Skip to main content

Huntington’s Disease: Pathogenic Mechanisms and Therapeutic Targets

  • Chapter
  • First Online:
Neurodegenerative Diseases

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 15))

Abstract

Huntington’s disease (HD) is a tandem repeat disorder involving neurodegeneration and a complex combination of symptoms. These include psychiatric symptoms, cognitive deficits culminating in dementia, and the movement disorder epitomised by motor signs such as chorea. HD is caused by a CAG repeat expansion encoding an extended tract of the amino acid glutamine in the huntingtin protein. This polyglutamine expansion appears to induce a ‘change of function’, possibly a ‘gain of function’, in the huntingtin protein, which leads to various molecular and cellular cascades of pathogenesis. In the current review, we will briefly describe these broader aspects of HD pathogenesis, but will then focus on specific aspects where there are substantial bodies of experimental evidence, including oxidative stress, mitochondrial dysfunction, glutamatergic dysfunction and neuroinflammation. Furthermore, we will review recent preclinical therapeutic approaches targeting some of these pathogenic pathways, their clinical implications and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-NP:

3-Nitropropionic acid

ADP/ATP:

Adenosine diphosphate/adenosine triphosphate

BAC:

Bacterial artificial chromosome

BDNF:

Brain-derived neurotrophic factor

CBP:

CREB-binding protein

CI:

Cytoplasmic inclusions

CNS:

Central nervous system

CREB:

cAMP response element binding protein

CSE:

Cystathionine ϒ-ligase

D1/D2:

Dopamine receptor 1/2

DCF:

Dichlorofluorescin

Drp-1:

Dynamin-related protein-1

EAAC1:

Excitatory amino acid carrier 1

ERK:

Extracellular signal-regulated kinases

ES:

Human embryonic stem cells

ETC:

Electron transport chain

FOXO:

Forkhead box protein o

GLAST:

Glutamate transporter protein

GLT-1:

Glutamate transporter 1

GluNx:

NMDA glutamate receptor x

GPe:

External globus pallidus

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

GSSG:

Glutathione disulphide (oxidised glutathione)

HAPx:

Huntingtin-associated protein x

HD:

Huntington’s disease

HTT:

Huntingtin

IDO:

Indolamine dioxygenase

iPS:

Inducible pluripotent stem cells

LPS:

Lipopolysaccharides

MAP:

Microtubule-associated motor proteins

mGluRx:

Metabotropic glutamate receptor x

mHTT:

Mutant huntingtin

MMP3:

Matrix metalloprotease 3

MSN:

Medium spiny neuron

NAC:

N-Acetylcysteine

N-Cor:

Nuclear receptor co-repressor

NDGA:

Nordihydroguaiaretic acid

NI:

Nuclear inclusions

NMDAR:

NMDA receptor

NRF-x:

Nuclear respiratory factor-x

NRSF:

Neuron restrictive silencer factor

OXPHOS:

Oxidative phosphorylation

PGC-1α:

PPAR-ϒ coactivator-1α

polyQ:

Polyglutamine

PPAR:

Peroxisome proliferator-activated receptor

QA:

Quinolinic acid

REST:

RE1-silencing transcription factor

ROS:

Reactive oxygen species

SN:

Subthalamic nucleus

Sp1:

Specificity binding protein 1

TIMx:

Translocase of the inner mitochondrial membrane complex x

TNF-x:

Tumour necrosis factor-x

TOM:

Translocase of the outer mitochondrial membrane complex

xCT:

Light chain of system xc− transporter complex

YAC:

Yeast artificial chromosome

References

  1. Paulsen JS, Langbehn DR, Stout JC, Aylward E, Ross CA, Nance M, Guttman M, Johnson S, MacDonald M, Beglinger LJ, Duff K, Kayson E, Biglan K, Shoulson I, Oakes D, Hayden M, Predict-HD Investigators and Coordinators of the Huntington Study Group (2008) Detection of Huntington’s disease decades before diagnosis: the predict-HD study. J Neurol Neurosurg Psychiatry 79:874–880

    Google Scholar 

  2. Rowe KC, Paulsen JS, Langbehn DR, Duff K, Beglinger LJ, Wang C, O’Rourke JJF, Stout JC, Moser DJ, Huntingto P-HI (2010) Self-paced timing detects and tracks change in prodromal Huntington disease. Neuropsychology 24:435–442

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rao AK, Louis ED, Marder KS (2009) Clinical assessment of mobility and balance impairments in pre-symptomatic Huntington’s disease. Gait Posture 30:391–393

    Article  PubMed  PubMed Central  Google Scholar 

  4. Huntington G (1872) On Chorea Med Surg Rep 26:320–321

    Google Scholar 

  5. Nance MA (1998) Huntington disease: clinical, genetic, and social aspects. J Geriatr Psychiatry Neurol 11:61–70

    Article  CAS  PubMed  Google Scholar 

  6. Paulsen JS (2011) Cognitive impairment in Huntington disease: diagnosis and treatment. Curr Neurol Neurosci Rep 11:474–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stout JC, Paulsen JS, Queller S, Solomon AC, Whitlock KB, Campbell JC, Carlozzi N, Duff K, Beglinger LJ, Langbehn DR, Johnson SA, Biglan KM, Aylward EH, Coordinat P-HI (2011) Neurocognitive signs in prodromal Huntington disease. Neuropsychology 25:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  8. Calder AJ, Keane J, Young AW, Lawrence AD, Mason S, Barker RA (2010) The relation between anger and different forms of disgust: implications for emotion recognition impairments in Huntington’s disease. Neuropsychologia 48:2719–2729

    Article  PubMed  Google Scholar 

  9. Montoya A, Pelletier M, Menear M, Duplessis E, Richer F, Lepage M (2006) Episodic memory impairment in Huntington’s disease: a meta-analysis. Neuropsychologia 44:1984–1994

    Article  PubMed  Google Scholar 

  10. Sturrock A, Leavitt BR (2010) The clinical and genetic features of Huntington disease. J Geriatr Psychiatry Neurol 23:243–259

    Article  PubMed  Google Scholar 

  11. Martinez-Horta S, Perez-Perez J, van Duijn E, Fernandez-Bobadilla R, Carceller M, Pagonabarraga J, Pascual-Sedano B, Campolongo A, Ruiz-Idiago J, Sampedro F, Landwehrmeyer GB, Kulisevsky J (2016) Neuropsychiatric symptoms are very common in premanifest and early stage Huntington’s disease. Parkinsonism Relat Disord 25:58–64

    Article  PubMed  Google Scholar 

  12. Berrios GE, Wagle AC, Markova IS, Wagle SA, Ho LW, Rubinsztein DC, Whittaker J, Ffrench-Constant C, Kershaw A, Rosser A, Bak T, Hodges JR (2001) Psychiatric symptoms and CAG repeats in neurologically asymptomatic Huntington’s disease gene carriers. Psychiatry Res 102:217–225

    Article  CAS  PubMed  Google Scholar 

  13. Duff K, Paulsen JS, Beglinger LJ, Langbehn DR, Stout JC, Predict HDI (2007) Psychiatric symptoms in Huntington’s disease before diagnosis: the predict-HD study. Biol Psychiatry 62:1341–1346

    Article  PubMed  Google Scholar 

  14. Kirkwood SC, Siemers E, Viken R, Hodes ME, Conneally PM, Christian JC, Foroud T (2002) Longitudinal personality changes among presymptomatic Huntington disease gene carriers. Neuropsychiatry Neuropsychol Behav Neurol 15:192–197

