Skip to main content

Improving Plant Phosphorus (P) Acquisition by Phosphate-Solubilizing Bacteria

  • Chapter
  • First Online:
Essential Plant Nutrients

Abstract

Phosphorus (P) is an essential plant nutrient required for sustainable production of food and bioenergy crops. A sufficient supply of P to the crop plants is necessary in order to meet global and regional food security challenges. However, limited mobility of P in the soil and its high fixation capabilities within the soil matrix necessitate the use of P fertilizers, which are again prone to fixation, thereby reducing the availability of this crucial element for plant nutrition. Rhizosphere is an intricate zone under the influence of plant roots and harbours variety of microbial species which confer growth and nutrition benefits to the crop plants. Phosphate solubilizing bacteria (PSB) play a crucial role in solubilizing various forms of phosphorus in soil and making them available for plant uptake. The bacterial phosphate solubilization process is mainly triggered by the secretions of organic acids, siderophores, exopolysaccharides, and enzyme (phytase-phosphatase) activities. The bacterial metabolites either solubilize the inorganic forms of phosphorus or mobilize the organic sources of phosphorus through enhanced enzyme activities. In this chapter, we attempt to provide an overview about the potential contribution of PSB in improving plant P nutrition. Moreover, we also discussed the action mechanism involving PSB and key features that make it a useful value-added product for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye, A., & Kloepper, J. (2009). Plant–microbes interactions in enhanced fertilizer use efficiency. Applied Microbiology and Biotechnology, 85, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Adhya, T. K., Kumar, N., Reddy, G., Podile, A. R., Bee, H., & Samantaray, B. (2015). Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils. Current Science, 108, 1280–1287.

    CAS  Google Scholar 

  • Aditya, B., Abhrajyoti Ghosh, A., & Chattopadhyay, D. (2009). Co-inoculation effects of nitrogen fixing and phosphate solublising microorganisms on teak (Tectona grandis) and indian redwood (Chukrasiatu bularis). Journal of Biological Sciences, 1, 23–29.

    Google Scholar 

  • Ahemad, M., & Khan, M. S. (2010). Ameliorative effects of Mesorhizobium sp. MRC4 on chickpea yield and yield components under different doses of herbicide stress. Pesticide Biochemistry and Physiology, 98, 183–190.

    Article  CAS  Google Scholar 

  • Ahemad, M., & Khan, M. S. (2012). Productivity of greengram in tebuconazole-stressed soil, by using a tolerant and plant growth–promoting Bradyrhizobium sp. MRM6 strain. Acta Physiologiae Plantarum, 34, 245–254.

    Article  CAS  Google Scholar 

  • Alden, L., Demoling, F., & Baath, E. (2001). Rapid method of determining factors limiting bacterial growth insoil. Applied and Environmental Microbiology, 67, 1830–1838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almaghrabi, O. A., Massoud, S. I., & Abdelmoneim, T. S. (2013). Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi Journal of Biological Sciences, 20, 57–61.

    Article  PubMed  Google Scholar 

  • Ambrosini, A., Souza, R., & Passaglia, L. M. P. (2016). Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant and Soil, 400, 193–207.

    Article  CAS  Google Scholar 

  • Anandham, R., Gandhi, P. I., Madhaiyan, M., & Sa, T. (2008). Potential plant growth promoting traits and bioacidulation of rock phosphate by thiosulfate oxidizing bacteria isolated from crop plants. Journal of Basic Microbiology, 48, 439–447.

    Article  CAS  PubMed  Google Scholar 

  • Antoun, H., & Prevost, D. (2005). Ecology of plant growth promoting rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 1–38). Dordrecht: Springer.

    Google Scholar 

  • Arif, M. S., Riaz, M., Shahzad, S. M., Yasmeen, T., Akhtar, M. J., Riaz, M. A., Jassey, V. E. J., Bragazza, L., & Buttler, A. (2016a). Associative interplay of plant growth promoting rhizobacteria (Pseudomonas aeruginosa QS40) with nitrogen fertilizers improves sunflower (Helianthus annuus L.) productivity and fertility of Aridisol. Applied Soil Ecology, 108, 238–247.

    Article  Google Scholar 

  • Arif, M. S., Riaz, M., Shahzad, S. M., Yasmeen, T., Ali, S., & Akhtar, M. J. (2016b). Phosphorus mobilizing plant growth promoting rhizobacteria (Bacillus cereus GS6) improved symbiotic efficiency of soybean (Glycine max L.) in compost amended aridisol. Pedosphere (submitted).

    Google Scholar 

  • Ashraf, M. A., Asif, M., Zaheer, A., Malik, A., Ali, Q., & Rasool, M. (2013). Plant growth promoting rhizobacteria & sustainable agriculture: A review. African Journal of Microbiology Research, 7, 704–709.

    CAS  Google Scholar 

  • Babalola, O. O., Osir, E. O., Sanni, A., Odhaimbo, G. D., & Bulimo, W. D. (2003). Amplification of 1-aminocyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soils. African Journal of Biotechnology, 2, 157–160.

    Article  CAS  Google Scholar 

  • Babu-Khan, S., Yeo, T. C., Martin, W. L., Duron, M. R., Rogers, R. D., & Goldstein, A. H. (1995). Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Applied and Environmental Microbiology, 61, 972–978.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baginsky, S. (2016). Protein phosphorylation in chloroplasts–A survey of phosphorylation targets. Journal of Experimental Botany, 67(13), 3873–3882. doi:10.1093/jxb/erw098.

    Article  CAS  PubMed  Google Scholar 

  • Bandick, A. K., & Dick, R. P. (1999). Field management effects on soil enzyme activities. Soil Biology and Biochemistry, 31, 1471–1479.

    Article  CAS  Google Scholar 

  • Banik, S., & Dey, B. K. (1982). Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate solubilizing microorganisms. Plant and Soil, 69, 353–364.

    Article  CAS  Google Scholar 

  • Bashan, Y., Kamnev, A. A., & de-Bashan, L.E. (2013). A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth. Biology and Fertility of Soils, 49, 1–2.

    Google Scholar 

  • Bashan, Y., & Holguin, G. (1998). Proposal for the division of plant growth promoting rhizobacteria into two classifications: Biocontrol–PGPB plant growth–promoting bacteria, and PGPB. Soil Biology and Biochemistry, 30, 1225–1228.

    Article  CAS  Google Scholar 

  • Beech, I. B., Paiva, M., Caus, M., & Coutinho, C. (2001). Enzymatic activity and within biofilms of sulphate reducing bacteria. In P. G. Gilbert, D. Allison, M. Brading, J. Verran, & J. Walker (Eds.), Biofilm community interactions: Chance or necessity? (pp. 231–239). Cardiff, UK: BioLine.

