Skip to main content

Prion Diseases

  • Chapter
  • First Online:
Neurodegenerative Diseases

Abstract

Prion diseases are a group of invariably fatal and transmissible neurodegenerative disorders that are associated with the misfolding of the normal cellular prion protein, with the misfolded conformers constituting an infectious unit referred to as a “prion”. Prions can spread within an affected organism by directly propagating this misfolding within and between cells and can transmit disease between animals of the same and different species. Prion diseases have a range of clinical phenotypes in humans and animals, with a principle determinant of this attributed to different conformations of the misfolded protein, referred to as prion strains. This chapter will describe the different clinical manifestations of prion diseases, the evidence that these diseases can be transmitted by an infectious protein and how the misfolding of this protein causes disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

Aβ:

Amyloid beta

BSE:

Bovine spongiform encephalopathy

C1:

C-terminal fragment of PrP produced by α-cleavage

C2:

C-terminal fragment of PrP produced by β-cleavage

C3:

C-terminal fragment of PrP produced by γ-cleavage

Cu2+ :

Copper-II ion

CCL2:

Chemokine (Cysteine-cysteine motif) ligand 2

CCL5:

Chemokine (Cysteine-cysteine motif) ligand 5

CCR2:

Cysteine-cysteine chemokine receptor 2

CCR5:

Cysteine-cysteine chemokine receptor 5

CJD:

Creutzfeldt-Jakob disease

CNS:

Central nervous system

COCS:

Cerebellar organotypic cultured slices

CSF:

Cerebrospinal fluid

CWD:

Chronic wasting disease

D177N:

Disease-associated mutation of PrP; aspartic acid at position 177 is replaced by asparagine

EEG:

Electroencephalogram

eIF2α:

Eukaryotic translation factor-2 alpha

ER:

Endoplasmic reticulum

ERAD:

Endoplasmic-reticulum-associated protein degradation

FFI:

Fatal familial insomnia

FTIR spectroscopy:

Fourier transform infrared spectroscopy

GFAP:

Glial fibrillary acidic protein

GPI:

Glycosylphosphatidylinositol

Grp78/BiP:

78 kDa glucose-regulated protein/binding immunoglobulin protein

GSS:

Gerstmann–Sträussler–Scheinker syndrome

IL-1:

Interleukin-1

IL-10:

Interleukin-10

IL-12p40:

Interleukin-12 p40

IL-1R:

Interleukin-1 receptor

IL-1Ra:

Interleukin-1 receptor antagonist

KA:

Kainate

kDa:

Kilodalton

M:

Methionine; MM implies methionine homozygosity at position 129 of PrP

MAPK:

Mitogen-activated protein kinase

MCP-1:

Monocyte chemoattractant protein 1

MEK:

MAPK/ERK kinase

mGluR:

Metabotropic glutamate receptors

MRI:

Magnetic resonance imaging

mRNA:

Messenger RNA

MV:

Implies methionine-valine heterozygosity at position 129 of PrP

N1:

N-terminal fragment of PrP produced by α-cleavage

N2:

N-terminal fragment of PrP produced by β-cleavage

N2a:

Murine neuroblastoma cell line

N3:

N-terminal fragment of PrP produced by γ-cleavage

NMDAR:

N-methyl-d-aspartate receptor

NMR:

Nuclear magnetic resonance spectroscopy

P101L:

Disease-associated mutation of PrP; proline at position 101 is replaced by luecine

PE:

Phosphatidylethanolamine

PERK:

Protein kinase RNA (PKR)-like ER kinase

PK:

Proteinase K

PMCA:

Protein misfolding cyclic amplification

POPG:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol

PRNP :

Gene encoding the human prion protein

Prnp−/− :

Prion protein gene knock out animals

PrP:

Prion protein

PrPC :

Normal, cellular PrP

PrPSc :

Disease-associated PrP

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

RT-QuIC:

Real time quaking induced conversion

sCJD:

Sporadic CJD

TGFβ:

Transforming growth factor beta

TNFα:

Tumour necrosis factor alpha

UK:

United Kingdom

UPR:

Unfolded protein response

USA:

United States of America

V:

Valine; VV implies valine homozygosity at position 129 of PrP

vCJD:

Variant CJD

References

  1. Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95(23):13363–13383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Masters CL, Kakulas BA et al (1976) Preclinical lesions and their progression in the experimental spongiform encephalopathies (kuru and Creutzfeldt-Jakob disease) in primates. J Neuropathol Exp Neurol 35(6):593–605

    Article  CAS  PubMed  Google Scholar 

  3. Field EJ, Peat A (1969) Structural changes in scrapieaffected brain. Biochem J 114(2):19P–20P

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. DeArmond SJ, Mobley WC et al (1987) Changes in the localization of brain prion proteins during scrapie infection. Neurology 37(8):1271–1280

    Article  CAS  PubMed  Google Scholar 

  5. Jaunmuktane Z, Mead S et al (2015) Evidence for human transmission of amyloid-beta pathology and cerebral amyloid angiopathy. Nature 525(7568):247–250

    Article  CAS  PubMed  Google Scholar 

  6. Sacino AN, Brooks M et al (2014) Intramuscular injection of alpha-synuclein induces CNS alpha-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc Natl Acad Sci U S A 111(29):10732–10737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luk KC, Kehm V et al (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109):949–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sternbach G, Dibble CL et al (1997) From Creutzfeldt-Jakob disease to the mad cow epidemic. J Emerg Med 15(5):701–705