    PubMed  Google Scholar 

  15. Kirkwood SC, Siemers E, Viken RJ, Hodes ME, Conneally PM, Christian JC, Foroud T (2002) Evaluation of psychological symptoms among presymptomatic HD gene carriers as measured by selected MMPI scales. J Psychiatr Res 36:377–382

    Article  Google Scholar 

  16. Slaughter JR, Martens MP, Slaughter KA (2001) Depression and Huntington’s disease: prevalence, clinical manifestations, etiology, and treatment. CNS Spectr 6:306–326

    Article  CAS  PubMed  Google Scholar 

  17. Julien CL, Thompson JC, Wild S, Yardumian P, Snowden JS, Turner G, Craufurd D (2007) Psychiatric disorders in preclinical Huntington’s disease. J Neurol Neurosurg Psychiatry 78:939–943

    Article  PubMed  Google Scholar 

  18. Dale M, Maltby J, Shimozaki S, Cramp R, Rickards H (2016) Disease stage, but not sex, predicts depression and psychological distress in Huntington’s disease: a European population study. J Psychosom Res 80:17–22

    Article  PubMed  Google Scholar 

  19. Codori A, Slavney PR, Rosenblatt A, Brandt J (2004) Prevalence of major depression one year after predictive testing for Huntington’s disease. Genet Test 8:114–119

    Article  PubMed  Google Scholar 

  20. Pang TY, Du X, Zajac MS, Howard ML, Hannan AJ (2009) Altered serotonin receptor expression is associated with depression-related behavior in the R6/1 transgenic mouse model of Huntington’s disease. Hum Mol Genet 18:753–766

    Article  CAS  PubMed  Google Scholar 

  21. Pouladi MA, Graham RK, Karasinska JM, Xie Y, Santos RD, Petersen A, Hayden MR (2009) Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin. Brain 132:919–932

    Article  PubMed  Google Scholar 

  22. Jamwal S, Kumar P (2015) Antidepressants for neuroprotection in Huntington’s disease: a review. Eur J Pharmacol 769:33–42

    Article  CAS  PubMed  Google Scholar 

  23. Mielcarek, M., 2015. Huntington’s disease is a multi-system disorder. Rare Dis 3, e1058464.

    Google Scholar 

  24. Wang R, Ross CA, Cai H, Cong WN, Daimon CM, Carlson OD, Egan JM, Siddiqui S, Maudsley S, Martin B (2014) Metabolic and hormonal signatures in pre-manifest and manifest Huntington’s disease patients. Front Physiol 5:231

    PubMed  PubMed Central  Google Scholar 

  25. MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, Barnes G, Taylor SA, James M, Groot N, MacFarlane H, Jenkins B, Anderson MA, Wexler NS, Gusella JF, Bates GP, Baxendale S, Hummerich H, Kirby S, North M, Youngman S, Mott R, Zehetner G, Sedlacek Z, Poustka A, Frischauf A-M, Lehrach H, Buckler AJ, Church D, Doucette-Stamm L, O'Donovan MC, Riba-Ramirez L, Shah M, Stanton VP, Strobel SA, Draths KM, Wales JL, Dervan P, Housman DE, Altherr M, Shiang R, Thompson L, Fielder T, Wasmuth JJ, Tagle D, Valdes J, Elmer L, Allard M, Castilla L, Swaroop M, Blanchard K, Collins FS, Snell R, Holloway T, Gillespie K, Datson N, Shaw D, Harper PS (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Google Scholar 

  26. Li SH, Schilling G, Young WS 3rd, Li XJ, Margolis RL, Stine OC, Wagster MV, Abbott MH, Franz ML, Ranen NG (1993) Huntington’s disease gene (IT15) is widely expressed in human and rat tissues. Neuron 11:985–993

    Article  CAS  PubMed  Google Scholar 

  27. Strong TV, Tagle DA, Valdes JM, Elmer LW, Boehm K, Swaroop M, Kaatz KW, Collins FS, Albin RL (1993) Widespread expression of the human and rat Huntington’s disease gene in brain and nonneural tissues. Nat Genet 5:259–265

    Article  CAS  PubMed  Google Scholar 

  28. Trottier Y, Devys D, Imbert G, Saudou F, An I, Lutz Y, Weber C, Agid Y, Hirsch EC, Mandel JL (1995) Cellular localization of the Huntington’s disease protein and discrimination of the normal and mutated form. Nat Genet 10:104–110

    Article  CAS  PubMed  Google Scholar 

  29. Browne SE, Beal MF (2006) Oxidative damage in Huntington’s disease pathogenesis. Antioxid Redox Signal 8:2061–2073

    Article  CAS  PubMed  Google Scholar 

  30. Voisine, C., Varma, H., Walker, N., Bates, E.A., Stockwell, B.R., Hart, A.C., 2007. Identification of potential therapeutic drugs for Huntington’s disease using Caenorhabditis elegans. PLoS One 2, e504.

    Google Scholar 

  31. Green EW, Campesan S, Breda C, Sathyasaikumar KV, Muchowski PJ, Schwarcz R, Kyriacou CP, Giorgini F (2012) Drosophila eye color mutants as therapeutic tools for Huntington disease. Fly 6:117–120

    Article  CAS  PubMed  Google Scholar 

  32. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506

    Article  CAS  PubMed  Google Scholar 

  33. von Horsten S, Schmitt I, Nguyen HP, Holzmann C, Schmidt T, Walther T, Bader M, Pabst R, Kobbe P, Krotova J, Stiller D, Kask A, Vaarmann A, Rathke-Hartlieb S, Schulz JB, Grasshoff U, Bauer I, Vieira-Saecker AMM, Paul M, Jones L, Lindenberg KS, Landwehrmeyer B, Bauer A, Li XJ, Riess O (2003) Transgenic rat model of Huntington’s disease. Hum Mol Genet 12:617–624

    Article  CAS  Google Scholar 

  34. Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ, Cheng ECH, Snyder B, Larkin K, Liu J, Fang ZH, Smith Y, Bachevalier J, Zola SM, Li SH, Li XJ, Chan AWS (2008) Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 453:921–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, Slunt HH, Ratovitski T, Cooper JK, Jenkins NA, Copeland NG, Price DL, Ross CA, Borchelt DR (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 8:397–407

    Article  CAS  PubMed  Google Scholar 

  36. Hodgson JG, Agopyan N, Gutekunst C-A, Leavitt BR, LePiane F, Singaraja R, Smith DJ, Bissada N, McCutcheon K, Nasir J, Jamot L, Li X-J, Stevens ME, Rosemond E, Roder JC, Phillips AG, Rubin EM, Hersch SM, Hayden MR (1999) A YAC mouse model for Huntington’s disease with full-length mutant Huntingtin, cytoplasmic toxicity, and selective striatal Neurodegeneration. Neuron 23:181–192

    Article  CAS  PubMed  Google Scholar 

  37. Ferrante RJ (2009) Mouse models of Huntington’s disease and methodological considerations for therapeutic trials. Biochim Biophys Acta 1792:506–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Renoir T, Zajac MS, Du X, Pang T, Leang L, Chevarin C, Lanfumey L, Hannan AJ (2011) Sexually dimorphic serotonergic dysfunction in a mouse model of Huntington’s disease and depression. PLoS One 6(7):e22133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lione LA, Carter RJ, Hunt MJ, Bates GP, Morton AJ, Dunnett SB (1999) Selective discrimination learning impairments in mice expressing the human Huntington’s disease mutation. J Neurosci 19:10428–10437

    CAS  PubMed  Google Scholar 

  40. Turner C, Schapira AH (2010) Mitochondrial matters of the brain: the role in Huntington’s disease. J Bioenerg Biomembr 42:193–198