    Google Scholar 

  • Bensidhoum, L., Nabti, E., Tabli, N., Kupferschmied, P., Weiss, A., Rothballer, M., Schmid, M., Keel, C., & Hartmann, A. (2016). Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in northeastern Algeria with plant growth promoting, insecticidal and antifungal activities. European Journal of Soil Biology, 75, 38–46.

    Article  CAS  Google Scholar 

  • Bertrand, I., Holloway, R. E., Armstrong, R. D., & McLaughlin, M. J. (2003). Chemical characteristics of phosphorus in alkaline soils from southern Australia. Australian Journal of Soil Research, 41, 61–76.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth–promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327–1350.

    Article  CAS  PubMed  Google Scholar 

  • Bouizgarne, B. (2013). Bacteria for plant growth promotion and disease management. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Disease management (pp. 15–47). Berlin Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Buchet, A., Nasser, W., Eichler, K., & Mandrand-Berthelot, M. A. (1999). Positive co-regulation of the Escherichia coli carnitine pathway cai and fix operons by CRP and the CaiF activator. Molecular Microbiology, 34, 562–575.

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli, D., Schlaeppi, K., Spaepen, S., Loren, V., van Themaat, E., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838.

    Article  CAS  PubMed  Google Scholar 

  • Cakmakcı, R., Erat, M., Erdo, U. G., & Donmez, M. F. (2007). The influence of PGPR on growth parameters, antioxidant and pentose phosphate oxidative cycle enzymes in wheat and spinach plants. Journal of Plant Nutrition and Soil Science, 170, 288–295.

    Article  CAS  Google Scholar 

  • Chandra, S., Choure, K., Dubey, R. C., & Maheshwari, D. K. (2007). Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotiniasclerotiorum and enhances growth of Indian mustard (Brassica campestris). Brazilian Journal of Microbiology, 38, 128–130.

    Article  Google Scholar 

  • Chapin, F. S., Maton, P. A., & Vitousel, P. M. (2012). Principles of terrestrial ecosystem ecology (p. 436). New York: Springer-Verlag.

    Google Scholar 

  • Chauhan, H., Bagyaraj, D. J., Selvakumar, G., & Sundaram, S. P. (2015). Novel plant growth promoting rhizobacteria–prospects. Applied Soil Ecology, 95, 38–53.

    Article  Google Scholar 

  • Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W. A., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate abilities. Applied Soil Ecology, 34, 33–41.

    Article  Google Scholar 

  • Chowdhury, R. B., Moore, G. A., Weatherley, A. J., & Arora, M. (2017). Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation. Journal of Cleaner Production, 140, 945–963.

    Article  CAS  Google Scholar 

  • Chung, H., Park, M., Madhaiyan, M., Seshadri, S., Song, J., Cho, H., & Sa, T. (2005). Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology and Biochemistry, 37, 1970–1974.

    Article  CAS  Google Scholar 

  • Cisse, L., & Mrabet, T. (2004). World phosphate production: Overview and prospects. Phosphorus Research Bulletin, 15, 21–25.

    Article  Google Scholar 

  • Condron, L. M., Turner, B. L., & Cade-Menun, B. J. (2005). Chemistry and dynamics of soil organic phosphorus. In J. T. Sims & A. N. Sharpley (Eds.), Phosphorus: Agriculture and the environment (pp. 87–121). Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Inc.

    Google Scholar 

  • Collavino, M. M., Sansberro, P. A., Mroginski, L. A., & Aguilar, O. M. (2010). Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biology and Fertility of Soils, 46, 727–738.

    Article  Google Scholar 

  • Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19, 292–305.

    Article  Google Scholar 

  • Damon, P. M., Bowden, B., Rose, T., & Rengel, Z. (2014). Crop residue contributions to phosphorus pools in agricultural soils: A review. Soil Biology and Biochemistry, 74, 127–137.

    Article  CAS  Google Scholar 

  • Dao, T. H. (2004). Ligands and phytase hydrolysis of organic phosphorus in soils amended with dairy manure. Agronomy Journal, J96, 1188–1195.

    Article  Google Scholar 

  • Dardanelli, M. S., Manyani, H., Gonzalez-Barroso, S., Rodriguez-Carvajal, M. A., Gil-Serrano, A. M., Espuny, M. R., López-Baena, F. J., Bellogin, R. A., Megías, M., & Ollero, F. J. (2010). Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacteriumbalustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant and Soil, 328, 483–493.

    Article  CAS  Google Scholar 

  • Das, A. C. (1963). Utilization of insoluble phosphates by soil fungi. Journal of the Indian Society of Soil Science, 11, 203–207.

    CAS  Google Scholar 

  • Das, K., Katiyar, V., & Goel, R. (2003). P solubilization potential of plant growth promoting Pseudomonas mutants at low temperature. Microbiological Research, 158, 359–362.

    Article  PubMed  Google Scholar 

  • Datta, M. S., Banik, M., & Gupta, R. K. (1982). Studies on the efficacy of a phytohormone producing phosphate solubilizing bacillus firmis in augmenting paddy yield in acid soils of Nagaland. Plant and Soil, 69, 365–373.

    Article  CAS  Google Scholar 

  • Delić, D., Stajković-Srbinović, O., Kuzmanović, D., Rasulić, N., Maksimović, S., Radović, J., & Simić, A. (2012). Influence of plant growth promoting rhizobacteria on alfalfa, Medicago sativa L. yield by inoculation of a preceding Italian ryegrass, Lolium multiflorum Lam. In S. Barth & D. Milbourne (Eds.), Breeding strategies for sustainable forage and turf grass improvement (pp. 333–339). Dordrecht, Netherlands: Springer.

    Google Scholar 

  • Demoling, F., Figueroa, D., & Baath, E. (2007). Comparison of factors limiting bacterial growth in differentsoils. Soil Biology and Biochemistry, 39, 2485–2495.

    Article  CAS  Google Scholar 

  • Dessaux, Y., Grandclément, C., & Faure, D. (2016). Engineering the rhizosphere. Trends in Plant Science, 21, 266–278.

    Article  CAS  PubMed  Google Scholar 

  • Deubel, A., Gransee, A., & Merbach, W. (2000). Transformation of organic rhizodeposits byrhizoplane bacteria and its influence on the availability of tertiary calcium phosphate. Journal of Plant Nutrition and Soil Science, 163, 387–392.

    Article  CAS  Google Scholar 

  • Dey, R., Pal, K. K., Bhatt, D. M., & Chauhan, S. M. (2004). Growth promotion and yield enhancement of peanut (Arachish ypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research, 159, 371–394.

    Article  CAS  PubMed  Google Scholar 

  • Diogo, J., Korenblum, E., Casella, R., Vital, R. L., & Seldin, L. (2010). Polyphasic analysis of the bacterial community in the rhizosphere and roots of Cyperus rotundus L. grown in a petroleum contaminated soil. Microbiol. Biotechnology, 20, 862–870.