    Article  CAS  PubMed  Google Scholar 

  9. Brown P, Gibbs CJ Jr et al (1994) Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann Neurol 35(5):513–529

    Article  CAS  PubMed  Google Scholar 

  10. Klug GM, Wand H et al (2013) Intensity of human prion disease surveillance predicts observed disease incidence. J Neurol Neurosurg Psychiatry 84(12):1372–1377

    Article  PubMed  Google Scholar 

  11. Brown P, Cathala F et al (1986) Creutzfeldt-Jakob disease: clinical analysis of a consecutive series of 230 neuropathologically verified cases. Ann Neurol 20(5):597–602

    Article  CAS  PubMed  Google Scholar 

  12. Kovacs GG, Puopolo M et al (2005) Genetic prion disease: the EUROCJD experience. Hum Genet 118(2):166–174

    Article  CAS  PubMed  Google Scholar 

  13. Montagna P, Gambetti P et al (2003) Familial and sporadic fatal insomnia. Lancet Neurol 2(3):167–176

    Article  CAS  PubMed  Google Scholar 

  14. Ghetti B, Dlouhy SR et al (1995) Gerstmann-Straussler-Scheinker disease and the Indiana kindred. Brain Pathol 5(1):61–75

    Article  CAS  PubMed  Google Scholar 

  15. Gajdusek DC, Zigas V (1957) Degenerative disease of the central nervous system in New Guinea; the endemic occurrence of kuru in the native population. N Engl J Med 257(20):974–978

    Article  CAS  PubMed  Google Scholar 

  16. Alpers MP (2008) Review. The epidemiology of kuru: monitoring the epidemic from its peak to its end. Philos Trans R Soc Lond Ser B Biol Sci 363(1510):3707–3713

    Article  Google Scholar 

  17. Bruce ME, Will RG et al (1997) Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature 389(6650):498–501

    Article  CAS  PubMed  Google Scholar 

  18. Hill AF, Desbruslais M et al (1997) The same prion strain causes vCJD and BSE. Nature 389(6650):448–450. 526

    Article  CAS  PubMed  Google Scholar 

  19. Urwin PJ, Mackenzie JM et al (2015) Creutzfeldt-Jakob disease and blood transfusion: updated results of the UK transfusion medicine epidemiology review study. Vox Sang 110(4):310–316

    Article  PubMed  Google Scholar 

  20. The National CJD Research & Surveillance Unit Western General Hospital E, EH4 2XU (2014) 23rd annual report 2014. Creutzfeldt-Jakob Disease Surveillance in the UK

    Google Scholar 

  21. Murphy EL, David Connor J et al (2004) Estimating blood donor loss due to the variant CJD travel deferral. Transfusion 44(5):645–650

    Article  PubMed  Google Scholar 

  22. Diack AB, Head MW et al (2014) Variant CJD. 18 years of research and surveillance. Prion 8(4):286–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brown P, Brandel JP et al (2012) Iatrogenic Creutzfeldt-Jakob disease, final assessment. Emerg Infect Dis 18(6):901–907

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lawson VA, Stewart JD et al (2007) Enzymatic detergent treatment protocol that reduces protease-resistant prion protein load and infectivity from surgical-steel monofilaments contaminated with a human-derived prion strain. J Gen Virol 88(Pt 10):2905–2914

    Article  CAS  PubMed  Google Scholar 

  25. Plummer PJ (1946) Scrapie-A disease of sheep: a review of the literature. Can J Comp Med Vet Sci 10(2):49–54

    PubMed Central  Google Scholar 

  26. Wells GA, Scott AC et al (1987) A novel progressive spongiform encephalopathy in cattle. Vet Rec 121(18):419–420

    Article  CAS  PubMed  Google Scholar 

  27. Wilesmith JW, Wells GA et al (1988) Bovine spongiform encephalopathy: epidemiological studies. Vet Rec 123(25):638–644

    CAS  PubMed  Google Scholar 

  28. Fraser H, McConnell I et al (1988) Transmission of bovine spongiform encephalopathy to mice. Vet Rec 123(18):472

    Article  CAS  PubMed  Google Scholar 

  29. Wilesmith JW, Ryan JB et al (1992) Bovine spongiform encephalopathy: case-control studies of calf feeding practices and meat and bonemeal inclusion in proprietary concentrates. Res Vet Sci 52(3):325–331

    Article  CAS  PubMed  Google Scholar 

  30. Harman JL, Silva CJ (2009) Bovine spongiform encephalopathy. J Am Vet Med Assoc 234(1):59–72

    Article  PubMed  Google Scholar 

  31. World Organisation for Animal Health: Number of cases of bovine spongiform encephalopathy (BSE) reported in the United Kingdom. http://www.oie.int/animal-health-in-the-world/bse-specific-data/number-of-cases-in-the-united-kingdom/#Royaume-Uni (2016). Accessed 28th April 2016

  32. Liberski PP, Sikorska B et al (2009) Transmissible mink encephalopathy—review of the etiology of a rare prion disease. Folia Neuropathol 47(2):195–204

    CAS  PubMed  Google Scholar 

  33. Benestad SL, Sarradin P et al (2003) Cases of scrapie with unusual features in Norway and designation of a new type, Nor98. Vet Rec 153(7):202–208