    Article  CAS  PubMed  Google Scholar 

  41. van Dellen A, Blakemore C, Deacon R, York D, Hannan AJ (2000) Delaying the onset of Huntington’s in mice. Nature 404:721–722

    Article  PubMed  Google Scholar 

  42. Hersch SM, Ferrante RJ (2004) Translating therapies for Huntington’s disease from genetic animal models to clinical trials. NeuroRx 1:298–306

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gray M, Shirasaki DI, Cepeda C, André VM, Wilburn B, Lu X-H, Tao J, Yamazaki I, Li S-H, Sun YE, Li X-J, Levine MS, Yang XW (2008) Full-length human mutant Huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci 28:6182–6195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington’s disease. Nat Rev Neurosci 14:708–721

    Article  CAS  PubMed  Google Scholar 

  45. Niclis JC, Pinar A, Haynes JM, Alsanie W, Jenny R, Dottori M, Cram DS (2013) Characterization of forebrain neurons derived from late-onset Huntington’s disease human embryonic stem cell lines. Front Cell Neurosci 7:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cattaneo E, Rigamonti D, Goffredo D, Zuccato C, Squitieri F, Sipione S (2001) Loss of normal huntingtin function: new developments in Huntington’s disease research. Trends Neurosci 24:182–188

    Article  CAS  PubMed  Google Scholar 

  48. Cattaneo E, Zuccato C, Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci 6:919–930

    Article  CAS  PubMed  Google Scholar 

  49. Duyao M, Auerbach A, Ryan A, Persichetti F, Barnes G, McNeil S, Ge P, Vonsattel J, Gusella J, Joyner A, et a (1995) Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science 269:407–410

    Article  CAS  PubMed  Google Scholar 

  50. Nasir J, Floresco SB, O'Kusky JR, Diewert VM, Richman JM, Zeisler J, Borowski A, Marth JD, Phillips AG, Hayden MR (1995) Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81:811–823

    Article  CAS  PubMed  Google Scholar 

  51. Zeitlin S, Liu JP, Chapman DL, Papaioannou VE, Efstratiadis A (1995) Increased apoptosis and early embryonic lethality in mice nullizygous for the huntingtons-disease gene homolog. Nat Genet 11:155–163

    Article  CAS  PubMed  Google Scholar 

  52. Leavitt BR, Guttman JA, Hodgson JG, Kimel GH, Singaraja R, Vogl AW, Hayden MR (2001) Wild-type huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. Am J Hum Genet 68:313–324

    Article  CAS  PubMed  Google Scholar 

  53. Van Raamsdonk JM, Pearson J, Rogers DA, Bissada N, Vogl AW, Hayden MR, Leavitt BR (2005) Loss of wild-type huntingtin influences motor dysfunction and survival in the YAC128 mouse model of Huntington disease. Hum Mol Genet 14:1379–1392

    Article  PubMed  CAS  Google Scholar 

  54. Myers RH, Leavitt J, Farrer LA, Jagadeesh J, McFarlane H, Mastromauro CA, Mark RJ, Gusella JF (1989) Homozygote for huntington disease. Am J Hum Genet 45:615–618

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wexler NS, Young AB, Tanzi RE, Travers H, Starostarubinstein S, Penney JB, Snodgrass SR, Shoulson I, Gomez F, Arroyo MAR, Penchaszadeh GK, Moreno H, Gibbons K, Faryniarz A, Hobbs W, Anderson MA, Bonilla E, Conneally PM, Gusella JF (1987) Homozygotes for huntingtons-disease. Nature 326:194–197

    Article  CAS  PubMed  Google Scholar 

  56. Rigamonti D, Bauer JH, De-Fraja C, Conti L, Sipione S, Sciorati C, Clementi E, Hackam A, Hayden MR, Li Y, Cooper JK, Ross CA, Govoni S, Vincenz C, Cattaneo E (2000) Wild-type Huntingtin protects from apoptosis upstream of caspase-3. J Neurosci 20:3705–3713

    CAS  PubMed  Google Scholar 

  57. Dragatsis I, Levine MS, Zeitlin S (2000) Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat Genet 26:300–306

    Article  CAS  PubMed  Google Scholar 

  58. Gervais FG, Singaraja R, Xanthoudakis S, Gutekunst CA, Leavitt BR, Metzler M, Hackam AS, Tam J, Vaillancourt JP, Houtzager V, Rasper DM, Roy S, Hayden MR, Nicholson DW (2002) Recruitment and activation of caspase-8 by the Huntingtin-interacting protein hip-1 and a novel partners Hippi. Nat Cell Biol 4:95–105

    Article  CAS  PubMed  Google Scholar 

  59. Harjes P, Wanker EE (2003) The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem Sci 28:425–433

    Article  CAS  PubMed  Google Scholar 

  60. Dunah AW, Jeong H, Griffin A, Kim YM, Standaert DG, Hersch SM, Mouradian MM, Young AB, Tanese N, Krainc D (2002) Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease. Science 296:2238–2243

    Article  CAS  PubMed  Google Scholar 

  61. Holbert S, Denghien I, Kiechle T, Rosenblatt A, Wellington C, Hayden MR, Margolis RL, Ross CA, Dausset J, Ferrante RJ, Néri C (2001) The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: Neuropathologic and genetic evidence for a role in Huntington’s disease pathogenesis. Proc Natl Acad Sci U S A 98:1811–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McCampbell A, Taylor JP, Taye AA, Robitschek J, Li M, Walcott J, Merry D, Chai Y, Paulson H, Sobue G, Fischbeck KH (2000) CREB-binding protein sequestration by expanded polyglutamine. Hum Mol Genet 9:2197–2202

    Article  CAS  PubMed  Google Scholar 

  63. Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu YZ, Gohler H, Wanker EE, Bates GP, Housman DE, Thompson LM (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci U S A 97:6763–6768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li SH, Cheng AL, Zhou H, Lam S, Rao M, Li H, Li XJ (2002) Interaction of Huntington disease protein with transcriptional activator Sp1. Mol Cell Biol 22:1277–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Boutell JM, Thomas P, Neal JW, Weston VJ, Duce J, Harper PS, Jones AL (1999) Aberrant interactions of transcriptional repressor proteins with the Huntington’s disease gene product, huntingtin. Hum Mol Genet 8:1647–1655

    Article  CAS  PubMed  Google Scholar 

  66. Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, Cataudella T, Leavitt BR, Hayden MR, Timmusk T, Rigamonti D, Cattaneo E (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35:76–83

    Article  CAS  PubMed  Google Scholar 

  67. Alcantara S, Frisen J, delRio JA, Soriano E, Barbacid M, SilosSantiago I (1997) TrkB signaling is required for postnatal survival of CNS neurons and protects hippocampal and motor neurons from axotomy-induced cell death. J Neurosci 17:3623–3633

    CAS  PubMed  Google Scholar 

  68. Widmer HR, Hefti F (1994) Neurotrophin-4/5 promotes survival and differentiation of rat striatal neurons developing in culture. Eur J Neurosci 6:1669–1679

    Article  CAS  PubMed  Google Scholar 

  69. Angelucci F, Brene S, Mathe AA (2005) BDNF in schizophrenia, depression and corresponding animal models. Mol Psychiatry 10:345–352

    Article  CAS  PubMed  Google Scholar 

  70. Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL, Lindsay RM, Wiegand SJ (1997) Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389:856–860

    Article  CAS  PubMed  Google Scholar 

  71. Fusco FR, Zuccato C, Tartari M, Martorana A, De March Z, Giampa C, Cattaneo E, Bernardi G (2003) Co-localization of brain-derived neurotrophic factor (BDNF) and wild-type huntingtin in normal and quinolinic acid-lesioned rat brain. Eur J Neurosci 18:1093–1102

