar selenate application. Environ Exp Bot 125:12–19

    Article  CAS  Google Scholar 

  • Dutilleul C, Jourdain A, Bourguignon J et al (2008) The Arabidopsis putative selenium-binding protein family: expression study and characterization of SBP1 as a potential new player in cadmium detoxification processes. Plant Physiol 147:239–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Kassis E, Cathala N, Rouached H et al (2007) Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenite toxicity. Plant Physiol 143:1231–1241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El Mehdawi AF, Pilon-Smits EAH (2012) Ecological aspects of plant selenium hyperaccumulation. Plant Biol 14:1–10

    Article  PubMed  CAS  Google Scholar 

  • El Mehdawi AF, Quinn CF, Pilon-Smits EAH (2011) Effects of selenium hyperaccumulation on plant–plant interactions: evidence for elemental allelopathy? New Phytol 191:120–131

    Article  PubMed  CAS  Google Scholar 

  • El Mehdawi AF, Paschke MW, Pilon-Smits EAH (2015) Symphyotrichum ericoides populations from seleniferous and nonseleniferous soil display striking variation in selenium accumulation. New Phytol 206:231–242

    Article  PubMed  CAS  Google Scholar 

  • Ellis DR, Sors TG, Brunk DG et al (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1. doi:10.1186/1471-2229-4-1

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD et al (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  CAS  Google Scholar 

  • Eurola M, Hietaniemi V, Kontturi M et al (2004) Selenium content of Finnish oats in 1997–1999: effect of cultivars and cultivation techniques. Agric Food Sci 13:46–53

    Article  CAS  Google Scholar 

  • Fairweather-Tait SJ, Bao Y, Broadley MR et al (2011) Selenium in human health and disease. Antioxid Redox Signal 14:1337–1383

    Article  CAS  PubMed  Google Scholar 

  • Farnham MW, Hale AJ, Grusak MA et al (2007) Genotypic and environmental effects on selenium concentration of broccoli heads grown without supplemental selenium fertilizer. Plant Breed 126:195–200

    Article  CAS  Google Scholar 

  • Feist LJ, Parker DR (2001) Ecotypic variation in selenium accumulation among populations of Stanleya pinnata. New Phytol 149:61–69

    Article  CAS  Google Scholar 

  • Feng R, Wei C, Tud S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68

    Article  CAS  Google Scholar 

  • Fordyce FM (2013) Selenium deficiency and toxicity in the environment. In: Selinus O, Alloway B, Centeno JA et al (eds) Essentials of medical geology, revised edn. Springer, Dordracht, pp 375–416

    Chapter  Google Scholar 

  • Freeman JL, Zhang L, Marcus MA et al (2006) Spatial imaging, speciation and quantification of Se in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman JL, Tamaoki M, Stushnoff C et al (2010) Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol 153:1630–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garvin DF, Welch RM, Finley JW (2006) Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. J Sci Food Agric 86:2213–2220

    Article  CAS  Google Scholar 

  • Gigolashvili T, Kopriva S (2014) Transporters in plant sulfur metabolism. Front Plant Sci 5:422. doi:10.3389/fpls.2014.00442

    Article  Google Scholar 

  • Grant TD, Montes-Bayón M, LeDuc D et al (2004) Identification and characterization of Se-methyl selenomethionine in Brassica juncea roots. J Chromatogr A 1026:159–166

    Article  CAS  PubMed  Google Scholar 

  • Guil-Guerrero JL, Martínez-Guirado C, del Mar R-FM et al (2006) Nutrient composition and antioxidant activity of 10 pepper (Capsicum annuum) varieties. Eur Food Res Technol 224:1–9

    Article  CAS  Google Scholar 

  • Guil-Guerrero JL, Rebolloso-Fuentes MM (2009) Nutrient composition and antioxidant activity of eight tomato (Lycopersicon esculentum) varieties. J Food Comp Anal 22:123–129

    Article  CAS  Google Scholar 

  • Harris J, Schneberg KA, Pilon-Smits EAH (2014) Sulfur–selenium–molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae). Planta 239:479–491

    Article  CAS  PubMed  Google Scholar 

  • Hesse H, Kreft O, Maimann S et al (2004) Current understanding of the regulation of methionine biosynthesis in plants. J Exp Bot 55:1799–1808

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Sun C, Min J et al (2015) Association mapping of quantitative trait loci for mineral element contents in whole grain rice (Oryza sativa L.) J Agric Food Chem 63:10885–10892

    Article  CAS  PubMed  Google Scholar 

  • Ilbas AI, Yılmaz S, Akbulut M, Bogdevich O (2012) Uptake and distribution of selenium, nitrogen and sulfur in three barley cultivars subjected to selenium applications. J Plant Nutr 35:442–452