    Google Scholar 

  • Dobbelaere, S., Vanderleyden, J., & Okon, Y. (2003). Plant growth promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences, 22, 107–149.

    Article  CAS  Google Scholar 

  • Dodor, D. E., & Tabatabai, A. M. (2003). Effect of cropping systems on phosphatases in soils. Journal of Plant Nutrition and Soil Science, 166, 7–13.

    Article  CAS  Google Scholar 

  • Duff, S. M., Sarath, G., & Plaxton, W. C. (1994). The role of acid phosphatases in plant phosphorus metabolism. Physiologia Plantarum, 90, 791–800.

    Article  CAS  Google Scholar 

  • Egamberdiyeva, D., Kamilova, F., Validov, S., Gafurova, L., Kucharova, Z., & Lugtenberg, B. (2008). High incidence of plant growth stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environmental Microbiology, 10, 1–9.

    Google Scholar 

  • Ekin, Z. (2010). Performance of phosphate solubilizing bacteria for improving growth and yield of sunflower (Helianthus annuus L.) in the presence of phosphorus fertilizer. African Journal of Biotechnology, 9, 3794–3800.

    CAS  Google Scholar 

  • Etesami, H., & Alikhani, H. A. (2016). Rhizosphere and endorhiza of oilseed rape (Brassica napus L) plant harbor bacteria with multifaceted beneficial effects. Biological Control, 94, 11–24.

    Article  Google Scholar 

  • FAO. (2009). How to feed the world in 2050. Rome, Italy: Food and Agriculture Organization.

    Google Scholar 

  • Fiske, C. H., & Subbarow, Y. (1925). A colorimetric determination of phosphorous. The Journal of Biological Chemistry, 66, 375–400.

    CAS  Google Scholar 

  • Foster, R. C. (1983). The fine structure of epidermal cell mucilages of roots. The New Phytologist, 91, 727–740.

    Article  Google Scholar 

  • Fraga, R., Rodriguez, H., & Gonzalez, T. (2001). Transfer of the gene encoding the Nap A acid phosphatase from Morganellamorganii to a Burkholderiacepacia strain. Acta Biotechnologica, 21, 359–369.

    Article  CAS  Google Scholar 

  • Frossard, E., Brossard, M., Hedley, M. J., & Meterell, A. (1995). Reactions controlling the cycling of P in soils. In H. Tiessen (Ed.), Phosphorus in the global environment (pp. 107–137). New York: Wiley.

    Google Scholar 

  • Frossard, E., Condron, L. M., Oberson, A., Sinaj, S., & Fardeau, J. C. (2000). Processes governing phosphorus availability in temperate soils. Journal of Environmental Quality, 29, 15–23.

    Article  CAS  Google Scholar 

  • Ganesan, V. (2008). Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Current Microbiology, 56, 403–407.

    Article  CAS  PubMed  Google Scholar 

  • Gerretsen, F. C. (1948). The influence of microorganisms on the phosphate intake by the plant. Plant and Soil, 1, 51–81.

    Article  CAS  Google Scholar 

  • Gholami, A., Shahsavani, S., & Nezarat, S. (2009). The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 1, 9–14.

    Google Scholar 

  • Goldstein, A. H. (1995). Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram–negative bacteria. Biological Agriculture and Horticulture, 12, 185–193.

    Article  Google Scholar 

  • Goldstein, A. H., & Liu, S. T. (1987). Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwiniaherbicola. Biotechnology, 5, 72–74.

    CAS  Google Scholar 

  • Gray, E. J., & Smith, D. L. (2005). Intracellular and extracellular PGPR: Commonalities and distinctions in the plant–bacterium signaling processes. Soil Biology and Biochemistry, 3, 7395–7412.

    Google Scholar 

  • Gupta, R., Singal, R., Sankar, A., Kuhad, R. C., & Saxena, R. K. (1994). A modified plate assay for screening phosphate solubilizing microorganisms. The Journal of General and Applied Microbiology, 40, 255–260.

    Article  CAS  Google Scholar 

  • Gupta, G., Panwar, J., & Jha, P. (2013). Natural occurrence of Pseudomonas aeruginosa, a dominant cultivable Diazotrophic endophytic bacterium colonizing Pennisetum glaucum (L) R. Br. Applied Soil Ecology, 64, 252–261.

    Article  Google Scholar 

  • Gyaneshwar, P., Naresh, K. P. G., & Parekh, J. L. (1998). Effect of buffering on the phosphate-solubilizing ability of microorganisms. World Journal of Microbiology and Biotechnology, 14, 669–673.

    Article  CAS  Google Scholar 

  • Gyaneshwar, P., Parekh, L. J., Archana, G., Podle, P. S., Collins, M. D., Hutson, R. A., & Naresh, K. G. (1999). Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiology Letters, 171, 223–229.

    Article  CAS  Google Scholar 

  • Gyaneshwar, P., Kumar, G. N., Parekh, L. J., & Poole, P. S. (2002). Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, 245, 83–93.

    Article  CAS  Google Scholar 

  • Hartmann, A., Schmid, M., van Tuinen, D., & Berg, G. (2009). Plant–driven selection of microbes. Plant and Soil, 321, 235–257.

    Article  CAS  Google Scholar 

  • Hasan, M., Bano, A., Hassan, S. G., Iqbal, J., Awan, U., Rong-ji, D., & Khan, K. A. (2014). Enhancement of rice growth and production of growth–promoting phytohormones by inoculation with rhizobium and other rhizobacteria. World Applied Sciences Journal, 31, 1734–1743.

    Google Scholar 

  • Hilda, R., & Fraga, R. (2000). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319–359.

    Google Scholar 

  • Hiltner, L. (1904). Uber neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berucksichtigung der Grundungung und Brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft, 98, 59–78.

    Google Scholar 

  • Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: A review. Plant and Soil, 237, 173–195.

    Article  CAS  Google Scholar 

  • Holford, I. C. R. (1997). Soil phosphorus: Its measurements and its uptake by plants. Australian Journal of Soil Research, 35, 227–239.

    Article  CAS  Google Scholar 

  • Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Willams, S. T. (1994). Bergeys manual of determinative bacteriology (9th ed.). Baltimore: Williams and Wilkins.

    Google Scholar 

  • Hussain, M. I., Asghar, H. N., Akhtar, M. J., & Arshad, M. (2013). Impact of phosphate solubilizing bacteria on growth and yield of maize. Plant, Soil and Environment, 32, 71–78.

    CAS  Google Scholar 

  • Hynes, L. G. C., Hirkala, D. L., & Nelson, L. M. (2008). Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil and chickpea grown in Western Canada. Canadian Journal of Microbiology, 54, 248–258.

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim, S. S., El-Midany, A. A., & Boulos, T. R. (2010). Economic preferences of mechanical activation over mineral beneficiation for phosphate rock direct applications. Physicochemical Problems of Mineral Processing, 44, 63–78.