    Article  PubMed  Google Scholar 

  72. Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, Friedlander RM, Silani V, Hayden MR, Timmusk T, Sipione S, Cattaneo E (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293:493–498

    Google Scholar 

  73. Caviston JP, Holzbaur ELF (2009) Huntingtin as an essential integrator of intracellular vesicular trafficking. Trends Cell Biol 19:147–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, Cordelieres FP, De Mey J, MacDonald ME, Lessmann V, Humbert S, Saudou F (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118:127–138

    Google Scholar 

  75. Liot G, Zala D, Pla P, Mottet G, Piel M, Saudou F (2013) Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites. J Neurosci 33:6298–6309

    Article  CAS  PubMed  Google Scholar 

  76. Reddy PH, Shirendeb UP (2012) Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington’s disease. Biochim Biophys Acta 1822:101–110

    Article  CAS  PubMed  Google Scholar 

  77. Martin DDO, Ladha S, Ehrnhoefer DE, Hayden MR (2015) Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci 38:26–35

    Article  CAS  PubMed  Google Scholar 

  78. Ochaba J, Lukacsovich T, Csikos G, Zheng S, Margulis J, Salazar L, Mao K, Lau AL, Yeung SY, Humbert S, Saudou F, Klionsky DJ, Finkbeiner S, Zeitlin SO, Marsh JL, Housman DE, Thompson LM, Steffan JS (2014) Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc Natl Acad Sci U S A 111:16889–16894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rose C, Menzies FM, Renna M, Acevedo-Arozena A, Corrochano S, Sadiq O, Brown SD, Rubinsztein DC (2010) Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington’s disease. Hum Mol Genet 19:2144–2153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, Webster JA, Lewis TA, O'Kane CJ, Schreiber SL, Rubinsztein DC (2007) Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol 3:331–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Colin E, Zala D, Liot G, Rangone H, Borrell-Pages M, Li X-J, Saudou F, Humbert S (2008) Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J 27:2124–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zala D, Colin E, Rangone H, Liot G, Humbert S, Saudou F (2008) Phosphorylation of mutant huntingtin at S421 restores anterograde and retrograde transport in neurons. Hum Mol Genet 17:3837–3846

    Article  CAS  PubMed  Google Scholar 

  83. Pal A, Severin F, Lommer B, Shevchenko A, Zerial M (2006) Huntingtin–HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington’s disease. J Cell Biol 172:605–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Caviston JP, Ross JL, Antony SM, Tokito M, Holzbaur ELF (2007) Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proc Natl Acad Sci U S A 104:10045–10050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zala D, Hinckelmann M-V, Yu H, da Cunha MML, Liot G, Cordelieres FP, Marco S, Saudou F (2013) Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152:479–491

    Article  CAS  PubMed  Google Scholar 

  86. Langbehn DR, Hayden MR, Paulsen JS, PREDICT-HD Investigators of the Huntington Study Group (2010) CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. Am J Med Genet B Neuropsychiatr Genet 153B:397–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Arrasate M, Finkbeiner S (2012) Protein aggregates in Huntington’s disease. Exp Neurol 238:1–11

    Article  CAS  PubMed  Google Scholar 

  88. Becher MW, Kotzuk JA, Sharp AH, Davies SW, Bates GP, Price DL, Ross CA (1998) Intranuclear neuronal inclusions in Huntington’s disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis 4:387–397

    Article  CAS  PubMed  Google Scholar 

  89. Davies SW, Scherzinger E (1997) Nuclear inclusions in Huntington’s disease. Trends Cell Biol 7:422

    Article  CAS  PubMed  Google Scholar 

  90. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993

    Article  CAS  PubMed  Google Scholar 

  91. Gutekunst CA, Li SH, Yi H, Mulroy JS, Kuemmerle S, Jones R, Rye D, Ferrante RJ, Hersch SM, Li XJ (1999) Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci 19:2522–2534

    CAS  PubMed  Google Scholar 

  92. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810

    Article  CAS  PubMed  Google Scholar 

  93. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548

    Article  CAS  PubMed  Google Scholar 

  94. Sawa A, Nagata E, Sutcliffe S, Dulloor P, Cascio MB, Ozeki Y, Roy S, Ross CA, Snyder SH (2005) Huntingtin is cleaved by caspases in the cytoplasm and translocated to the nucleus via perinuclear sites in Huntington’s disease patient lymphoblasts. Neurobiol Dis 20:267–274

    Article  CAS  PubMed  Google Scholar 

  95. Juenemann K, Weisse C, Reichmann D, Kaether C, Calkhoven CF, Schilling G (2011) Modulation of mutant huntingtin N-terminal cleavage and its effect on aggregation and cell death. Neurotox Res 20:120–133

    Article  CAS  PubMed  Google Scholar 

  96. Kuemmerle S, Gutekunst CA, Klein AM, Li XJ, Li SH, Beal MF, Hersch SM, Ferrante RJ (1999) Huntingtin aggregates may not predict neuronal death in Huntington’s disease. Ann Neurol 46:842–849

    Article  CAS  PubMed  Google Scholar 

  97. Arrasate M, Finkbeiner S (2005) Automated microscope system for determining factors that predict neuronal fate. Proc Natl Acad Sci U S A 102:3840–3845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    Article  CAS  PubMed  Google Scholar 

  99. Ferrante RJ, Kowall NW, Richardson EP Jr (1991) Proliferative and degenerative changes in striatal spiny neurons in Huntington’s disease: a combined study using the section-Golgi method and calbindin D28k immunocytochemistry. J Neurosci 11:3877–3887

    CAS  PubMed  Google Scholar 

  100. Purves D (2012) Neuroscience. Sinauer Associates, Sunderland

    Google Scholar 

  101. Albin RL, Young AB, Penney JB (1995) The functional anatomy of disorders of the basal ganglia. Trends Neurosci 18:63–64

    Article  CAS  PubMed  Google Scholar 

  102. Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41:646–653

    Article  CAS  PubMed  Google Scholar 

  103. Browne SE, Ferrante RJ, Beal MF (1999) Oxidative stress in Huntington’s disease. Brain Pathology (Zurich, Switzerland) 9:147–163

    Article  CAS  Google Scholar 

  104. Klepac N, Relja M, Klepac R, Hecimovic S, Babic T, Trkulja V (2007) Oxidative stress parameters in plasma of Huntington’s disease patients, asymptomatic Huntington’s disease gene carriers and healthy subjects: a cross-sectional study. J Neurol 254:1676–1683

    Article  CAS  PubMed  Google Scholar 

  105. Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF (2001) Increased oxidative damage to DNA in a transgenic mouse model of Huntington’s disease. J Neurochem 79:1246–1249

    Article  CAS  PubMed  Google Scholar 

  106. Pérez-Severiano F, Rı́os C, Segovia J (2000) Striatal oxidative damage parallels the expression of a neurological phenotype in mice transgenic for the mutation of Huntington’s disease. Brain Res 862:234–237

    Article  PubMed  Google Scholar 

  107. Wright, D.J., Renoir, T., Smith, Z.M., Frazier, A.E., Francis, P.S., Thorburn, D.R., McGee, S.L., Hannan, A.J., Gray, L.J., 2015. N-Acetylcysteine improves mitochondrial function and ameliorates behavioral deficits in the R6/1 mouse model of Huntington’s disease. Transl Psychiatry 5, e492.

