Skip to main content

Cardiac Autonomic Changes in Epilepsy

  • Chapter
  • First Online:
Complexity and Nonlinearity in Cardiovascular Signals

Abstract

The term “Epilepsy” encompasses a broad spectrum of medical and social disorders that affect about 65 million people worldwide and is commonly defined as a tendency to suffer recurrent seizures. In patients with epilepsy, ictal discharges that occur in (or propagate to) the anterior cingulate, insular, posterior orbito-frontal, and the pre-frontal cortices, along with the amygdala and hypothalamus play a key role in influencing the autonomic nervous system (ANS) at the cortical level. In turn, this can result in cardiac effects which are widespread and range from subtle changes in heart rate variability (HRV) to ictal sinus arrest, and from QT-interval shortening to atrial fibrillation. In addition, cardiac events are the main hypothesized mechanisms underlying sudden unexpected death in epilepsy (SUDEP), which occurs in absence of a known structural cause. Patients with epilepsy also experience long-lasting changes in the regulation of the ANS and target organs. Heart rate (HR) and HRV can be easily measured/estimated when compared to other biomarkers that are commonly associated with seizures (i.e., long-term EEG), and are therefore potentially valuable biomarkers when it comes to characterizing seizures. In this context, a number of linear and nonlinear analysis techniques have been applied in order to detect and characterize epilepsy-related ANS changes. While the physiological and clinical applicability of nonlinear analyses like fractal and complexity measures of HR dynamics are not yet completely understood, in view of recent experimental findings it is reasonable to assume that such indices highlight abnormal patterns of RR interval behaviour that are not easily detected by commonly used moment statistics of HR variation. These findings may provide new insight regarding physiological and seizure-induced states of the complex brain-heart network underlying epilepsy and related autonomic modifications. A better understanding of the autonomic manifestations of seizures would provide practical added value to clinical epileptologists dealing with differential diagnosis of epilepsy and related disorders, as well as aiding in designing more sensitive seizure detection and prediction algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ngugi, A.K., et al.: Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia. 51(5), 883–890 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Berg, A.T., et al.: Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia. 51(4), 676–685 (2010)

    Article  PubMed  Google Scholar 

  3. Eggleston, K.S., Olin, B.D., Fisher, R.S.: Ictal tachycardia: the head-heart connection. Seizure. 23(7), 496–505 (2014)

    Article  PubMed  Google Scholar 

  4. Sevcencu, C., Struijk, J.J.: Autonomic alterations and cardiac changes in epilepsy. Epilepsia. 51(5), 725–737 (2010)

    Article  PubMed  Google Scholar 

  5. Nashef, L., et al.: Unifying the definitions of sudden unexpected death in epilepsy. Epilepsia. 53(2), 227–233 (2012)

    Article  PubMed  Google Scholar 

  6. Devinsky, O.: Effects of seizures on autonomic and cardiovascular function. Epilepsy Curr. 4(2), 43–46 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sperling, M.R.: Sudden unexplained death in epilepsy. Epilepsy Curr. 1(1), 21–23 (2001)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Scorza, F.A., et al.: The brain-heart connection: implications for understanding sudden unexpected death in epilepsy. Cardiol. J. 16(5), 394–399 (2009)

    PubMed  Google Scholar 

  9. Jansen, K., Lagae, L.: Cardiac changes in epilepsy. Seizure. 19(8), 455–460 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. Jeppesen, J., et al.: Heart rate variability analysis indicates preictal parasympathetic overdrive preceding seizure-induced cardiac dysrhythmias leading to sudden unexpected death in a patient with epilepsy. Epilepsia. 55(7), e67–e71 (2014)

    Article  PubMed  Google Scholar 

  11. Surges, R., Jordan, A., Elger, C.E.: Ictal modulation of cardiac repolarization, but not of heart rate, is lateralized in mesial temporal lobe epilepsy. PLoS One. 8(5), e64765 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Romigi, A., et al.: Heart rate variability in untreated newly diagnosed temporal lobe epilepsy: evidence for ictal sympathetic dysregulation. Epilepsia. 57(3), 418–426 (2016)