    CAS  Google Scholar 

  • Illmer, P., & Schinner, F. (1995). Solubilization of inorganic calcium phosphate solubilization mechanisms. Soil Biology and Biochemistry, 27, 257–563.

    Article  CAS  Google Scholar 

  • Indiragandhi, P., Anandham, R., Kim, K., Yim, W. J., Madhaiyan, M., & Sa, T. M. (2008). Induction of defense responses in tomato against Pseudomonas syringae pv. tomato by regulating the stress ethylene level with Methylobacteriumoryzae CBMB20 containing 1-aminocyclo propane-1-carboxylate deaminase. World Journal of Microbiology and Biotechnology, 24, 1037–1045.

    Article  CAS  Google Scholar 

  • International Fertilizer Industry Association (IFA). (2009). IFADATA; IFA: Paris, France. Available online: http://www.fertilizer.org/ifa/ifadata/search. Accessed 22.01.17.

  • Iqbal, M. A., Khalid, M., Shahzad, S. M., Ahmad, M., Soleman, N., & Akhtar, N. (2012). Integrated use of Rhizobium leguminosarum, plant growth promoting rhizobacteria and enriched compost for improving growth, nodulation and yield of lentil (Lens culinaris Medik.) Chilean Journal of Agricultural Research, 72, 104–110.

    Article  Google Scholar 

  • Iqbal, S., Khan, M. Y., Asghar, H. N., & Akhtar, M. J. (2016). Combined use of phosphate solubilizing bacteria and poultry manure to enhance the growth and yield of mung bean in calcareous soil. Soil & Environment, 35, 146–154.

    Google Scholar 

  • Jarosch, K. A., Doolette, A. L., Smernik, R. J., Tamburini, F., Frossard, E., & Bünemann, E. K. (2015). Characterisation of soil organic phosphorus in NaOH-EDTA extracts: a comparison of 31P NMR spectroscopy and enzyme addition assays. Soil Biology and Biochemistry, 91, 298–309.

    Article  CAS  Google Scholar 

  • Johnson, H. W. (1959). The solubilization of “insoluble” phosphate IV the reaction between organic acids and tricalcium phosphate. New Zealand Journal of Science, 2, 215–218.

    Google Scholar 

  • Jones, D. L., Nguyen, C., & Finlay, R. D. (2009). Carbon flow in the rhizosphere: Carbon trading at the soil-rootinterface. Plant and Soil, 321, 5–33.

    Article  CAS  Google Scholar 

  • Joo, G. J., Kim, Y. M., Kim, J. T., & Lee, L. I. J. (2005). Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. Journal of Microbiology, 43, 510–515.

    CAS  Google Scholar 

  • Jorquera, M. A., Hernandez, M. T., Rengel, Z., Marschner, P., & de la Luz, M. M. (2008). Isolation of culturable phosphobacteria with both phytate–mineralization and phosphate–solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biology and Fertility of Soils, 44, 1025–1034.

    Article  CAS  Google Scholar 

  • Kageyama, H., Tripathi, K., Rai, A. K., Chaum, S., Waditee-Sirisattha, R., & Takabe, T. (2011). An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphanothece halophytica, a halotolerant cyanobacterium. Applied and Environmental Microbiology, 77, 5178–5183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katznelson, H., Peterson, E. A., & Rovatt, J. W. (1962). Phosphate dissolving microoganisms on seed and in the root zone of plants. Canadian Journal of Botany, 40, 1181–1186.

    Article  CAS  Google Scholar 

  • Kaur, G., & Reddy, M. S. (2014). Influence of P-solubilizing bacteria on crop yield and soil fertility at multi locational sites. European Journal of Soil Biology, 61, 35–40.

    Article  CAS  Google Scholar 

  • Kaymak, H. C., Yarali, F., Guvenc, I., & Donmez, M. F. (2008). The effect of inoculation with Plant Growth Promoting Rhizobacteria (PGPR) on root formation of mint (Mentha piperita L.) cuttings. African Journal of Biotechnology, 7, 4479–4483.

    CAS  Google Scholar 

  • Khalid, A., Arshad, M., & Zahir, Z. A. (2006). Phytohormones: Microbial production and applications. In N. Uphoff, A. S. Ball, E. Fernandes, H. Herren, O. Husson, M. Laing, C. Palm, J. Pretty, P. Sanchez, N. Sanginga, & J. Thies (Eds.), Biological approaches to sustainable soil systems (pp. 207–220). Boca Raton: Taylor and Francis.

    Chapter  Google Scholar 

  • Khan, M. S., Zaidi, A., & Wani, P. A. (2007). Role of phosphate solubilizing microorganisms in sustainable agriculture. A review. Agronomy for Sustainable Development, 27, 29–43.

    Article  Google Scholar 

  • Khan, M. S., Zaidi, A., Wani, P. A., Ahemad, M., & Oves, M. (2009). Functional diversity among plant growth–promoting rhizobacteria. In M. S. Khan, A. Zaidi, & J. Musarrat (Eds.), Microbial strategies for crop improvement (pp. 105–132). Berlin: Springer.

    Chapter  Google Scholar 

  • Khan, N., Khan, N. W., & Khan, S. A. (2011). Combined effect of nitrogen fertilizers and herbicides upon maize production in Peshawar. Journal of Animal and Plant Sciences, 21, 1001–1006.

    Google Scholar 

  • Khan, M. S., Ahmad, E., Zaidi, A., & Oves, M. (2013). Functional aspect of phosphate–solubilizing bacteria. Importance in crop production. In D. K. Maheshwari, M. Saraf, & A. Aeron (Eds.), Bacteria in agrobiology: Crop productivity (pp. 237–265). Berlin: Springer.

    Chapter  Google Scholar 

  • Khiari, L., & Parent, L. E. (2005). Phosphorus transformations in acid light–textured soils treated with dry swine manure. Canadian Journal of Soil Science, 85, 75–87.

    Article  Google Scholar 

  • Kim, K. Y., Jordan, D., & McDonald, G. A. (1997). Solubilization of hydroxyapatite by Enterobacter agglomeransand cloned Escherichia coli in culture medium. Biology and Fertility of Soils, 24, 347–352.

    Article  CAS  Google Scholar 

  • Kim, K. Y., Jordan, D., & Krishnan, H. B. (1998). Expression of genes from Rahnellaaquatilis that are necessary for mineral phosphate solubilization in Escherichia coli. FEMS Microbiology Letters, 159, 121–127.

    Article  CAS  PubMed  Google Scholar 

  • Kim, C. H., Han, S. H., Kim, K. Y., Cho, B. H., Kim, Y. H., Koo, B. S., & Kim, C. Y. (2003). Cloning and expression of pyrroloquinoline quinone (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium. Current Microbiology, 47, 457–461.