    Google Scholar 

  108. Schapira AH (1995) Oxidative stress in Parkinson’s disease. Neuropathol Appl Neurobiol 21:3–9

    Article  CAS  PubMed  Google Scholar 

  109. Browne SE, Beal MF (2004) The energetics of Huntington’s disease. Neurochem Res 29:531–546

    Article  CAS  PubMed  Google Scholar 

  110. Quintanilla RA, Johnson GVW (2009) Role of mitochondrial dysfunction in the pathogenesis of Huntington’s disease. Brain Res Bull 80:242–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AHV (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol 39:385–389

    Article  CAS  PubMed  Google Scholar 

  112. Stahl WL, Swanson PD (1974) Biochemical abnormalities in Huntington chorea brains. Neurology 24:813–819

    Article  CAS  PubMed  Google Scholar 

  113. Mann VM, Cooper JM, Javoy-Agid F, Agid Y, Jenner P, Schapira AHV (1990) Mitochondrial function and parental sex effect in Huntington’s disease. Lancet 336:749

    Article  CAS  PubMed  Google Scholar 

  114. Browne SE, Beal MF (2002) Toxin-induced mitochondrial dysfunction. In: Mitochondrial function and dysfunction, vol 53, pp 243–279

    Chapter  Google Scholar 

  115. Damiano M, Diguet E, Malgorn C, D'Aurelio M, Galvan L, Petit F, Benhaim L, Guillermier M, Houitte D, Dufour N, Hantraye P, Canals JM, Alberch J, Delzescaux T, Deglon N, Beal MF, Brouillet E (2013) A role of mitochondrial complex II defects in genetic models of Huntington’s disease expressing N-terminal fragments of mutant huntingtin. Hum Mol Genet 22:3869–3882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Aidt FH, Nielsen SMB, Kanters J, Pesta D, Nielsen TT, Norremolle A, Hasholt L, Christiansen M, Hagen CM (2013) Dysfunctional mitochondrial respiration in the striatum of the Huntington’s disease transgenic R6/2 mouse model. PLoS Curr 5

    Google Scholar 

  117. Lowry OH, Hasselbe FX, Schulz DW, Passonneau JV (1964) Effect of ischemia on known substrates + cofactors of glycolytic pathway in brain. J Biol Chem 239:18–30

    CAS  PubMed  Google Scholar 

  118. Scharf MT, Mackiewicz M, Naidoo N, O'Callaghan JP, Pack AI (2008) AMP-activated protein kinase phosphorylation in brain is dependent on method of killing and tissue preparation. J Neurochem 105:833–841

    Article  CAS  PubMed  Google Scholar 

  119. Mochel F, Durant B, Meng X, O'Callaghan J, Yu H, Brouillet E, Wheeler VC, Humbert S, Schiffmann R, Durr A (2012) Early alterations of brain cellular energy homeostasis in Huntington disease models. J Biol Chem 287:1361–1370

    Article  CAS  PubMed  Google Scholar 

  120. Beeson CC, Beeson GC, Schnellmann RG (2010) A high-throughput respirometric assay for mitochondrial biogenesis and toxicity. Anal Biochem 404:75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Siddiqui A, Rivera-Sanchez S, Castro MDR, Acevedo-Torres K, Rane A, Torres-Ramos CA, Nicholls DG, Andersen JK, Ayala-Torres S (2012) Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington’s disease. Free Radic Biol Med 53:1478–1488

    Article  CAS  PubMed  Google Scholar 

  122. Liang H, Ward WF (2006) PGC-1α: a key regulator of energy metabolism. Adv Physiol Educ 30:145–151

    Article  PubMed  Google Scholar 

  123. Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90

    Article  CAS  PubMed  Google Scholar 

  124. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370

    Article  PubMed  CAS  Google Scholar 

  125. Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18:357–368

    Article  CAS  PubMed  Google Scholar 

  126. Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP (2005) PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3(4):e101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jäger S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell 119:121–135

    Article  CAS  PubMed  Google Scholar 

  128. Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D (2006) Transcriptional repression of PGC-1α by mutant Huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127:59–69

    Article  CAS  PubMed  Google Scholar 

  129. Weydt P, Pineda VV, Torrence AE, Libby RT, Satterfield TF, Lazarowski E, Gilbert ML, Morton GJ, Bammler TK, Strand AD, Cui L, Beyer RP, Easley CN, Smith AC, Krainc D, Luquet S, Sweet I, Schwartz MW, La Spada AR (2006) Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1α in Huntington’s disease neurodegeneration. Cell Metab 4:349–362

    Article  CAS  PubMed  Google Scholar 

  130. Yano H, Baranov SV, Baranova OV, Kim J, Pan Y, Yablonska S, Carlisle DL, Ferrante RJ, Kim AH, Friedlander RM (2014) Inhibition of mitochondrial protein import by mutant huntingtin. Nat Neurosci 17:822–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gunawardena S, Her LS, Brusch RG, Laymon RA, Niesman IR, Gordesky-Gold B, Sintasath L, Bonini NM, Goldstein LSB (2003) Disruption of axonal transport by loss of huntingtin or expression of pathogenic PolyQ proteins in Drosophila. Neuron 40:25–40

    Article  CAS  PubMed  Google Scholar 

  132. Szebenyi G, Morfini GA, Babcock A, Gould M, Selkoe K, Stenoien DL, Young M, Faber PW, MacDonald ME, McPhaul MJ, Brady ST (2003) Neuropathogenic forms of huntingtin and androgen receptor inhibit fast axonal transport. Neuron 40:41–52

    Google Scholar 

  133. Trushina E, Dyer RB, Badger JD, Ure D, Eide L, Tran DD, Vrieze BT, Legendre-Guillemin V, McPherson PS, Mandavilli BS, Van Houten B, Zeitlin S, McNiven M, Aebersold R, Hayden M, Parisi JE, Seeberg E, Dragatsis I, Doyle K, Bender A, Chacko C, McMurray CT (2004) Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol 24:8195–8209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shirendeb UP, Calkins MJ, Manczak M, Anekonda V, Dufour B, McBride JL, Mao P, Reddy PH (2012) Mutant huntingtin’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease. Hum Mol Genet 21:406–420

    Article  CAS  PubMed  Google Scholar 

  135. Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738

    Article  PubMed  CAS  Google Scholar 

  136. Gil JM, Rego AC (2008) Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci 27:2803–2820

    Article  PubMed  Google Scholar 

  137. Dodd S, Dean O, Copolov DL, Malhi GS, Berk M (2008) N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Expert Opin Biol Ther 8:1955–1962

    Article  CAS  PubMed  Google Scholar 

  138. Rice ME, Russo-Menna I (1998) Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neuroscience 82:1213–1223

    Article  CAS  PubMed  Google Scholar 

  139. Kato S, Negishi K, Mawatari K, Kuo CH (1992) A mechanism for glutamate toxicity in the C6 glioma cells involving inhibition of cystine uptake leading to glutathione depletion. Neuroscience 48:903–914

    Article  CAS  PubMed  Google Scholar 

  140. Deneke SM, Fanburg BL (1989) Regulation of cellular glutathione. Am J Physiol Lung Cell Mol Physiol 257:L163–L173

    CAS  Google Scholar 

  141. Papanastasiou E, Stone JM, Shergill S (2013) When the drugs don’t work: the potential of glutamatergic antipsychotics in schizophrenia. Br J Psychiatry 202:91–93

    Article  PubMed  Google Scholar 

  142. Piperno E, Berssenbruegge DA (1976) Reversal of experimental paracetamol toxicosis with N-acetylcysteine. Lancet 2:738–739

    Article  CAS  PubMed  Google Scholar 

  143. Berk M, Dean OM, Cotton SM, Jeavons S, Tanious M, Kohlmann K, Hewitt K, Moss K, Allwang C, Schapkaitz I, Robbins J, Cobb H, Ng F, Dodd S, Bush AI, Malhi GS (2014) The efficacy of adjunctive N-acetylcysteine in major depressive disorder: a double-blind, randomized, placebo-controlled trial. J Clin Psychiatry 75:628–636