    Article  CAS  PubMed  Google Scholar 

  34. Windl O, Dawson M (2012) Animal prion diseases. Subcell Biochem 65:497–516

    Article  CAS  PubMed  Google Scholar 

  35. Williams ES, Young S (1980) Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J Wildl Dis 16(1):89–98

    Article  CAS  PubMed  Google Scholar 

  36. Spraker TR, Miller MW et al (1997) Spongiform encephalopathy in free-ranging mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus elaphus nelsoni) in northcentral Colorado. J Wildl Dis 33(1):1–6

    Article  CAS  PubMed  Google Scholar 

  37. Miller MW, Williams ES et al (2000) Epizootiology of chronic wasting disease in free-ranging cervids in Colorado and Wyoming. J Wildl Dis 36(4):676–690

    Article  CAS  PubMed  Google Scholar 

  38. Haley NJ, Hoover EA (2015) Chronic wasting disease of cervids: current knowledge and future perspectives. Annu Rev Anim Biosci 3:305–325

    Article  CAS  PubMed  Google Scholar 

  39. Pritzkow S, Morales R et al (2015) Grass plants bind, retain, uptake, and transport infectious prions. Cell Rep 11(8):1168–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mathiason CK, Powers JG et al (2006) Infectious prions in the saliva and blood of deer with chronic wasting disease. Science 314(5796):133–136

    Article  CAS  PubMed  Google Scholar 

  41. Miller MW, Williams ES et al (2004) Environmental sources of prion transmission in mule deer. Emerg Infect Dis 10(6):1003–1006

    Article  PubMed  PubMed Central  Google Scholar 

  42. Balachandran A, Harrington NP et al (2010) Experimental oral transmission of chronic wasting disease to red deer (Cervus elaphus elaphus): early detection and late stage distribution of protease-resistant prion protein. Can Vet J 51(2):169–178

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Spraker TR, Zink RR et al (2002) Distribution of protease-resistant prion protein and spongiform encephalopathy in free-ranging mule deer (Odocoileus hemionus) with chronic wasting disease. Vet Pathol 39(5):546–556

    Article  CAS  PubMed  Google Scholar 

  44. Jewell JE, Brown J et al (2006) Prion protein in cardiac muscle of elk (Cervus elaphus nelsoni) and white-tailed deer (Odocoileus virginianus) infected with chronic wasting disease. J Gen Virol 87(Pt 11):3443–3450

    Article  CAS  PubMed  Google Scholar 

  45. Angers RC, Browning SR et al (2006) Prions in skeletal muscles of deer with chronic wasting disease. Science 311(5764):1117

    Article  CAS  PubMed  Google Scholar 

  46. Belay ED, Maddox RA et al (2004) Chronic wasting disease and potential transmission to humans. Emerg Infect Dis 10(6):977–984

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gordon WS (1946) Advances in veterinary research. Vet Rec 58(47):516–525

    CAS  PubMed  Google Scholar 

  48. Cuillé J, Chelle PL (1939) Transmission experimentale de la tremblante a la chevre. Comptes rendus hebdomadaires des sciences de l’Academie des Sciences 208:1058–1060

    Google Scholar 

  49. Chandler RL (1961) Encephalopathy in mice produced by inoculation with scrapie brain material. Lancet 1(7191):1378–1379

    Article  CAS  PubMed  Google Scholar 

  50. Gajdusek DC, Gibbs CJ et al (1966) Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature 209(5025):794–796

    Article  CAS  PubMed  Google Scholar 

  51. Georgsson G, Sigurdarson S et al (2006) Infectious agent of sheep scrapie may persist in the environment for at least 16 years. J Gen Virol 87(Pt 12):3737–3740

    Article  CAS  PubMed  Google Scholar 

  52. Afanasieva EG, Kushnirov VV et al (2011) Interspecies transmission of prions. Biochemistry (Mosc) 76(13):1375–1384

    Article  CAS  Google Scholar 

  53. Alper T, Haig DA et al (1966) The exceptionally small size of the scrapie agent. Biochem Biophys Res Commun 22(3):278–284

    Article  CAS  PubMed  Google Scholar 

  54. Alper T, Cramp WA et al (1967) Does the agent of scrapie replicate without nucleic acid? Nature 214(90):764–766

    Article  CAS  PubMed  Google Scholar 

  55. Prusiner SB, Groth DF et al (1980) Molecular properties, partial purification, and assay by incubation period measurements of the hamster scrapie agent. Biochemistry 19(21):4883–4891

    Article  CAS  PubMed  Google Scholar 

  56. Pattison IH, Jones KM (1967) The possible nature of the transmissible agent of scrapie. Vet Rec 80(1):2–9

    Article  CAS  PubMed  Google Scholar 

  57. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(4542):136–144

    Article  CAS  PubMed  Google Scholar 

  58. Chesebro B, Race R et al (1985) Identification of scrapie prion protein-specific mRNA in scrapie-infected and uninfected brain. Nature 315(6017):331–333

    Article  CAS  PubMed  Google Scholar 

  59. Stahl N, Borchelt DR et al (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51(2):229–240

    Article  CAS  PubMed  Google Scholar 

  60. Bendheim PE, Brown HR et al (1992) Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology 42(1):149–156

    Article  CAS  PubMed  Google Scholar 

  61. Wopfner F, Weidenhofer G et al (1999) Analysis of 27 mammalian and 9 avian PrPs reveals high conservation of flexible regions of the prion protein. J Mol Biol 289(5):1163–1178