    Google Scholar 

  • Jiang L, Gao QC, Chen ZP et al (2015) Selenium tolerance of an Arabidopsis drought-resistant mutant csm1-1. Russ J Plant Physiol 62:625–631

    Article  CAS  Google Scholar 

  • Joy EJM, Broadley MR, Young SD et al (2015) Soil type influences crop mineral composition in Malawi. Sci Total Environ 505:587–595

    Article  CAS  PubMed  Google Scholar 

  • Kataoka T, Hayashi N, Yamaya T et al (2004a) Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiol 136:4198–4204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kataoka T, Watanabe-Takahashi A, Hayashi N et al (2004b) Vacuolar sulphate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16:2693–2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikkert J, Berkelaar E (2013) Plant uptake and translocation of inorganic and organic forms of selenium. Arch Environ Contam Toxicol 65:458–465

    Article  CAS  PubMed  Google Scholar 

  • Kopsell DA, Randle WM (1997) Short-day onion cultivars differ in bulb selenium and sulphur accumulation which can affect bulb pungency. Euphytica 96:385–390

    Article  CAS  Google Scholar 

  • Kopsell DA, Randle WM (2001) Genetic variances and selection potential for selenium accumulation in a rapid-cycling Brassica oleracea population. J Am Soc Hortic Sci 126:329–335

    CAS  Google Scholar 

  • Kubachka KM, Meija J, LeDuc DL et al (2007) Selenium volatiles as proxy to the metabolic pathways of selenium in genetically modified Brassica juncea. Environ Sci Technol 41:1863–1869

    Article  CAS  PubMed  Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M et al (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeDuc DL, AbdelSamie M, Montes-Bayon M et al (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ Pollut 144:70–76

    Article  CAS  PubMed  Google Scholar 

  • Li H-F, McGrath SP, Zhao F-J (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102

    Article  CAS  PubMed  Google Scholar 

  • Lindblom SD, Valdez-Barillas JR, Fakra SC et al (2013) Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ Exp Bot 88:33–42

    Article  CAS  Google Scholar 

  • Lyi SM, Heller LI, Rutzke M et al (2005) Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol 138:409–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangan B-u-N, Hui L, Lashari MS et al (2015) Nutritional characteristics and starch properties of Tibetan barley. Int J Agric Policy Res 3:293–299

    Google Scholar 

  • Mazej D, Osvald J, Stibilj V (2008) Selenium species in leaves of chicory, dandelion, lamb’s lettuce and parsley. Food Chem 107:75–83

    Article  CAS  Google Scholar 

  • Mikkelsen RL, Page AL, Bingham FT (1989) Factors affecting selenium accumulation by agricultural crops. In: Jacobs LW, Chang AC, Dowdy RH et al (eds) Selenium in agriculture and the environment. Soil Science Society of America, Special Publication 23, pp 65–94

    Google Scholar 

  • Moreno Rodriguez MJ, Cala Rivero V, Jiménez Ballesta R (2005) Selenium distribution in topsoils and plants of a semi-arid Mediterranean environment. Environ Geochem Health 27:513–519

    Article  CAS  PubMed  Google Scholar 

  • Murphy KM, Reeves PG, Jones SS (2008) Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica 163:381–390

    Article  Google Scholar 

  • Nair RM, Thavarajah P, Giri RR et al (2015) Mineral and phenolic concentrations of mungbean [Vigna radiata (L.) R. Wilczek var. radiata] grown in semi-arid tropical India. J Food Comp Anal 39:23–32

    Article  CAS  Google Scholar 

  • Norton GJ, Deacon CM, Xiong L et al (2010) Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329:139–153

    Article  CAS  Google Scholar 

  • Norton GJ, Duan GL, Lei M et al (2012) Identification of quantitative trait loci for rice grain element composition on an arsenic impacted soil: influence of flowering time on genetic loci. Ann Appl Biol 161:46–56

    Article  CAS  Google Scholar 

  • Perla V, Holm DG, Jayanty SS (2012) Selenium and sulfur content and activity of associated enzymes in selected potato germplasm. Am J Potato Res 89:111–120

    Article  CAS  Google Scholar 

  • Pickering IJ, Wright C, Bubner B et al (2003) Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiol 131:1460–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilbeam DJ, Greathead HMR, Drihem K (2015) Selenium. In: Barker AV, Pilbeam DJ (eds) A handbook of plant nutrition, 2nd edn. CRC Press, Boca Raton, pp 165–198

    Google Scholar 

  • Pilon M, Owen JD, Garifullina GF et al (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. Plant Physiol 131:1250–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits EAH (2012) Plant selenium metabolism – genetic manipulation, phytotechnological applications, and ecological implications. In: Wong MH (ed) Environmental contamination: health risks and ecological restoration. CRC Press, Boca Raton, pp 293–311