    Article  CAS  PubMed  Google Scholar 

  144. Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36:348–355

    Article  CAS  PubMed  Google Scholar 

  145. Ribeiro M, Rosenstock TR, Cunha-Oliveira T, Ferreira IL, Oliveira CR, Rego AC (2012) Glutathione redox cycle dysregulation in Huntington’s disease knock-in striatal cells. Free Radic Biol Med 53:1857–1867

    Article  CAS  PubMed  Google Scholar 

  146. Tkac I, Dubinsky JM, Keene CD, Gruetter R, Low WC (2007) Neurochemical changes in Huntington R6/2 mouse striatum detected by in vivo (1)H NMR spectroscopy. J Neurochem 100:1397–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Choo YS, Mao Z, Johnson GV, Lesort M (2005) Increased glutathione levels in cortical and striatal mitochondria of the R6/2 Huntington’s disease mouse model. Neurosci Lett 386:63–68

    Article  CAS  PubMed  Google Scholar 

  148. Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11:327–335

    Article  CAS  PubMed  Google Scholar 

  149. Cepeda C, Ariano MA, Calvert CR, Flores-Hernandez J, Chandler SH, Leavitt BR, Hayden MR, Levine MS (2001) NMDA receptor function in mouse models of Huntington disease. J Neurosci Res 66:525–539

    Article  CAS  PubMed  Google Scholar 

  150. Starling AJ, Andre WM, Cepeda C, de Lima M, Chandler SH, Levine MS (2005) Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington’s disease. J Neurosci Res 82:377–386

    Article  CAS  PubMed  Google Scholar 

  151. Andre VM, Cepeda C, Venegas A, Gomez Y, Levine MS (2006) Altered cortical glutamate receptor function in the r6/2 model of Huntington’s disease. J Neurophysiol 95:2108–2119

    Article  CAS  PubMed  Google Scholar 

  152. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Venzala E, Garcia-Garcia AL, Elizalde N, Delagrange P, Tordera RM (2012) Chronic social defeat stress model: behavioral features, antidepressant action, and interaction with biological risk factors. Psychopharmacology 224:313–325

    Article  CAS  PubMed  Google Scholar 

  154. Zhang SJ, Steijaert MN, Lau D, Schutz G, Delucinge-Vivier C, Descombes P, Bading H (2007) Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. Neuron 53:549–562

    Article  CAS  PubMed  Google Scholar 

  155. Papadia S, Soriano FX, Leveille F, Martel M-A, Dakin KA, Hansen HH, Kaindl A, Sifringer M, Fowler J, Stefovska V, McKenzie G, Craigon M, Corriveau R, Ghazal P, Horsburgh K, Yankner BA, Wyllie DJA, Ikonomidou C, Hardingham GE (2008) Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci 11:476–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lau D, Bading H (2009) Synaptic activity-mediated suppression of p53 and induction of nuclear calcium-regulated neuroprotective genes promote survival through inhibition of mitochondrial permeability transition. J Neurosci 29:4420–4429

    Article  CAS  PubMed  Google Scholar 

  157. Aziz NA, Roos RAC, Gusella JF, Lee J-M, Macdonald ME (2012) CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology 79:952; author reply 952–953

    Article  PubMed  Google Scholar 

  158. Beumer W, Gibney SM, Drexhage RC, Pont-Lezica L, Doorduin J, Klein HC, Steiner J, Connor TJ, Harkin A, Versnel MA, Drexhage HA (2012) The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol 92:959–975

    Article  CAS  PubMed  Google Scholar 

  159. Sidiropoulos C, Lewitt P, Hashimoto K (2012) Abnormal apocrine secretory cell mitochondria in a Huntington disease patient. J Neurol Sci 323:261–263

    Article  CAS  PubMed  Google Scholar 

  160. Tansey, K.E., Guipponi, M., Perroud, N., Bondolfi, G., Domenici, E., Evans, D., Hall, S.K., Hauser, J., Henigsberg, N., Hu, X., Jerman, B., Maier, W., Mors, O., O'Donovan, M., Peters, T.J., Placentino, A., Rietschel, M., Souery, D., Aitchison, K.J., Craig, I., Farmer, A., Wendland, J.R., Malafosse, A., Holmans, P., Lewis, G., Lewis, C.M., Stensbol, T.B., Kapur, S., McGuffin, P., Uher, R., 2012. Genetic predictors of response to serotonergic and noradrenergic antidepressants in major depressive disorder: a genome-wide analysis of individual-level data and a meta-analysis. PLoS Med 9, e1001326.

    Google Scholar 

  161. Milnerwood AJ, Gladding CM, Pouladi MA, Kaufman AM, Hines RM, Boyd JD, Ko RWY, Vasuta OC, Graham RK, Hayden MR, Murphy TH, Raymond LA (2010) Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron 65:178–190

    Article  CAS  PubMed  Google Scholar 

  162. Zahodne LB, Marsiske M, Okun MS, Bowers D (2012) Components of depression in Parkinson disease. J Geriatr Psychiatry Neurol 25:131–137

    Article  PubMed  PubMed Central  Google Scholar 

  163. Fossati P (2012) Neural correlates of emotion processing: from emotional to social brain. Eur Neuropsychopharmacol 22(Suppl 3):S487–S491

    Article  CAS  PubMed  Google Scholar 

  164. Vance JE (2012) Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis Model Mech 5:746–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Chen NS, Luo T, Wellington C, Metzler M, McCutcheon K, Hayden MR, Raymond LA (1999) Subtype-specific enhancement of NMDA receptor currents by mutant Huntingtin. J Neurochem 72:1890–1898

    Article  CAS  PubMed  Google Scholar 

  166. Vandenberg RJ, Ryan RM (2013) Mechanisms of glutamate transport. Physiol Rev 93:1621–1657

    Article  CAS  PubMed  Google Scholar 

  167. McBean GJ, Flynn J (2001) Molecular mechanisms of cystine transport. Biochem Soc Trans 29:717–722

    Article  CAS  PubMed  Google Scholar 

  168. Lievens JC, Woodman B, Mahal A, Spasic-Boscovic O, Samuel D, Kerkerian-Le Goff L, Bates GP (2001) Impaired glutamate uptake in the R6 Huntington’s disease transgenic mice. Neurobiol Dis 8:807–821

    Article  CAS  PubMed  Google Scholar 

  169. Behrens PF, Franz P, Woodman B, Lindenberg KS, Landwehrmeyer GB (2002) Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain 125:1908–1922

    Article  CAS  PubMed  Google Scholar 

  170. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Hoberg MD, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

    Article  CAS  PubMed  Google Scholar 

  171. Miller BR, Dorner JL, Bunner KD, Gaither TW, Klein EL, Barton SJ, Rebec GV (2012) Up-regulation of GLT1 reverses the deficit in cortically evoked striatal ascorbate efflux in the R6/2 mouse model of Huntington’s disease. J Neurochem 121:629–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Miller BR, Dorner JL, Shou M, Sari Y, Barton SJ, Sengelaub DR, Kennedy RT, Rebec GV (2008) Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience 153:329–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rebec GV (2013) Dysregulation of corticostriatal ascorbate release and glutamate uptake in transgenic models of Huntington’s disease. Antioxid Redox Signal 19:2115–2128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sari Y, Prieto AL, Barton SJ, Miller BR, Rebec GV (2010) Ceftriaxone-induced up-regulation of cortical and striatal GLT1 in the R6/2 model of Huntington’s disease. J Biomed Sci 17:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Huang K, Kang MH, Askew C, Kang R, Sanders SS, Wan J, Davis NG, Hayden MR (2010) Palmitoylation and function of glial glutamate transporter-1 is reduced in the YAC128 mouse model of Huntington disease. Neurobiol Dis 40:207–215