    Article  CAS  PubMed  Google Scholar 

  62. Yusa S, Oliveira-Martins JB et al (2012) Cellular prion protein: from physiology to pathology. Virus 4(11):3109–3131

    Article  CAS  Google Scholar 

  63. Stimson E, Hope J et al (1999) Site-specific characterization of the N-linked glycans of murine prion protein by high-performance liquid chromatography/electrospray mass spectrometry and exoglycosidase digestions. Biochemistry 38(15):4885–4895

    Article  CAS  PubMed  Google Scholar 

  64. Zahn R, Liu A et al (2000) NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A 97(1):145–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brown DR, Qin K et al (1997) The cellular prion protein binds copper in vivo. Nature 390(6661):684–687

    Article  CAS  PubMed  Google Scholar 

  66. Schatzl HM, Da Costa M et al (1995) Prion protein gene variation among primates. J Mol Biol 245(4):362–374

    Article  CAS  PubMed  Google Scholar 

  67. Caughey B, Raymond GJ et al (1991) N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J Virol 65(12):6597–6603

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen SG, Teplow DB et al (1995) Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem 270(32):19173–19180

    Article  CAS  PubMed  Google Scholar 

  69. Lewis V, Johanssen VA et al (2016) Prion protein “gamma-cleavage”: characterizing a novel endoproteolytic processing event. Cell Mol Life Sci 73(3):667–683

    Article  CAS  PubMed  Google Scholar 

  70. Altmeppen HC, Prox J et al (2011) Lack of a-disintegrin-and-metalloproteinase ADAM10 leads to intracellular accumulation and loss of shedding of the cellular prion protein in vivo. Mol Neurodegener 6:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Walmsley AR, Watt NT et al (2009) Alpha-cleavage of the prion protein occurs in a late compartment of the secretory pathway and is independent of lipid rafts. Mol Cell Neurosci 40(2):242–248

    Article  CAS  PubMed  Google Scholar 

  72. McMahon HE, Mange A et al (2001) Cleavage of the amino terminus of the prion protein by reactive oxygen species. J Biol Chem 276(3):2286–2291

    Article  CAS  PubMed  Google Scholar 

  73. Watt NT, Hooper NM (2005) Reactive oxygen species (ROS)-mediated beta-cleavage of the prion protein in the mechanism of the cellular response to oxidative stress. Biochem Soc Trans 33(Pt 5):1123–1125

    Article  CAS  PubMed  Google Scholar 

  74. Haigh CL, Drew SC et al (2009) Dominant roles of the polybasic proline motif and copper in the PrP23-89-mediated stress protection response. J Cell Sci 122(Pt 10):1518–1528

    Article  CAS  PubMed  Google Scholar 

  75. Haigh CL, McGlade AR et al (2015) MEK1 transduces the prion protein N2 fragment antioxidant effects. Cell Mol Life Sci 72(8):1613–1629

    Article  CAS  PubMed  Google Scholar 

  76. Lewis V, Hill AF et al (2009) Increased proportions of C1 truncated prion protein protect against cellular M1000 prion infection. J Neuropathol Exp Neurol 68(10):1125–1135

    Article  CAS  PubMed  Google Scholar 

  77. Westergard L, Turnbaugh JA et al (2011) A naturally occurring C-terminal fragment of the prion protein (PrP) delays disease and acts as a dominant-negative inhibitor of PrPSc formation. J Biol Chem 286(51):44234–44242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guillot-Sestier MV, Sunyach C et al (2009) The alpha-secretase-derived N-terminal product of cellular prion, N1, displays neuroprotective function in vitro and in vivo. J Biol Chem 284(51):35973–35986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Haigh CL, Lewis VA et al (2009) PrPC-related signal transduction is influenced by copper, membrane integrity and the alpha cleavage site. Cell Res 19(9):1062–1078

    Article  CAS  PubMed  Google Scholar 

  80. Caetano FA, Lopes MH et al (2008) Endocytosis of prion protein is required for ERK1/2 signaling induced by stress-inducible protein 1. J Neurosci 28(26):6691–6702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bremer J, Baumann F et al (2010) Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 13(3):310–318

    Article  CAS  PubMed  Google Scholar 

  82. Aguzzi A, Baumann F et al (2008) The prion’s elusive reason for being. Annu Rev Neurosci 31:439–477

    Article  CAS  PubMed  Google Scholar 

  83. Bakkebo MK, Mouillet-Richard S et al (2015) The cellular prion protein: a player in immunological quiescence. Front Immunol 6:450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Del Rio JA, Gavin R (2016) Functions of the cellular prion protein, the end of Moore’s law, and Ockham’s razor theory. Prion 10(1):25–40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Bueler H, Aguzzi A et al (1993) Mice devoid of PrP are resistant to scrapie. Cell 73(7):1339–1347

    Article  CAS  PubMed  Google Scholar 

  86. Manson JC, Clarke AR et al (1994) PrP gene dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegeneration 3(4):331–340

    CAS  PubMed  Google Scholar 

  87. Meyer RK, McKinley MP et al (1986) Separation and properties of cellular and scrapie prion proteins. Proc Natl Acad Sci U S A 83(8):2310–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pan KM, Baldwin M et al (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90(23):10962–10966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kocisko DA, Come JH et al (1994) Cell-free formation of protease-resistant prion protein. Nature 370(6489):471–474