    Article  PubMed  Google Scholar 

  13. Shorvon, S., Tomson, T.: Sudden unexpected death in epilepsy. Lancet. 378(9808), 2028–2038 (2011)

    Article  PubMed  Google Scholar 

  14. Porges, S.W.: The polyvagal theory: phylogenetic substrates of a social nervous system. Int. J. Psychophysiol. 42(2), 123–146 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Russell, A.E.: The pathology of epilepsy. Proc. R. Soc. Med. 1(Med Sect), 72–118 (1908)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. van der Lende, M., et al.: Cardiac arrhythmias during or after epileptic seizures. J. Neurol. Neurosurg. Psychiatry. 87(1), 69–74 (2016)

    PubMed  Google Scholar 

  17. Pool, J.L., Ransohoff, J.: Autonomic effects on stimulating rostral portion of cingulate gyri in man. J. Neurophysiol. 12(6), 385–392 (1949)

    CAS  PubMed  Google Scholar 

  18. Oppenheimer, S.M., et al.: Cardiovascular effects of human insular cortex stimulation. Neurology. 42(9), 1727–1732 (1992)

    Article  CAS  PubMed  Google Scholar 

  19. Altenmuller, D.M., Zehender, M., Schulze-Bonhage, A.: High-grade atrioventricular block triggered by spontaneous and stimulation-induced epileptic activity in the left temporal lobe. Epilepsia. 45(12), 1640–1644 (2004)

    Article  PubMed  Google Scholar 

  20. Leung, H., Kwan, P., Elger, C.E.: Finding the missing link between ictal bradyarrhythmia, ictal asystole, and sudden unexpected death in epilepsy. Epilepsy Behav. 9(1), 19–30 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. Moseley, B., et al.: Autonomic epileptic seizures, autonomic effects of seizures, and SUDEP. Epilepsy Behav. 26(3), 375–385 (2013)

    Article  PubMed  Google Scholar 

  22. Doyle, O.M., et al.: Heart rate based automatic seizure detection in the newborn. Med. Eng. Phys. 32(8), 829–839 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. Rocamora, R., et al.: Cardiac asystole in epilepsy: clinical and neurophysiologic features. Epilepsia. 44(2), 179–185 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. Schuele, S.U., et al.: Video-electrographic and clinical features in patients with ictal asystole. Neurology. 69(5), 434–441 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. Tinuper, P., et al.: Ictal bradycardia in partial epileptic seizures: autonomic investigation in three cases and literature review. Brain. 124(Pt 12), 2361–2371 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Moseley, B.D., et al.: The treatment of ictal asystole with cardiac pacing. Epilepsia. 52(4), e16–e19 (2011)

    Article  PubMed  Google Scholar 

  27. Adjei, P., et al.: Do subclinical electrographic seizure patterns affect heart rate and its variability? Epilepsy Res. 87(2–3), 281–285 (2009)

    Article  PubMed  Google Scholar 

  28. Di Gennaro, G., et al.: Ictal heart rate increase precedes EEG discharge in drug-resistant mesial temporal lobe seizures. Clin. Neurophysiol. 115(5), 1169–1177 (2004)

    Article  PubMed  Google Scholar 

  29. Jeppesen, J., et al.: Detection of epileptic-seizures by means of power spectrum analysis of heart rate variability: a pilot study. Technol. Health Care. 18(6), 417–426 (2010)

    PubMed  Google Scholar 

  30. Massetani, R., et al.: Alteration of cardiac function in patients with temporal lobe epilepsy: different roles of EEG-ECG monitoring and spectral analysis of RR variability. Epilepsia. 38(3), 363–369 (1997)

    Article  CAS  PubMed  Google Scholar 

  31. Toth, V., et al.: Periictal heart rate variability analysis suggests long-term postictal autonomic disturbance in epilepsy. Eur. J. Neurol. 17(6), 780–787 (2010)

    Article  CAS  PubMed  Google Scholar 

  32. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 17(3), 354–381 (1996)

    Google Scholar 

  33. Blumhardt, L.D., Smith, P.E., Owen, L.: Electrocardiographic accompaniments of temporal lobe epileptic seizures. Lancet. 1(8489), 1051–1056 (1986)

    Article  CAS  PubMed  Google Scholar 

  34. Evrengul, H., et al.: Time and frequency domain analyses of heart rate variability in patients with epilepsy. Epilepsy Res. 63(2–3), 131–139 (2005)

    Article  PubMed  Google Scholar 

  35. Harnod, T., et al.: Heart rate variability in children with refractory generalized epilepsy. Seizure. 17(4), 297–301 (2008)