    Google Scholar 

  • Pilon-Smits EAH, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20:207–212

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, de Souza MP, Hong G et al (1999a) Selenium volatalization and accumulation by twenty aquatic plant species. J Environ Qual 28:1011–1018

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Hwang SB, Lytle CM et al (1999b) Overexpression of ATPsulphurylase in Brassica juncea leads to increased selenite uptake, reduction and tolerance. Plant Physiol 119:123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits EAH, Quinn CF, Tapken W et al (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  CAS  PubMed  Google Scholar 

  • Pu ZE, Yu M, He QY et al (2014) Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. J Integr Agric 13:2322–2329

    Article  CAS  Google Scholar 

  • Quinn CF, Galeas ML, Freeman JL et al (2007) Selenium: deterrence, toxicity, and adaptation. Integr Environ Assess Manag 3:460–462

    Article  CAS  PubMed  Google Scholar 

  • Rahman MM, Erskine W, Materne MA et al (2015) Enhancing selenium concentration in lentil (Lens culinaris subsp. culinaris) through foliar application. J Agric Sci 153:656–665

    Article  CAS  Google Scholar 

  • Ramamurthy RK, Jedlicka J, Graef GL et al (2014) Identification of new QTLs for seed mineral, cysteine, and methionine concentrations in soybean [Glycine max (L.) Merr.] Mol Breed 34:431–445

    Article  CAS  Google Scholar 

  • Ramos SJ, Rutzke MA, Hayes RJ et al (2011a) Selenium accumulation in lettuce germplasm. Planta 233:649–660

    Article  CAS  PubMed  Google Scholar 

  • Ramos SJ, Yuan Y, Faquin V et al (2011b) Evaluation of genotypic variation of broccoli (Brassica oleracea var. italica) in response to selenium treatment. J Agric Food Chem 59:3657–3665

    Article  CAS  PubMed  Google Scholar 

  • Ray H, Bett K, Tar’an B et al (2014) Mineral micronutrient content of cultivars of field pea, chickpea, common bean, and lentil grown in Saskatchewan, Canada. Crop Sci 54:1698–1708

    Article  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Rodríguez LH, Morales DA, Rodríguez ER et al (2011) Minerals and trace elements in a collection of wheat landraces from the Canary Islands. J Food Comp Anal 24:1081–1090

    Article  CAS  Google Scholar 

  • Rosenfeld I, Beath OA (1964) Selenium: geobotany, biochemistry, toxicity, and nutrition. Academic Press, New York

    Google Scholar 

  • Rouached H, Wirtz M, Alary R et al (2008) Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis. Plant Physiol 147:897–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasmaz M, Akgül B, Sasmaz A (2015) Distribution and accumulation of selenium in wild plants growing naturally in the Gumuskoy (Kutahya) mining area Turkey. Bull Environ Contam Toxicol 94:598–603

    Article  CAS  PubMed  Google Scholar 

  • Schiavon M, Pilon M, Malagoli M et al (2015) Exploring the importance of sulphate transporters and ATPsulphurylases for selenium hyperaccumulation – comparison of Stanleya pinnata and Brassica juncea (Brassicaceae). Front Plant Sci 6:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Shibagaki N, Rose A, McDermott JP et al (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29:475–486

    Article  CAS  PubMed  Google Scholar 

  • Shinmachi F, Buchner P, Stroud JL et al (2010) Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium, and molybdenum in wheat. Plant Physiol 153:327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sors TG, Ellis DR, Na GN et al (2005a) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42:785–797

    Article  CAS  PubMed  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005b) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389

    Article  CAS  PubMed  Google Scholar 

  • Sors TG, Martin CP, Salt DE (2009) Characterization of selenocysteine methyltransferases from Astragalus species with contrasting selenium accumulation capacity. Plant J 59:110–122

    Article  CAS  PubMed  Google Scholar 

  • Szakova J, Tremlova J, Pegova K et al (2015) Soil-to-plant transfer of native selenium for wild vegetation cover at selected locations of the Czech Republic. Environ Monit Assess 187:358. doi:10.1007/s10661-015-4588-1

    Article  PubMed  CAS  Google Scholar 

  • Tagmount A, Berken A, Terry N (2002) An essential role of S-adenosyl-Lmethionine: L-methionine S-methyltransferase in selenium volatilization by plants. Methylation of selenomethionine to selenium-methyl-L-seleniummethionine, the precursor of volatile selenium. Plant Physiol 130:847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW et al (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23:171–182

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M et al (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  CAS  PubMed  Google Scholar 

  • Terry N, Carlson C, Raab TK et al (1992) Rates of selenium volatilization among crop species. J Environ Qual 21:341–344

    Article  CAS  Google Scholar 

  • Thavarajah D, Thavarajah P (2012) Evaluation of chickpea (Cicer arietinum L.) micronutrient composition: biofortification opportunities to combat global micronutrient malnutrition. Food Res Int 49:99–104