    CAS  PubMed  Google Scholar 

  • Koopmans, G. F., Chardon, W. J., Dolfing, J., Oenema, O., Van der Meer, P., & Van Riemsdijk, W. H. (2003). Wet chemical phosphorus-31 nuclear magnetic resonance analysis of phosphorus speciation in a sand soil receiving long-term fertiliser or animal manure applications. Journal of Environmental Quality, 32, 287–295.

    Article  CAS  PubMed  Google Scholar 

  • Kpomblekou, K., & Tabatabai, M. A. (1994). Effect of organic acids on release of phosphorus from phosphate rocks. Soil Science, 158, 442–453.

    Article  Google Scholar 

  • Krishnaraj, P. U., & Goldstein, A. H. (2001). Cloning of a Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase–mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens. FEMS Microbiology Letters, 205, 215–220.

    Article  CAS  PubMed  Google Scholar 

  • Kuan, K. B., Othman, R., Rahim, K. A., & Shamsuddin, Z. H. (2016). Plant growth–promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PloS One, 11, e0152478. doi:10.1371/journal.pone. 0152478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar, K. V., Singh, N., Behl, H. M., & Srivastava, S. (2008). Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere, 72, 678–683.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Kumar, A., Devi, S., Patil, S., Payal, C., & Negi, S. S. (2012). Isolation, screening and characterization of bacteria from rhizospheric soils for different plant growth promotion (PGP) activities: An in vitro study. Recent Research in Science and Technology, 4, 01–05.

    Google Scholar 

  • Kumar, V., Singh, P., Jorquera, M. A., Sangwan, P., Kumar, P., Verma, A. K., & Agrawal, S. (2013). Isolation of phytaseproducing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea). World Journal of Microbiology and Biotechnology, 29, 1361–1365.

    Article  CAS  PubMed  Google Scholar 

  • Kurepin, L. V., Zaman, M., & Pharis, R. P. (2014). Phytohormonal basis for the plant growth promoting action of naturally occurring biostimulators. Journal of the Science of Food and Agriculture, 94, 1715–1722.

    Article  CAS  PubMed  Google Scholar 

  • Lalande, R., Bissonnette, N., Coutlée, D., & Antoun, H. (1989). Identification of rhizobacteria from maize and determination of their plant-growth promoting potential. Plant and Soil, 115, 7–11.

    Article  Google Scholar 

  • Li, G. E., Wu, X. Q., Ye, J. R., Hou, L., Zhou, A. D., & Zhao, L. (2013). Isolation and identification of phytate-degrading rhizobacteria with activity of improving growth of poplar and Masson pine. World Journal of Microbiology and Biotechnology, 29, 2181–2193.

    Article  CAS  PubMed  Google Scholar 

  • Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the phyllosphere. Applied and Environmental Microbiology, 69, 1875–1883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Bucio, J., de la Vega, O. M., Guevara-García, A., & Herrera-Estrella, L. (2000). Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nature Biotechnology, 18, 450–453.

    Article  CAS  PubMed  Google Scholar 

  • Louw, H. A., & Webley, D. M. (1959). A study of soil bacteria dissolving certain phosphate fertilizers and related compounds. The Journal of Applied Bacteriology, 22, 227–233.

    Article  CAS  Google Scholar 

  • Lugtenberg, B., & Kamilova, F. (2009). Plant–growth–promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.

    Article  CAS  PubMed  Google Scholar 

  • Mahdi, S. S., Hassan, G. I., Hussain, A., & Rasool, F. (2011). Phosphorus availability issue—Its fixation and role of phosphate solubilizing bacteria in phosphate solubilization. Research Journal of Agricultural Sciences, 2, 174–179.

    Google Scholar 

  • Maougal, R. T., Brauman, A., Plassard, C., Abadie, J., Djekoun, A., & Drevon, J. J. (2014). Bacterial capacitiesto mineralize phytate increase in the rhizosphere of nodulated common bean (Phaseolus vulgaris) under P deficiency. European Journal of Soil Biology, 62, 8–14.

    Google Scholar 

  • Marks, B. B., Megías, M., Ollero, F. J., Nogueira, M. A., Araujo, R. S., & Hungria, M. (2015). Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipochito oligosaccharides (LCOs). AMB Express, 5, 71–79. doi:10.1186/s13568-015-0154-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marra, L. M., de Oliveira, S. M., Soares, C. R. F. S., & de Souza Moreira, F. M. (2011). Solubilisation of inorganic phosphates by inoculants strains from tropical legumes. Scientia Agricola, 68, 603–609.

    Article  CAS  Google Scholar 

  • Martinez-Viveros, O., Jorquera, M., Crowley, D. E., Gajardo, G., & Mora, M. L. (2010). Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition, 10, 293–319.

    Article  Google Scholar 

  • Martínez, O. A., Crowley, D. E., Mora, M. L., & Jorquera, M. A. (2015). Short-term study shows that phytatemineralizing rhizobacteria inoculation affects the biomass, phosphorus (P) uptake and rhizosphere properties of cereal plants. Journal of Soil Science and Plant Nutrition, 15, 153–166.

    Google Scholar 

  • Masciarelli, O., Llanes, A., & Luna, V. (2014). A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiological Research, 169, 609–615.

    Article  CAS  PubMed  Google Scholar 

  • Mehrvarz, S., Chaichi, M. R., & Alikhani, H. A. (2008). Effects of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on yield and yield components of Barely (Hordeum vulgare L.) American-Eurasian Journal of Agricultural & Environmental Sciences, 3, 822–828.

    Google Scholar 

  • Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H. M., Piceno, Y. M., DeSantis, T. Z., Andersen, G. L., Bakker, P. A. H. M., & Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for disease–suppressive bacteria. Science, 332, 1097–1100.

    Article  CAS  PubMed  Google Scholar 

  • Minaxi, Saxena, J., Chandra, S., & Nain, L. (2013). Synergistic effect of phosphate solubilizing rhizobacteria and arbuscular mycorrhiza on growth and yield of wheat plants. Journal of Soil Science and Plant Nutrition, 13, 511–525. doi:10.4067/S0718–95162013005000040.

    Google Scholar 

  • Mommer, L., Kirkegaard, J., & van Ruijven, J. (2016). Root-root interactions: Towards a rhizosphere framework. Trends in Plant Science, 21, 209–217.

    Article  CAS  PubMed  Google Scholar 

  • Moody, P. W., Speirs, S. D., Scott, B. J., & Mason, S. D. (2013). Soil phosphorus tests I: What soil phosphorus pools and processes do they measure? Crop & Pasture Science, 64, 461–468.

    Article  CAS  Google Scholar 

  • Moutia, J. F. Y., Saumtally, S., Spaepen, S., & Vanderleyden, J. (2010). Plant growth promotion by Azospirillum sp. in sugarcane is influenced by genotype and drought stress. Plant and Soil, 337, 233–242.