    Article  CAS  PubMed  Google Scholar 

  90. Hill AF, Antoniou M et al (1999) Protease-resistant prion protein produced in vitro lacks detectable infectivity. J Gen Virol 80(Pt 1):11–14

    Article  CAS  PubMed  Google Scholar 

  91. Saborio GP, Permanne B et al (2001) Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411(6839):810–813

    Article  CAS  PubMed  Google Scholar 

  92. Castilla J, Saa P et al (2005) In vitro generation of infectious scrapie prions. Cell 121(2):195–206

    Article  CAS  PubMed  Google Scholar 

  93. Legname G, Baskakov IV et al (2004) Synthetic mammalian prions. Science 305(5684):673–676

    Article  CAS  PubMed  Google Scholar 

  94. Colby DW, Wain R et al (2010) Protease-sensitive synthetic prions. PLoS Pathog 6(1):e1000736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Nazor KE, Kuhn F et al (2005) Immunodetection of disease-associated mutant PrP, which accelerates disease in GSS transgenic mice. EMBO J 24(13):2472–2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cappai R, Stewart L et al (1999) Familial prion disease mutation alters the secondary structure of recombinant mouse prion protein: implications for the mechanism of prion formation. Biochemistry 38(11):3280–3284

    Article  CAS  PubMed  Google Scholar 

  97. Hsiao KK, Scott M et al (1990) Spontaneous neurodegeneration in transgenic mice with mutant prion protein. Science 250(4987):1587–1590

    Article  CAS  PubMed  Google Scholar 

  98. Manson JC, Jamieson E et al (1999) A single amino acid alteration (101L) introduced into murine PrP dramatically alters incubation time of transmissible spongiform encephalopathy. EMBO J 18(23):6855–6864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lawson VA, Lumicisi B et al (2010) Glycosaminoglycan sulphation affects the seeded misfolding of a mutant prion protein. PLoS One 5(8):e12351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Jackson WS, Borkowski AW et al (2009) Spontaneous generation of prion infectivity in fatal familial insomnia knockin mice. Neuron 63(4):438–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim JI, Cali I et al (2010) Mammalian prions generated from bacterially expressed prion protein in the absence of any mammalian cofactors. J Biol Chem 285(19):14083–14087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhou Z, Xiao G (2013) Conformational conversion of prion protein in prion diseases. Acta Biochim Biophys Sin Shanghai 45(6):465–476

    Article  CAS  PubMed  Google Scholar 

  103. Deleault NR, Piro JR et al (2012) Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proc Natl Acad Sci U S A 109(22):8546–8551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Saleem F, Bjorndahl TC et al (2014) Lipopolysaccharide induced conversion of recombinant prion protein. Prion 8(2):221–232

    Article  CAS  PubMed Central  Google Scholar 

  105. Wang F, Yin S et al (2010) Role of the highly conserved middle region of prion protein (PrP) in PrP-lipid interaction. Biochemistry 49(37):8169–8176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Deleault NR, Geoghegan JC et al (2005) Protease-resistant prion protein amplification reconstituted with partially purified substrates and synthetic polyanions. J Biol Chem 280(29):26873–26879

    Article  CAS  PubMed  Google Scholar 

  107. Deleault NR, Walsh DJ et al (2012) Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions. Proc Natl Acad Sci U S A 109(28):E1938–E1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Aiken JM, Williamson JL et al (1990) Presence of mitochondrial D-loop DNA in scrapie-infected brain preparations enriched for the prion protein. J Virol 64(7):3265–3268

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Klein TR, Kirsch D et al (1998) Prion rods contain small amounts of two host sphingolipids as revealed by thin-layer chromatography and mass spectrometry. Biol Chem 379(6):655–666

    Article  CAS  PubMed  Google Scholar 

  110. Snow AD, Kisilevsky R et al (1989) Sulfated glycosaminoglycans in amyloid plaques of prion diseases. Acta Neuropathol 77(4):337–342

    Article  CAS  PubMed  Google Scholar 

  111. Wang F, Wang X et al (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327(5969):1132–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Barron RM, Campbell SL et al (2007) High titers of transmissible spongiform encephalopathy infectivity associated with extremely low levels of PrPSc in vivo. J Biol Chem 282(49):35878–35886

    Article  CAS  PubMed  Google Scholar 

  113. Coleman BM, Harrison CF et al (2014) Pathogenic mutations within the hydrophobic domain of the prion protein lead to the formation of protease-sensitive prion species with increased lethality. J Virol 88(5):2690–2703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Lewis V, Haigh CL et al (2012) Prion subcellular fractionation reveals infectivity spectrum, with a high titre-low PrPres level disparity. Mol Neurodegener 7:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gambetti P, Dong Z et al (2008) A novel human disease with abnormal prion protein sensitive to protease. Ann Neurol 63(6):697–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Diack AB, Ritchie DL et al (2014) Variably protease-sensitive prionopathy, a unique prion variant with inefficient transmission properties. Emerg Infect Dis 20(12):1969–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Forloni G, Angeretti N et al (1993) Neurotoxicity of a prion protein fragment. Nature 362(6420):543–546