    Article  PubMed  Google Scholar 

  36. Isojarvi, J.I., et al.: Interictal cardiovascular autonomic responses in patients with epilepsy. Epilepsia. 39(4), 420–426 (1998)

    Article  CAS  PubMed  Google Scholar 

  37. Tomson, T., et al.: Heart rate variability in patients with epilepsy. Epilepsy Res. 30(1), 77–83 (1998)

    Article  CAS  PubMed  Google Scholar 

  38. Ansakorpi, H., et al.: Heart rate dynamics in refractory and well controlled temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry. 72(1), 26–30 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. El-Sayed, H.L., et al.: Non-invasive assessment of cardioregulatory autonomic functions in children with epilepsy. Acta Neurol. Scand. 115(6), 377–384 (2007)

    Article  CAS  PubMed  Google Scholar 

  40. Dutsch, M., Hilz, M.J., Devinsky, O.: Impaired baroreflex function in temporal lobe epilepsy. J. Neurol. 253(10), 1300–1308 (2006)

    Article  PubMed  Google Scholar 

  41. Devinsky, O., Perrine, K., Theodore, W.H.: Interictal autonomic nervous system function in patients with epilepsy. Epilepsia. 35(1), 199–204 (1994)

    Article  CAS  PubMed  Google Scholar 

  42. Ferri, R., et al.: Heart rate variability during sleep in children with partial epilepsy. J. Sleep Res. 11(2), 153–160 (2002)

    Article  PubMed  Google Scholar 

  43. Ronkainen, E., et al.: Suppressed circadian heart rate dynamics in temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry. 76(10), 1382–1386 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Persson, H., et al.: Circadian variation in heart-rate variability in localization-related epilepsy. Epilepsia. 48(5), 917–922 (2007)

    Article  PubMed  Google Scholar 

  45. Persson, H., Ericson, M., Tomson, T.: Heart rate variability in patients with untreated epilepsy. Seizure. 16(6), 504–508 (2007)

    Article  PubMed  Google Scholar 

  46. Mativo, P., et al.: Study of cardiac autonomic function in drug-naive, newly diagnosed epilepsy patients. Epileptic Disord. 12(3), 212–216 (2010)

    PubMed  Google Scholar 

  47. Nilsson, L., et al.: Risk factors for sudden unexpected death in epilepsy: a case-control study. Lancet. 353(9156), 888–893 (1999)

    Article  CAS  PubMed  Google Scholar 

  48. Langan, Y., Nashef, L., Sander, J.W.: Case-control study of SUDEP. Neurology. 64(7), 1131–1133 (2005)

    Article  CAS  PubMed  Google Scholar 

  49. Sander, J.W.: The natural history of epilepsy in the era of new antiepileptic drugs and surgical treatment. Epilepsia. 44(Suppl 1), 17–20 (2003)

    Article  PubMed  Google Scholar 

  50. Colugnati, D.B., et al.: Carbamazepine does not alter the intrinsic cardiac function in rats with epilepsy. Arq. Neuropsiquiatr. 68(4), 573–578 (2010)

    Article  PubMed  Google Scholar 

  51. Lotufo, P.A., et al.: A systematic review and meta-analysis of heart rate variability in epilepsy and antiepileptic drugs. Epilepsia. 53(2), 272–282 (2012)

    Article  PubMed  Google Scholar 

  52. Surges, R., et al.: Sudden unexpected death in epilepsy: risk factors and potential pathomechanisms. Nat. Rev. Neurol. 5(9), 492–504 (2009)

    Article  CAS  PubMed  Google Scholar 

  53. Hesdorffer, D.C., Tomson, T.: Adjunctive antiepileptic drug therapy and prevention of SUDEP. Lancet Neurol. 10(11), 948–949 (2011)

    Article  PubMed  Google Scholar 

  54. Kenneback, G., et al.: Electrophysiologic effects and clinical hazards of carbamazepine treatment for neurologic disorders in patients with abnormalities of the cardiac conduction system. Am. Heart J. 121(5), 1421–1429 (1991)

    Article  CAS  PubMed  Google Scholar 

  55. Kasarskis, E.J., et al.: Carbamazepine-induced cardiac dysfunction. Characterization of two distinct clinical syndromes. Arch. Intern. Med. 152(1), 186–191 (1992)