    Article  CAS  Google Scholar 

  • Murphy, J., & Riely, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    Article  CAS  Google Scholar 

  • Nahas, E. (1996). Factors determining rock phosphate solubilization by microorganism isolated from soil. World Journal of Microbiology and Biotechnology, 12, 18–23.

    Article  Google Scholar 

  • Nannipieri, P. (2011). Potential impact of climate change on microbial function in soil. In T. J. Sauer, J. M. Norman, & M. V. K. Sivakumar (Eds.), Sustaining soil productivity in response to global climate change (1st ed., pp. 199–209). New York: Wiley.

    Google Scholar 

  • Narsian, V., & Patel, H. H. (2000). Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biology and Biochemistry, 32, 559–565.

    Article  CAS  Google Scholar 

  • Narula, N., Kumar, V., Behl, R. K., Duebel, A. A., Gransee, A., & Merbach, W. (2000). Effect of P solubilizing Azotobacter chroococcum on N, P, K uptake in P responsive wheat genotypes grown under greenhouse conditions. Journal of Plant Nutrition and Soil Science, 163, 393–398.

    Article  CAS  Google Scholar 

  • Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganism. FEMS Microbiology Letters, 170, 265–270.

    Article  CAS  PubMed  Google Scholar 

  • Nye, P. H. (1980). Diffusion of ions and uncharged solutes in soils and soil clays. Advances in Agronomy, 31, 225–272.

    Article  Google Scholar 

  • Oberson, A., & Joner, E. J. (2005). Microbial turnover of phosphorus in soil. In B. L. Turner, E. Frossard, & D. S. Baldwin (Eds.), Organic phosphorus in the environment (pp. 133–164). Wallingford: CABI.

    Chapter  Google Scholar 

  • Ochoa-Loza, F. J., Artiola, J. F., & Maier, R. M. (2001). Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. Journal of Environmental Quality, 30, 479–485.

    Article  CAS  PubMed  Google Scholar 

  • Olander, L. P., & Vitousek, P. M. (2004). Biological and geochemical sinks for phosphorus in soil from a wet tropical forest. Ecosystems, 7, 404–419.

    Article  CAS  Google Scholar 

  • Omar, S. A. (1998). The role of rock phosphate solubilizing fungi and vesicular arbuscular mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World Journal of Microbiology and Biotechnology, 2, 211–218.

    Article  Google Scholar 

  • Pati, B. R., & Chandra, A. K. (1981). Effect of spraying nitrogen-fixing phyllospheric bacterial isolates on wheat plants. Plant and Soil, 61, 419–427.

    Article  Google Scholar 

  • Patil, M. G., Sayyed, R. Z., Chaudhari, A. B., & Chincholkar, S. B. (2002). Phosphate solubilizing microbes: A potential bioinoculant for efficient use of phosphate fertilizers. In S. M. Reddy, S. R. Reddy, & S. Grisham (Eds.), Bioinoculants for sustainable agriculture and forestry (pp. 127–138). Jodhpur: Scientific Publisher.

    Google Scholar 

  • Pereira, S. I. A., & Castro, P. M. L. (2014). Phosphate solubilizing rhizobacteria enhance Zea mays growth in agricultural P–deficient soils. Ecological Engineering, 73, 526–535.

    Article  Google Scholar 

  • Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347–375.

    Article  CAS  PubMed  Google Scholar 

  • Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya, 17, 362–370.

    CAS  Google Scholar 

  • Pizzeghello, D., Berti, A., Nardi, S., & Morari, F. (2011). Phosphorus forms and P–sorption properties in three alkaline soils after long–term mineral and manure applications in north–eastern Italy. Agriculture, Ecosystems & Environment, 141, 58–66.

    Article  CAS  Google Scholar 

  • Poonguzhali, S., Madhaiyan, M., & Sa, T. (2008). Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. Journal of Microbiology and Biotechnology, 18, 773–777.

    CAS  PubMed  Google Scholar 

  • Probanza, A., Mateos, J. L., Lucas-Garcia, J. A., Ramos, B., de Felipe, M. R., & Gutierrez Manero, F. J. (2001). Effects of inoculation with PGPR Bacillus and Pisolithustinctorius on Pinus pinea L. growth, bacterial rhizosphere colonization, and mycorrhizal infection. Microbial Ecology, 41, 140–148.

    Article  CAS  PubMed  Google Scholar 

  • Prochnow, L. I., Fernando, J., Quispe, S., Artur, E., Francisco, B., & Braga, G. (2006). Effectiveness of phosphate fertilizers of different water solubilities in relation to soil phosphorus adsorption. Agronomy Journal, 95, 293–302.

    Article  Google Scholar 

  • Qureshi, M. A., Iqbal, A., Akhtar, N., Shakir, M. A., & Khan, A. (2012). Co-inoculation of phosphate solubilizing bacteria and rhizobia in the presence of L-tryptophan for the promotion of mash bean (Vigna mungo L.) Soil and Environment, 31, 47–54.

    CAS  Google Scholar 

  • Reid, R. K., Reid, C. P. P., & Szaniszlo, P. J. (1985). Effects of synthetic and microbially produced chelates on the diffusion of iron and phosphorus to a simulated root in soil. Biology and Fertility of Soils, 1, 45–52.

    Article  CAS  Google Scholar 

  • Reilly, T. J., Baron, G. S., Nano, F., & Kuhlenschmidt, M. S. (1996). Characterization and sequencing of a respiratory burst inhibiting acid phosphatase from Francisella tularensis. The Journal of Biological Chemistry, 271, 10973–10983.

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek, B., Bünger, W., Burbano, C. S., Sabale, M., & Hurek, T. (2015). Roots shaping their microbiome: Global hotspots for microbial activity. Annual Review of Phytopathology, 53, 403–424.

    Article  CAS  PubMed  Google Scholar 

  • Reyes, I., Baziramakenga, R., Bernier, L., & Antoun, H. (2001). Solubilization of phosphate rocks and minerals by a wild–type strain and two UV induced mutants of Penicillium rugulosum. Soil Biology and Biochemistry, 33, 1741–1747.

    Article  CAS  Google Scholar 

  • Richardson, A. E., Hadobas, P. A., & Hayes, J. E. (2001). Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorous from phytate. The Plant Journal, 25, 641–649.

    Article  CAS  PubMed  Google Scholar 

  • Ringeval, B., Augusto, L., Monod, H., van Apeldoorn, D., Bouwman, L., Yang, X., Achat, D. L., Chini, L. P., Van Oost, K., Guenet, B., Wang, R., Decharme, B., Nesme, T., & Pellerin, S. (2017). Phosphorus in agricultural soils: Drivers of its distribution at the global scale. Glob Change Biology. doi:10.1111/gcb.13618.

  • Rivera, C. M., Trujillo, N. A., Córdova, B. G., Kohler, J., Caravaca, F., & Roldan, A. (2008). Poultry manure and banana waste are effective biofertilizer carriers for promoting plant growth and soil sustainability in banana crops. Soil Biology and Biochemistry, 40, 3092–3095.