    Article  CAS  PubMed  Google Scholar 

  118. Salahuddin P, Fatima MT et al (2016) Structure of amyloid oligomers and their mechanisms of toxicities: targeting amyloid oligomers using novel therapeutic approaches. Eur J Med Chem 114:41–58

    Article  CAS  PubMed  Google Scholar 

  119. Weise J, Crome O et al (2004) Upregulation of cellular prion protein (PrPc) after focal cerebral ischemia and influence of lesion severity. Neurosci Lett 372(1–2):146–150

    Article  CAS  PubMed  Google Scholar 

  120. Sakurai-Yamashita Y, Sakaguchi S et al (2005) Female-specific neuroprotection against transient brain ischemia observed in mice devoid of prion protein is abolished by ectopic expression of prion protein-like protein. Neuroscience 136(1):281–287

    Article  CAS  PubMed  Google Scholar 

  121. Shmerling D, Hegyi I et al (1998) Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93(2):203–214

    Article  CAS  PubMed  Google Scholar 

  122. Donne DG, Viles JH et al (1997) Structure of the recombinant full-length hamster prion protein PrP(29-231): the N terminus is highly flexible. Proc Natl Acad Sci U S A 94(25):13452–13457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Riek R, Hornemann S et al (1997) NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231). FEBS Lett 413(2):282–288

    Article  CAS  PubMed  Google Scholar 

  124. Solforosi L, Criado JR et al (2004) Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science 303(5663):1514–1516

    Article  CAS  PubMed  Google Scholar 

  125. Sonati T, Reimann RR et al (2013) The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature 501(7465):102–106

    Article  CAS  PubMed  Google Scholar 

  126. Herrmann US, Sonati T et al (2015) Prion infections and anti-PrP antibodies trigger converging neurotoxic pathways. PLoS Pathog 11(2):e1004662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lauren J, Gimbel DA et al (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457(7233):1128–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Klyubin I, Nicoll AJ et al (2014) Peripheral administration of a humanized anti-PrP antibody blocks Alzheimer’s disease Abeta synaptotoxicity. J Neurosci 34(18):6140–6145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Balducci C, Beeg M et al (2010) Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci U S A 107(5):2295–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Calella AM, Farinelli M et al (2010) Prion protein and Abeta-related synaptic toxicity impairment. EMBO Mol Med 2(8):306–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cisse M, Sanchez PE et al (2011) Ablation of cellular prion protein does not ameliorate abnormal neural network activity or cognitive dysfunction in the J20 line of human amyloid precursor protein transgenic mice. J Neurosci 31(29):10427–10431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kessels HW, Nguyen LN et al (2010) The prion protein as a receptor for amyloid-beta. Nature 466(7308):E3–E4. discussion E-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hegde RS, Mastrianni JA et al (1998) A transmembrane form of the prion protein in neurodegenerative disease. Science 279(5352):827–834

    Article  CAS  PubMed  Google Scholar 

  134. Hegde RS, Tremblay P et al (1999) Transmissible and genetic prion diseases share a common pathway of neurodegeneration. Nature 402(6763):822–826

    Article  CAS  PubMed  Google Scholar 

  135. Drisaldi B, Stewart RS et al (2003) Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation. J Biol Chem 278(24):21732–21743

    Article  CAS  PubMed  Google Scholar 

  136. Stewart RS, Drisaldi B et al (2001) A transmembrane form of the prion protein contains an uncleaved signal peptide and is retained in the endoplasmic reticulum. Mol Biol Cell 12(4):881–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Stewart RS, Piccardo P et al (2005) Neurodegenerative illness in transgenic mice expressing a transmembrane form of the prion protein. J Neurosci 25(13):3469–3477

    Article  CAS  PubMed  Google Scholar 

  138. Rane NS, Yonkovich JL et al (2004) Protection from cytosolic prion protein toxicity by modulation of protein translocation. EMBO J 23(23):4550–4559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ma J, Lindquist S (2001) Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc Natl Acad Sci U S A 98(26):14955–14960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ma J, Lindquist S (2002) Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science 298(5599):1785–1788

    Article  CAS  PubMed  Google Scholar 

  141. Ma J, Wollmann R et al (2002) Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298(5599):1781–1785

    Article  CAS  PubMed  Google Scholar 

  142. Yedidia Y, Horonchik L et al (2001) Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein. EMBO J 20(19):5383–5391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hetz C, Russelakis-Carneiro M et al (2003) Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J 22(20):5435–5445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bertolotti A, Zhang Y et al (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2(6):326–332

    Article  CAS  PubMed  Google Scholar 

  145. Shen J, Snapp EL et al (2005) Stable binding of ATF6 to BiP in the endoplasmic reticulum stress response. Mol Cell Biol 25(3):921–932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Ferreiro E, Resende R et al (2006) An endoplasmic-reticulum-specific apoptotic pathway is involved in prion and amyloid-beta peptides neurotoxicity. Neurobiol Dis 23(3):669–678

    Article  CAS  PubMed  Google Scholar 

  147. Moreno JA, Halliday M et al (2013) Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med 5(206):206ra138

    Article  PubMed  CAS  Google Scholar 

  148. Budka H, Aguzzi A et al (1995) Neuropathological diagnostic criteria for Creutzfeldt-Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases). Brain Pathol 5(4):459–466

    Article  CAS  PubMed  Google Scholar 

  149. Jeffrey M, Gonzalez L (2007) Classical sheep transmissible spongiform encephalopathies: pathogenesis, pathological phenotypes and clinical disease. Neuropathol Appl Neurobiol 33(4):373–394