    Article  CAS  PubMed  Google Scholar 

  56. Persson, H., Ericson, M., Tomson, T.: Carbamazepine affects autonomic cardiac control in patients with newly diagnosed epilepsy. Epilepsy Res. 57(1), 69–75 (2003)

    Article  CAS  PubMed  Google Scholar 

  57. Tomson, T., Kenneback, G.: Arrhythmia, heart rate variability, and antiepileptic drugs. Epilepsia. 38(11 Suppl), S48–S51 (1997)

    Article  CAS  PubMed  Google Scholar 

  58. Hallioglu, O., et al.: Effects of antiepileptic drug therapy on heart rate variability in children with epilepsy. Epilepsy Res. 79(1), 49–54 (2008)

    Article  CAS  PubMed  Google Scholar 

  59. Tomson, T., Nashef, L., Ryvlin, P.: Sudden unexpected death in epilepsy: current knowledge and future directions. Lancet Neurol. 7(11), 1021–1031 (2008)

    Article  PubMed  Google Scholar 

  60. Ryvlin, P., Montavont, A., Kahane, P.: Sudden unexpected death in epilepsy: from mechanisms to prevention. Curr. Opin. Neurol. 19(2), 194–199 (2006)

    Article  PubMed  Google Scholar 

  61. Toichi, M., et al.: A new method of assessing cardiac autonomic function and its comparison with spectral analysis and coefficient of variation of R-R interval. J. Auton. Nerv. Syst. 62(1–2), 79–84 (1997)

    Article  CAS  PubMed  Google Scholar 

  62. Ponnusamy, A., Marques, J.L., Reuber, M.: Comparison of heart rate variability parameters during complex partial seizures and psychogenic nonepileptic seizures. Epilepsia. 53(8), 1314–1321 (2012)

    Article  PubMed  Google Scholar 

  63. Jeppesen, J., et al.: Comparing maximum autonomic activity of psychogenic non-epileptic seizures and epileptic seizures using heart rate variability. Seizure. 37, 13–19 (2016)

    Article  PubMed  Google Scholar 

  64. Craig, A.D.: Forebrain emotional asymmetry: a neuroanatomical basis? Trends Cogn. Sci. 9(12), 566–571 (2005)

    Article  PubMed  Google Scholar 

  65. Thayer, J.F., Lane, R.D.: Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 33(2), 81–88 (2009)

    Article  PubMed  Google Scholar 

  66. Guo, C.C., et al.: Dominant hemisphere lateralization of cortical parasympathetic control as revealed by frontotemporal dementia. Proc. Natl. Acad. Sci. U. S. A. 113(17), E2430–E2439 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vanderlei, L.C., et al.: Basic notions of heart rate variability and its clinical applicability. Rev. Bras. Cir. Cardiovasc. 24(2), 205–217 (2009)

    Article  PubMed  Google Scholar 

  68. Pincus, S.M., Viscarello, R.R.: Approximate entropy: a regularity measure for fetal heart rate analysis. Obstet. Gynecol. 79(2), 249–255 (1992)

    CAS  PubMed  Google Scholar 

  69. Fleisher, L.A., Pincus, S.M., Rosenbaum, S.H.: Approximate entropy of heart rate as a correlate of postoperative ventricular dysfunction. Anesthesiology. 78(4), 683–692 (1993)

    Article  CAS  PubMed  Google Scholar 

  70. Sugihara, G., et al.: Detecting causality in complex ecosystems. Science. 338(6106), 496–500 (2012)

    Article  CAS  PubMed  Google Scholar 

  71. Schiecke, K., et al.: Nonlinear directed interactions between heart rate variability and EEG activity in children with temporal lobe epilepsy. I.E.E.E. Trans. Biomed. Eng. 63(12), 2497–2504 (2016)

    Article  Google Scholar 

  72. Barbieri, R., et al: Lower instantaneous entropy of heartbeat dynamics during seizures in untreated temporal lobe epilepsy. In: 2015 Computing in Cardiology Conference (CinC). (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Toschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Romigi, A., Toschi, N. (2017). Cardiac Autonomic Changes in Epilepsy. In: Barbieri, R., Scilingo, E., Valenza, G. (eds) Complexity and Nonlinearity in Cardiovascular Signals. Springer, Cham. https://doi.org/10.1007/978-3-319-58709-7_14

Download citation

Publish with us

Policies and ethics