    Article  CAS  Google Scholar 

  • Rodríguez, H., Fraga, R., Gonzalez, T., & Bashan, T. (2006). Genetics of phosphate solubilization and itspotential applications for improving plant growth promoting bacteria. Plant and Soil, 287, 15–21.

    Article  CAS  Google Scholar 

  • Rojas-Tapias, D., Moreno-Galván, A., Pardo-Díaz, S., Obando, M., Rivera, D., & Bonilla, R. (2012). Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology, 61, 264–272.

    Article  Google Scholar 

  • Rossolini, G. M., Shippa, S., Riccio, M. L., Berlutti, F., Macaskie, L. E., & Thaller, M. C. (1998). Bacterial nonspecific acid phosphatases: Physiology, evolution and use as tools in microbial biotechnology. Cellular and Molecular Life Sciences, 54, 833–850.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, P. R., Delhaize, E., & Jones, D. L. (2001). Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 527–560.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, M. H., Tibbett, M., Edmonds-Tibbett, T., Suriyagoda, L. D. B., Lambers, H., Cawthray, G. R., & Pang, J. (2012). Carbon trading for phosphorus gain: The balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. Plant, Cell & Environment, 35, 2170–2180.

    Article  CAS  Google Scholar 

  • Sarathambal, C., & Ilamurugu, K. (2013). Saline tolerant plant growth promoting diazotrophs from rhizosphere of bermuda grass and their effect on rice. Indian Journal of Weed Science, 45, 80–85.

    Google Scholar 

  • Sashidhar, B., & Podile, A. R. (2009). Transgenic expression of glucose dehydrogenase in Azotobacter vinelandii enhances mineral phosphate solubilization and growth of sorghum seedlings. Microbial Biotechnology, 2, 521–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schachtman, D. P., Robert, J., & Reid, A. S. M. (1998). Phosphorus uptake by plants: From soil to cell. Plant Physiology, 116, 447–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvakumar, G., Mohan, M., Kundu, S., Gupta, A. D., Joshi, P., Nazim, S., & Gupta, H. S. (2008). Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Letters in Applied Microbiology, 46, 171–175.

    Article  CAS  PubMed  Google Scholar 

  • Shahzad, S. M., Khalid, A., Arshad, M., Tahir, J., & Mahmood, T. (2010). Improving nodulation, growth and yield of Cicer arietinum L. through bacterial ACC–deaminase induced changes in root architecture. European Journal of Soil Biology, 46, 342–347.

    Article  CAS  Google Scholar 

  • Shahzad, S. M., Arif, M. S., Riaz, M., Ashraf, M., & Iqbal, Z. (2013). PGPR with varied ACC–deaminase activity induced different growth and yield response in maize (Zea mays L) under fertilized conditions. European Journal of Soil Biology, 57, 27–34.

    Article  CAS  Google Scholar 

  • Shahzad, S. M., Khalid, A., Arif, M. S., Riaz, M., Ashraf, M., & Iqbal, Z. (2014). Co-inoculation integrated with P-enriched compost improved nodulation and growth of chickpea (Cicer arietinum L.) under irrigated and rainfed farming systems. Biology and Fertility of Soils, 50, 1–12.

    Article  CAS  Google Scholar 

  • Sharma, K. K., Mathur, P. B., & Jatanand, B. (2007). Chickpea (Cicer arietinum L). In K. Wang (Ed.), Agrobacterium protocol, volume 1, Methods in molecular biology (Vol. 343, 2nd ed.). Tootowa NJ: Humana Inc.

    Google Scholar 

  • Sharma, S., Upadhyaya, H. D., Roorkiwal, M., Varshney, R. K., & Gowda, C. L. L. (2013a). Chickpea. In M. Singh, H. D. Upadhyaya, & I. S. Bisht (Eds.), Genetic and genomic resources of grain legume improvement (pp. 81–104). London: Elsevier Inc..

    Chapter  Google Scholar 

  • Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013b). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus, 2, 587–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharpley, A. N., Singh, U., Uehara, G., & Kimble, J. (1989). Modeling soil and plant phosphorus dynamics in calcareous and highly weathered soils. Soil Science Society of America Journal, 53, 153–158.

    Article  CAS  Google Scholar 

  • Shen, J., Li, C., Mi, G., Li, L., Yuan, L., Jiang, R., & Zhang, F. (2013). Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. Journal of Experimental Botany, 64, 1181–1192.

    Article  CAS  PubMed  Google Scholar 

  • Shilev, S., Sancho, E. D., & Benlloch-González, M. (2012). Rhizospheric bacteria alleviate salt-produced stress in sunflower. Journal of Environmental Management, 95, 37–41.

    Article  CAS  Google Scholar 

  • da Silva, T. F., Vollú, R. E., do Carmo Dias, B., de Lacerda, J. R. M., Marques, J. M., Nishikawa, M. M., de Vasconcelos Goulart, F. R., Alviano, C. S., & Seldin, L. (2017). Cultivable bacterial communities associated with roots of rose–scented geranium (Pelargonium graveolens) with the potential to contribute to plant growth. Applied Soil Ecology, 111, 123–128.

    Article  Google Scholar 

  • Singh, N., Pandey, P., Dubey, R. C., & Maheshwari, D. K. (2008). Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World Journal of Microbiology and Biotechnology, 24, 1669–1679.

    Article  Google Scholar 

  • Son, H. J., Park, G. T., Cha, M. S., & Heo, M. S. (2006). Solubilization of insoluble inorganic phosphates by a novel salt- and pH tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technology, 97, 204–210.

    Article  CAS  PubMed  Google Scholar 

  • Spaepen, S., Vanderleyden, J., & Okon, Y. (2009). Plant growth-promoting actions of rhizobacteria. In L. C. van Loon, J. C. Ed Kader, & M. Delseny (Eds.), Advances in botanical research (Vol. 51, pp. 283–320). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Stajković-Srbinović, O., Delić, D., Kuzmanović, D., Protić, N., Rasulić, N., & Knežević-Vukčević, J. (2014). Growth and nutrient uptake in oat and barley plants as affected by rhizobacteria. Romanian Biotechnology Letters, 19, 9429–9436.

    Google Scholar 

  • Stevenson, F. J. (2005). Cycles of soil: Carbon, nitrogen, phosphorus, sulfur, micronutrients (p. 448). New York: Wiley.

    Google Scholar 

  • Stout, M. J., Zehnder, G. W., & Baur, M. E. (2002). Potential for the use of elicitors of plant defense in arthropod management programs. Archives of Insect Physiology and Biochemistry, 51, 222–235.