    Article  CAS  PubMed  Google Scholar 

  150. Carroll JA, Striebel JF et al (2015) Prion infection of mouse brain reveals multiple new upregulated genes involved in neuroinflammation or signal transduction. J Virol 89(4):2388–2404

    Article  PubMed  CAS  Google Scholar 

  151. Carroll JA, Striebel JF et al (2016) Prion strain differences in accumulation of PrPSc on neurons and glia are associated with similar expression profiles of neuroinflammatory genes: comparison of three prion strains. PLoS Pathog 12(4):e1005551

    Article  PubMed  PubMed Central  Google Scholar 

  152. Felton LM, Cunningham C et al (2005) MCP-1 and murine prion disease: separation of early behavioural dysfunction from overt clinical disease. Neurobiol Dis 20(2):283–295

    Article  CAS  PubMed  Google Scholar 

  153. Tamguney G, Giles K et al (2008) Genes contributing to prion pathogenesis. J Gen Virol 89(Pt 7):1777–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tribouillard-Tanvier D, Race B et al (2012) Early cytokine elevation, PrPres deposition, and gliosis in mouse scrapie: no effect on disease by deletion of cytokine genes IL-12p40 and IL-12p35. J Virol 86(19):10377–10383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Brandner S, Isenmann S et al (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379(6563):339–343

    Article  CAS  PubMed  Google Scholar 

  156. White MD, Farmer M et al (2008) Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc Natl Acad Sci U S A 105(29):10238–10243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mallucci G, Dickinson A et al (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302(5646):871–874

    Article  CAS  PubMed  Google Scholar 

  158. Jeffrey M, Goodsir CM et al (2004) Scrapie-specific neuronal lesions are independent of neuronal PrP expression. Ann Neurol 55(6):781–792

    Article  CAS  PubMed  Google Scholar 

  159. Chesebro B, Trifilo M et al (2005) Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308(5727):1435–1439

    Article  CAS  PubMed  Google Scholar 

  160. Chesebro B, Race B et al (2010) Fatal transmissible amyloid encephalopathy: a new type of prion disease associated with lack of prion protein membrane anchoring. PLoS Pathog 6(3):e1000800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Koperek O, Kovacs GG et al (2002) Disease-associated prion protein in vessel walls. Am J Pathol 161(6):1979–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Haigh CL, Lawson VA et al (2014) Blood vessel cell death during prion disease: implications for disease management and infection control. Exp Hematol 42(11):939–940

    Article  PubMed  Google Scholar 

  163. Collinge J, Clarke AR (2007) A general model of prion strains and their pathogenicity. Science 318(5852):930–936

    Article  CAS  PubMed  Google Scholar 

  164. Simoneau S, Rezaei H et al (2007) In vitro and in vivo neurotoxicity of prion protein oligomers. PLoS Pathog 3(8):e125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Zhou M, Ottenberg G et al (2012) Highly neurotoxic monomeric alpha-helical prion protein. Proc Natl Acad Sci U S A 109(8):3113–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Collins SJ, Sanchez-Juan P et al (2006) Determinants of diagnostic investigation sensitivities across the clinical spectrum of sporadic Creutzfeldt-Jakob disease. Brain 129(Pt 9):2278–2287

    Article  CAS  PubMed  Google Scholar 

  167. Schmitz M, Ebert E et al (2016) Validation of 14-3-3 protein as a marker in sporadic Creutzfeldt-Jakob Disease diagnostic. Mol Neurobiol 53(4):2189–2199

    Article  CAS  PubMed  Google Scholar 

  168. Soto C, Anderes L et al (2005) Pre-symptomatic detection of prions by cyclic amplification of protein misfolding. FEBS Lett 579(3):638–642

    Article  CAS  PubMed  Google Scholar 

  169. Atarashi R, Moore RA et al (2007) Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat Methods 4(8):645–650

    Article  CAS  PubMed  Google Scholar 

  170. Doh-Ura K, Iwaki T et al (2000) Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J Virol 74(10):4894–4897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Korth C, May BC et al (2001) Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc Natl Acad Sci U S A 98(17):9836–9841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Caughey B, Raymond GJ (1993) Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J Virol 67(2):643–650

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Doh-ura K, Ishikawa K et al (2004) Treatment of transmissible spongiform encephalopathy by intraventricular drug infusion in animal models. J Virol 78(10):4999–5006

    Google Scholar 

  174. Perovic S, Bohm M et al (1998) Pharmacological intervention in age-associated brain disorders by Flupirtine: Alzheimer's and prion diseases. Mech Ageing Dev 101(1–2):1–19

    Article  CAS  PubMed  Google Scholar 

  175. Mange A, Milhavet O et al (2000) Effect of amphotericin B on wild-type and mutated prion proteins in cultured cells: putative mechanism of action in transmissible spongiform encephalopathies. J Neurochem 74(2):754–762

    Article  CAS  PubMed  Google Scholar 

  176. Forloni G, Iussich S et al (2002) Tetracyclines affect prion infectivity. Proc Natl Acad Sci U S A 99(16):10849–10854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Tagliavini F, Forloni G et al (2000) Tetracycline affects abnormal properties of synthetic PrP peptides and PrP(Sc) in vitro. J Mol Biol 300(5):1309–1322