    Article  CAS  PubMed  Google Scholar 

  176. Petr GT, Schultheis LA, Hussey KC, Sun Y, Dubinsky JM, Aoki C, Rosenberg PA (2013) Decreased expression of GLT-1 in the R6/2 model of Huntington’s disease does not worsen disease progression. Eur J Neurosci 38:2477–2490

    Article  PubMed  PubMed Central  Google Scholar 

  177. Bannai S, Christensen HN, Vadgama JV, Ellory JC, Englesberg E, Guidotti GG, Gazzola GC, Kilberg MS, Lajtha A, Sacktor B (1984) Amino acid transport systems. Nature 311:308

    CAS  PubMed  Google Scholar 

  178. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M, Smith SB, Ganapathy V, Maher P (2013) The cystine/glutamate antiporter system x(c)(−) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18:522–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Paul BD, Snyder SH (2012) H2S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13:499–507

    Article  CAS  PubMed  Google Scholar 

  180. Paul BD, Sbodio JI, Xu R, Vandiver MS, Cha JY, Snowman AM, Snyder SH (2014) Cystathionine [ggr]-lyase deficiency mediates neurodegeneration in Huntington’s disease. Nature 509(7498):96–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wright DW, Gray LJ, Li SS, Crouch PJ, Finkelstein D, Roberts B, Smith ZM, Francis PS, McGee SL, Renoir T, Hannan AJ (2016) Cystine-mediated therapeutic modulation of glutamatergic dysfunction and depressive behaviour in Huntington’s disease. Human Mol Genet (in press)

    Google Scholar 

  182. Lewerenz J, Klein M, Methner A (2006) Cooperative action of glutamate transporters and cystine/glutamate antiporter system X-c(−) protects from oxidative glutamate toxicity. J Neurochem 98:916–925

    Article  CAS  PubMed  Google Scholar 

  183. Esiri MM (2007) The interplay between inflammation and neurodegeneration in CNS disease. J Neuroimmunol 184:4–16

    Article  CAS  PubMed  Google Scholar 

  184. Nguyen MD, Julien J-P, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3:216–227

    Article  CAS  PubMed  Google Scholar 

  185. Block ML, Hong J-S (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  CAS  PubMed  Google Scholar 

  186. Falsig J, Pörzgen P, Lund S, Schrattenholz A, Leist M (2006) The inflammatory transcriptome of reactive murine astrocytes and implications for their innate immune function. J Neurochem 96:893–907

    Article  CAS  PubMed  Google Scholar 

  187. Block ML, Zecca L, Hong J-S (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  188. Ellrichmann G, Reick C, Saft C, Linker RA (2013) The role of the immune system in Huntington’s disease. Clin Dev Immunol 2013:541259

    Google Scholar 

  189. Labadorf, A., Hoss, A.G., Lagomarsino, V., Latourelle, J.C., Hadzi, T.C., Bregu, J., MacDonald, M.E., Gusella, J.F., Chen, J.F., Akbarian, S., Weng, Z., Myers, R.H., 2015. RNA sequence analysis of human Huntington disease brain reveals an extensive increase in inflammatory and developmental gene expression. PLoS One 10, e0143563.

    Google Scholar 

  190. Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, Bhide PG, Vonsattel JP, DiFiglia M (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 60:161–172

    Article  CAS  PubMed  Google Scholar 

  191. Kraft AD, Kaltenbach LS, Lo DC, Harry GJ (2012) Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons. Neurobiol Aging 33(621):e617–e633

    Google Scholar 

  192. Pavese N, Gerhard A, Tai Y, Ho AK, Turkheimer F, Barker RA, Brooks DJ, Piccini P (2006) Microglial activation correlates with severity in Huntington disease – a clinical and PET study. Neurology 66:1638–1643

    Article  CAS  PubMed  Google Scholar 

  193. Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P (2007) Imaging microglial activation in Huntington’s disease. Brain Res Bull 72:148–151

    Article  CAS  PubMed  Google Scholar 

  194. Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P (2007) Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 130:1759–1766

    Article  PubMed  Google Scholar 

  195. Politis M, Lahiri N, Niccolini F, Su P, Wu K, Giannetti P, Scahill RI, Turkheimer FE, Tabrizi SJ, Piccini P (2015) Increased central microglial activation associated with peripheral cytokine levels in premanifest Huntington’s disease gene carriers. Neurobiol Dis 83:115–121

    Article  CAS  PubMed  Google Scholar 

  196. Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, Raibon E, Lee RV, Benn CL, Soulet D, Magnusson A, Woodman B, Landles C, Pouladi MA, Hayden MR, Khalili-Shirazi A, Lowdell MW, Brundin P, Bates GP, Leavitt BR, Möller T, Tabrizi SJ (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med 205:1869–1877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Silvestroni A, Faull RLM, Strand AD, Moller T (2009) Distinct neuroinflammatory profile in post-mortem human Huntington’s disease. Neuroreport 20:1098–1103. doi:10.1097/WNR.1090b1013e32832e32834ee

    Article  PubMed  Google Scholar 

  198. Trager U, Andre R, Magnusson-Lind A, Miller JR, Connolly C, Weiss A, Grueninger S, Silajdzic E, Smith DL, Leavitt BR, Bates GP, Bjorkqvist M, Tabrizi SJ (2015) Characterisation of immune cell function in fragment and full-length Huntington’s disease mouse models. Neurobiol Dis 73:388–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Renoir T, Pang TY, Shikano Y, Li S, Hannan AJ (2015) Loss of the sexually dimorphic neuro-inflammatory response in a transgenic mouse model of Huntington’s disease. J Huntingtons Dis 4:297–303

    Article  CAS  PubMed  Google Scholar 

  200. Forrest CM, Mackay GM, Stoy N, Spiden SL, Taylor R, Stone TW, Darlington LG (2010) Blood levels of kynurenines, interleukin-23 and soluble human leucocyte antigen-G at different stages of Huntington’s disease. J Neurochem 112:112–122

    Article  CAS  PubMed  Google Scholar 

  201. Connolly C, Magnusson-Lind A, Lu G, Wagner PK, Southwell AL, Hayden MR, Bjorkqvist M, Leavitt BR (2016) Enhanced immune response to MMP3 stimulation in microglia expressing mutant huntingtin. Neuroscience 325:74–88

    Article  CAS  PubMed  Google Scholar 

  202. Gil-Mohapel J, Brocardo PS, Christie BR (2014) The role of oxidative stress in Huntington’s disease: are antioxidants good therapeutic candidates? Curr Drug Targets 15:454–468

    Article  CAS  PubMed  Google Scholar 

  203. Lu Z, Marks E, Chen J, Moline J, Barrows L, Raisbeck M, Volitakis I, Cherny RA, Chopra V, Bush AI, Hersch S, Fox JH (2014) Altered selenium status in Huntington’s disease: neuroprotection by selenite in the N171-82Q mouse model. Neurobiol Dis 71:34–42

    Article  CAS  PubMed  Google Scholar 

  204. Jin J, Albertz J, Guo Z, Peng Q, Rudow G, Troncoso JC, Ross CA, Duan W (2013) Neuroprotective effects of PPAR-gamma agonist rosiglitazone in N171-82Q mouse model of Huntington’s disease. J Neurochem 125:410–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Chiang MC, Chen CM, Lee MR, Chen HW, Chen HM, Wu YS, Hung CH, Kang JJ, Chang CP, Chang C, Wu YR, Tsai YS, Chern Y (2010) Modulation of energy deficiency in Huntington’s disease via activation of the peroxisome proliferator-activated receptor gamma. Hum Mol Genet 19:4043–4058