    Article  CAS  Google Scholar 

  • Thavarajah D, Thavarajah P, Sarker A et al (2011) A global survey of effects of genotype and environment on selenium concentration in lentils (Lens culinaris L.): implications for nutritional fortification strategies. Food Chem 125:72–76

    Article  CAS  Google Scholar 

  • Van Hoewyk D (2013) A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann Bot 112:965–972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Hoewyk D, Garifullina GF, Ackley AR et al (2005) Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis. Plant Physiol 139:1518–1528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Hoewyk D, Pilon M, Pilon-Smits EAH (2008a) The functions of NifS-like proteins in plant sulfur and selenium metabolism. Plant Sci 174:117–123

    Google Scholar 

  • Van Hoewyk D, Takahashi H, Hess A et al (2008b) Transcriptome and biochemical analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253

    PubMed  Google Scholar 

  • Van Huysen T, Abdel-Ghany S, Hale KL et al (2003) Overexpression of cystathionine-γ-synthase enhances selenium volatilisation in Brassica juncea. Planta 218:71–78

    Article  PubMed  CAS  Google Scholar 

  • Van Huysen T, Terry N, Pilon-Smits EAH (2004) Exploring the selenium phytoremediation potential of transgenic Brassica juncea overexpressing ATP sulfurylase or cystathionine-c-synthase. Int J Phytorem 6:111–118

    Article  CAS  Google Scholar 

  • Wang P, Menzies NW, Lombi E et al (2015) Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice. J Exp Bot 66:4795–4806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Broadley MR, Jansen S et al (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516–523

    Article  CAS  PubMed  Google Scholar 

  • White PJ (2016) Selenium accumulation by plants. Ann Bot 117:217–235

    PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White PJ, Bowen HC, Parmaguru P et al (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Bowen HC, Marshall B et al (2007a) Extraordinarily high leaf selenium to sulphur ratios define ‘Se-accumulator’ plants. Ann Bot 100:111–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White PJ, Broadley MR, Bowen HC et al (2007b) Selenium and its relationship with sufur. In: Hawkesford MJ, de Kok LJ (eds) Sulfur in plants – an ecological perspective. Springer, Dordrecht, pp 225–252

    Chapter  Google Scholar 

  • Ximénez-Embún P, Alonso I, Madrid-Albarráan Y et al (2004) Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants. J Agric Food Chem 52:832–838

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Wang F, Qin H et al (2011) Natural variation in grain selenium concentration of wild barley, Hordeum spontaneum, populations from Israel. Biol Trace Elem Res 142:773–786

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Chen L, Hu Q et al (2003) Effect of the application of selenium on selenium content of soybean and its products. Biol Trace Elem Res 93:249–256

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Wang R, Xue W et al (2013) QTL location and analysis of selenium content in tetraploid wheat grain. Guizhou Agric Sci 10:1–4 .[In Chinese]

    Google Scholar 

  • Yoshimoto N, Inoue E, Saito K et al (2003) Phloem localizing sulfate transporter, Sultr1;3, mediates re-distribution of sulphur from source to sink organs in Arabidopsis. Plant Physiol 131:1511–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan LX, Zhu YY, Lin ZQ et al (2013) A novel selenocystine-accumulating plant in selenium-mine drainage area in Enshi, China. PLoS One 8:e65615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Shi W, Wang X et al (2006) Genotypic differences in selenium accumulation in rice seedlings at early growth stage and analysis of dominant factors influencing selenium content in rice seeds. J Plant Nutr 29:1601–1618

    Article  CAS  Google Scholar 

  • Zhang L, Hu B, Li W et al (2014) OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol 201:1183–1191

    Article  CAS  PubMed  Google Scholar 

  • Zhao XQ, Mitani N, Yamaji N et al (2010) Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol 153:1871–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao D-Y, Sun F-L, Zhang B et al (2015) Systematic comparisons of orthologous selenocysteine methyltransferase and homocysteine methyltransferase genes from seven monocots species. Not Sci Biol 7:210–216

    Article  Google Scholar 

  • Zhao H, Huang J, Li Y et al (2016) Natural variation of selenium concentration in diverse tea plant (Camellia sinensis) accessions at seedling stage. Sci Hort 198:163–169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government and by a Fellowship funded by The National Council for Scientific and Technological Development (CNPq) of Brazil (Grant #402868/2012-9). I thank Dr. Paula Pongrac for reading my original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

White, P.J. (2017). The Genetics of Selenium Accumulation by Plants. In: Pilon-Smits, E., Winkel, L., Lin, ZQ. (eds) Selenium in plants. Plant Ecophysiology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-56249-0_9

Download citation

Publish with us

Policies and ethics