    Article  CAS  PubMed  Google Scholar 

  178. Otto M, Cepek L et al (2004) Efficacy of flupirtine on cognitive function in patients with CJD: a double-blind study. Neurology 62(5):714–718

    Article  CAS  PubMed  Google Scholar 

  179. Geschwind MD, Kuo AL et al (2013) Quinacrine treatment trial for sporadic Creutzfeldt-Jakob disease. Neurology 81(23):2015–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Bone I, Belton L et al (2008) Intraventricular pentosan polysulphate in human prion diseases: an observational study in the UK. Eur J Neurol 15(5):458–464

    Article  CAS  PubMed  Google Scholar 

  181. Tsuboi Y, Doh-Ura K et al (2009) Continuous intraventricular infusion of pentosan polysulfate: clinical trial against prion diseases. Neuropathology 29(5):632–636

    Article  PubMed  Google Scholar 

  182. Haik S, Marcon G et al (2014) Doxycycline in Creutzfeldt-Jakob disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 13(2):150–158

    Article  CAS  PubMed  Google Scholar 

  183. Kim MO, Geschwind MD (2015) Clinical update of Jakob-Creutzfeldt disease. Curr Opin Neurol 28(3):302–310

    Article  PubMed  CAS  Google Scholar 

  184. Lawson VA, Vella LJ et al (2008) Mouse-adapted sporadic human Creutzfeldt-Jakob disease prions propagate in cell culture. Int J Biochem Cell Biol 40(12):2793–2801

    Article  CAS  PubMed  Google Scholar 

  185. Priola SA, Chesebro B (1995) A single hamster PrP amino acid blocks conversion to protease-resistant PrP in scrapie-infected mouse neuroblastoma cells. J Virol 69(12):7754–7758

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Priola SA, Lawson VA (2001) Glycosylation influences cross-species formation of protease-resistant prion protein. EMBO J 20(23):6692–6699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Torres JM, Espinosa JC et al (2014) Elements modulating the prion species barrier and its passage consequences. PLoS One 9(3):e89722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Wiseman FK, Cancellotti E et al (2015) The glycosylation status of PrPC is a key factor in determining transmissible spongiform encephalopathy transmission between species. J Virol 89(9):4738–4747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Caughey B, Raymond GJ et al (1998) Strain-dependent differences in beta-sheet conformations of abnormal prion protein. J Biol Chem 273(48):32230–32235

    Article  CAS  PubMed  Google Scholar 

  190. Hill AF, Joiner S et al (2003) Molecular classification of sporadic Creutzfeldt-Jakob disease. Brain 126(Pt 6):1333–1346

    Article  PubMed  Google Scholar 

  191. Klemm HM, Welton JM et al (2012) The prion protein preference of sporadic Creutzfeldt-Jakob disease subtypes. J Biol Chem 287(43):36465–36472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kim C, Haldiman T et al (2012) Small protease sensitive oligomers of PrPSc in distinct human prions determine conversion rate of PrP(C). PLoS Pathog 8(8):e1002835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Collinge J, Sidle KC et al (1996) Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD. Nature 383(6602):685–690

    Article  CAS  PubMed  Google Scholar 

  194. Lewis V, Hill AF et al (2005) Australian sporadic CJD analysis supports endogenous determinants of molecular-clinical profiles. Neurology 65(1):113–118

    Article  CAS  PubMed  Google Scholar 

  195. Parchi P, Castellani R et al (1996) Molecular basis of phenotypic variability in sporadic Creutzfeldt-Jakob disease. Ann Neurol 39(6):767–778

    Article  CAS  PubMed  Google Scholar 

  196. Peden AH, Head MW et al (2004) Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet 364(9433):527–529

    Article  PubMed  Google Scholar 

  197. Lee HS, Brown P et al (2001) Increased susceptibility to Kuru of carriers of the PRNP 129 methionine/methionine genotype. J Infect Dis 183(2):192–196

    Article  CAS  PubMed  Google Scholar 

  198. Cervenakova L, Goldfarb LG et al (1998) Phenotype-genotype studies in kuru: implications for new variant Creutzfeldt-Jakob disease. Proc Natl Acad Sci U S A 95(22):13239–13241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Gill ON, Spencer Y et al (2013) Prevalent abnormal prion protein in human appendixes after bovine spongiform encephalopathy epizootic: large scale survey. BMJ 347:f5675

    Article  PubMed  PubMed Central  Google Scholar 

  200. Hilton DA, Ghani AC et al (2004) Prevalence of lymphoreticular prion protein accumulation in UK tissue samples. J Pathol 203(3):733–739

    Article  CAS  PubMed  Google Scholar 

  201. Ironside JW, Bishop MT et al (2006) Variant Creutzfeldt-Jakob disease: prion protein genotype analysis of positive appendix tissue samples from a retrospective prevalence study. BMJ 332(7551):1186–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Asante EA, Smidak M et al (2015) A naturally occurring variant of the human prion protein completely prevents prion disease. Nature 522(7557):478–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria A. Lawson B.Sc. (Hons.), Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Whitechurch, B.C., Welton, J.M., Collins, S.J., Lawson, V.A. (2017). Prion Diseases. In: Beart, P., Robinson, M., Rattray, M., Maragakis, N. (eds) Neurodegenerative Diseases. Advances in Neurobiology, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-57193-5_13

Download citation

Publish with us

Policies and ethics