    Article  CAS  PubMed  Google Scholar 

  206. Lee J, Kosaras B, Del Signore SJ, Cormier K, McKee A, Ratan RR, Kowall NW, Ryu H (2011) Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington’s disease mice. Acta Neuropathol 121:487–498

    Article  CAS  PubMed  Google Scholar 

  207. Xun Z, Rivera-Sanchez S, Ayala-Pena S, Lim J, Budworth H, Skoda EM, Robbins PD, Niedernhofer LJ, Wipf P, McMurray CT (2012) Targeting of XJB-5-131 to mitochondria suppresses oxidative DNA damage and motor decline in a mouse model of Huntington’s disease. Cell Rep 2:1137–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Hickey MA, Zhu C, Medvedeva V, Lerner RP, Patassini S, Franich NR, Maiti P, Frautschy SA, Zeitlin S, Levine MS, Chesselet MF (2012) Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington’s disease. Mol Neurodegener 7:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Ho DJ, Calingasan NY, Wille E, Dumont M, Beal MF (2010) Resveratrol protects against peripheral deficits in a mouse model of Huntington’s disease. Exp Neurol 225:74–84

    Article  CAS  PubMed  Google Scholar 

  210. Reiner A, Lafferty DC, Wang HB, Del Mar N, Deng YP (2012) The group 2 metabotropic glutamate receptor agonist LY379268 rescues neuronal, neurochemical and motor abnormalities in R6/2 Huntington’s disease mice. Neurobiol Dis 47:75–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Doria JG, de Souza JM, Andrade JN, Rodrigues HA, Guimaraes IM, Carvalho TG, Guatimosim C, Dobransky T, Ribeiro FM (2015) The mGluR5 positive allosteric modulator, CDPPB, ameliorates pathology and phenotypic signs of a mouse model of Huntington’s disease. Neurobiol Dis 73:163–173

    Article  CAS  PubMed  Google Scholar 

  212. Doria JG, Silva FR, de Souza JM, Vieira LB, Carvalho TG, Reis HJ, Pereira GS, Dobransky T, Ribeiro FM (2013) Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington’s disease. Br J Pharmacol 169:909–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Schiefer J, Sprunken A, Puls C, Luesse HG, Milkereit A, Milkereit E, Johann V, Kosinski CM (2004) The metabotropic glutamate receptor 5 antagonist MPEP and the mGluR2 agonist LY379268 modify disease progression in a transgenic mouse model of Huntington’s disease. Brain Res 1019:246–254

    Article  CAS  PubMed  Google Scholar 

  214. Ribeiro FM, Devries RA, Hamilton A, Guimaraes IM, Cregan SP, Pires RG, Ferguson SS (2014) Metabotropic glutamate receptor 5 knockout promotes motor and biochemical alterations in a mouse model of Huntington’s disease. Hum Mol Genet 23:2030–2042

    Article  CAS  PubMed  Google Scholar 

  215. Schiefer J, Landwehrmeyer GB, Lüesse HG, Sprünken A, Puls C, Milkereit A, Milkereit E, Kosinski CM (2002) Riluzole prolongs survival time and alters nuclear inclusion formation in a transgenic mouse model of Huntington’s disease. Mov Disord 17:748–757

    Article  PubMed  Google Scholar 

  216. Marco S, Giralt A, Petrovic MM, Pouladi MA, Martinez-Turrillas R, Martinez-Hernandez J, Kaltenbach LS, Torres-Peraza J, Graham RK, Watanabe M, Lujan R, Nakanishi N, Lipton SA, Lo DC, Hayden MR, Alberch J, Wesseling JF, Perez-Otano I (2013) Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington’s disease models. Nat Med 19:1030–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Reiner A, Wang HB, Del Mar N, Sakata K, Yoo W, Deng YP (2012) BDNF may play a differential role in the protective effect of the mGluR2/3 agonist LY379268 on striatal projection neurons in R6/2 Huntington’s disease mice. Brain Res 1473:161–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Reilmann R, Rouzade-Dominguez ML, Saft C, Sussmuth SD, Priller J, Rosser A, Rickards H, Schols L, Pezous N, Gasparini F, Johns D, Landwehrmeyer GB, Gomez-Mancilla B (2015) A randomized, placebo-controlled trial of AFQ056 for the treatment of chorea in Huntington’s disease. Mov Disord 30:427–431

    Article  CAS  PubMed  Google Scholar 

  219. Palacio JR, Markert UR, Martinez P (2011) Anti-inflammatory properties of N-acetylcysteine on lipopolysaccharide-activated macrophages. Inflamm Res 60:695–704

    Article  CAS  PubMed  Google Scholar 

  220. Pinar Karapinar S, Ulum YZ, Ozcelik B, Dogan Buzoglu H, Ceyhan D, Balci Peynircioglu B, Aksoy Y (2016) The effect of N-acetylcysteine and calcium hydroxide on TNF-alpha and TGF-beta1 in lipopolysaccharide-activated macrophages. Arch Oral Biol 68:48–54

    Article  CAS  PubMed  Google Scholar 

  221. Samuni Y, Goldstein S, Dean OM, Berk M (2013) The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta 1830:4117–4129

    Article  CAS  PubMed  Google Scholar 

  222. Shih AY, Erb H, Sun X, Toda S, Kalivas PW, Murphy TH (2006) Cystine/glutamate exchange modulates glutathione supply for neuroprotection from oxidative stress and cell proliferation. J Neurosci 26:10514–10523

    Article  CAS  PubMed  Google Scholar 

  223. Berk M, Malhi GS, Gray LJ, Dean OM (2013) The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol Sci 34:167–177

    Article  CAS  PubMed  Google Scholar 

  224. Reinhart PH, Kaltenbach LS, Essrich C, Dunn DE, Eudailey JA, DeMarco CT, Turmel GJ, Whaley JC, Wood A, Cho S, Lo DC (2011) Identification of anti-inflammatory targets for Huntington’s disease using a brain slice-based screening assay. Neurobiol Dis 43:248–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Hsiao HY, Chiu FL, Chen CM, Wu YR, Chen HM, Chen YC, Kuo HC, Chern Y (2014) Inhibition of soluble tumor necrosis factor is therapeutic in Huntington’s disease. Hum Mol Genet 23:4328–4344

    Article  CAS  PubMed  Google Scholar 

  226. Maheshwari M, Bhutani S, Das A, Mukherjee R, Sharma A, Kino Y, Nukina N, Jana NR (2014) Dexamethasone induces heat shock response and slows down disease progression in mouse and fly models of Huntington’s disease. Hum Mol Genet 23:2737–2751

    Article  CAS  PubMed  Google Scholar 

  227. Norflus F, Nanje A, Gutekunst CA, Shi G, Cohen J, Bejarano M, Fox J, Ferrante RJ, Hersch SM (2004) Anti-inflammatory treatment with acetylsalicylate or rofecoxib is not neuroprotective in Huntington’s disease transgenic mice. Neurobiol Dis 17:319–325

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Hannan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wright, D.J., Renoir, T., Gray, L.J., Hannan, A.J. (2017). Huntington’s Disease: Pathogenic Mechanisms and Therapeutic Targets. In: Beart, P., Robinson, M., Rattray, M., Maragakis, N. (eds) Neurodegenerative Diseases. Advances in Neurobiology, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-57193-5_4

Download citation

Publish with us

Policies and ethics