    Article  CAS  Google Scholar 

  • Sturz, A. V., Matheson, B. G., Arsenault, W., & Christie, L. B. R. (2001). Weeds as a source of plant growth promoting rhizobacteria in agricultural soils. Canadian Journal of Microbiology, 47, 1013–1024.

    Article  CAS  PubMed  Google Scholar 

  • SubbaRao (Ed.). (1977). soil microorganisms and plant growth. India: Oxford and IBH Publishing Co.

    Google Scholar 

  • Sundara, B., Natarajan, V., & Hari, K. (2002). Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Research, 77, 43–49.

    Article  Google Scholar 

  • Sutherland, I. (2001). Biofilm exopolysaccharides: a strong and sticky framework. Microbiology, 147, 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Syers, J. K., Johnston, A. E., & Curtin, D. (2008a). Efficiency of soil and fertilizer phosphorus use FAO. Rome, Italy: Fertilizer and Plant Nutrition Bulletin 18.

    Google Scholar 

  • Syers, J. K., Johnston, A. E., & Curtin, D. (2008b). Efficiency of soil and fertilizer phosphorus: Reconciling changing concepts of soil phosphorus behaviour with agronomic information (pp. 27–44). Rome, Italy: FAO Fertilizer and Plant Nutrition Bulletin 18.

    Google Scholar 

  • Taktek, S., St-Arnaud, M., Piché, Y., Fortin, J. A., & Antoun, H. (2017). Igneous phosphate rock solubilization by biofilm forming mycorrhizo bacteria and hyphobacteria associated with Rhizoglomus irregular DAOM 197198. Mycorrhiza, 27, 13–22.

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar, J. C. (1989). Use of electrofocussing technique for characterizing the phosphatases in the soil and root exudates. Journal of the Indian Society of Soil Science, 37, 393–395.

    CAS  Google Scholar 

  • Tarafdar, J. C., & Claasen, N. (1988). Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biology and Fertility of Soils, 5, 308–312.

    Article  CAS  Google Scholar 

  • Tian, G., Cox, A. E., Kumar, K., Granato, T. C., O’Connor, G. A., & Elliott, H. A. (2016). Assessment of plant availability and environmental risk of biosolids–phosphorus in a US midwest corn–belt soil. Journal of Environmental Management, 172, 171–176.

    Article  CAS  PubMed  Google Scholar 

  • Turan, M., Ekinci, M., Yildirim, E., & Dursun, A. (2014). Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turkish Journal of Agriculture and Forestry, 38, 327–333.

    Article  CAS  Google Scholar 

  • Turner, B. L., Papházy, M. J., & Haygarth, P. M. (2002). Inositol phosphates in the environment. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357, 449–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay, S. K., Singh, J. S., Saxena, A. K., & Singh, D. P. (2011). Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biology, 14, 605–611.

    Article  PubMed  CAS  Google Scholar 

  • Van de Wiel, C. C. M., van der Linden, C. G., & Scholten, O. E. (2016). Improving phosphorus use efficiency in agriculture: Opportunities for breeding. Euphytica, 207, 1–22.

    Article  Google Scholar 

  • Vikram, A., Ajjanna, R., Alagawadi, A. P. U., Krishnaraj, A. K. S., & Kumar, M. (2007). Transconjugation studies in Azospirillum sp. negative to mineral phosphate solubilization. World Journal of Microbiology and Biotechnology, 23, 1333–1337.

    Article  CAS  Google Scholar 

  • Viruel, E., Erazzú, L. E., Calsina, L. M., Ferrero, M. A., Lucca, M. E., & Siñeriz, F. (2014). Inoculation of maize with phosphate solubilizing bacteria: Effect on plant growth and yield. Journal of Soil Science and Plant Nutrition, 14, 819–831.

    CAS  Google Scholar 

  • Wani, P. A., Khan, M. S., & Zaidi, A. (2008). Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnology Letters, 30, 159–163.

    Article  CAS  PubMed  Google Scholar 

  • Weiland-Bräuer, N., Pinnow, N., & Schmitz, R. A. (2015). Novel reporter for identification of interference with acyl homoserine lactone and autoinducer–2 quorum sensing. Applied and Environmental Microbiology, 81, 1477–1489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welch, S. A., Taunton, A. E., & Banfield, J. F. (2002). Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiology Journal, 19, 343–367.

    Article  CAS  Google Scholar 

  • Whitelaw, M. A. (2000). Growth promotion of plants inoculated with phosphate solubilizing fungi. Advances in Agronomy, 69, 99–151.

    Article  CAS  Google Scholar 

  • Widawati, S., & Rahmansyah, M. (2009). The influence of bacteria inoculation to jarakpagar (Jatropha curcas L) growth. Jurnal Biologi Indonesia, 6, 107–117.

    Google Scholar 

  • Widawati, S., & Suliasih. (2006). Augmentation of potential phosphate solubilizing bacteria (PSB) stimulate growth of green mustard (Brassica caventis Ocd) in marginal soil. Biodiversitas, 7, 10–14.

    Article  Google Scholar 

  • Yadaf, R. S., & Tarafdar, J. C. (2001). Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants. Biology and Fertility of Soils, 34, 140–143.

    Article  CAS  Google Scholar 

  • Yang, M., Ding, G., Shi, L., Xu, F., & Meng, J. (2010). Detection of QTL for phosphorus efficiency at vegetative stage in Brassica napus. Plant and Soil, 339, 97–111.

    Article  CAS  Google Scholar 

  • Yi, Y., Huang, W., & Ying, G. (2008). Exopolysaccharide: A novel important factor in the microbial dissolution of tricalcium phosphate. World Journal of Microbiology and Biotechnology, 24, 1059–1065.

    Article  CAS  Google Scholar 

  • Yu, X., Liu, X., & Zhu, T. (2014). Walnut growth and soil quality after inoculating soil containing rock phosphate with phosphate–solubilizing bacteria. Science Asia, 40, 21–27.

    Article  CAS  Google Scholar 

  • Yuan, J., Zhang, N., & Huang, Q. (2015). Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amylo liquefaciens NJN–6. Scientific Reports, 5, 134–438.

    Google Scholar 

  • Yuttavanichakul, W., Lawongsa, P., Wongkaew, S., Teaumroong, N., Boonkerd, N., Nomura, N., & Tittabutr, P. (2012). Improvement of peanut rhizobial inoculant by incorporation of plant growth promoting rhizobacteria (PGPR) as biocontrol against the seed borne fungus, Aspergillus niger. Biological Control, 63, 87–97.

    Article  Google Scholar 

  • Zaidi, A., Khan, M. S., Ahemad, M., & Oves, M. (2009). Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica et Immunologica Hungarica, 56, 263–284.

    Article  CAS  PubMed  Google Scholar 

  • Zaefarian, F., Vahidzadeh, S., Rahdari, P., Rezvani, M., & Zadeh, H. G. (2012). Effectiveness of plant growth promoting rhizobacteria in facilitating lead and nutrient uptake by little seed canary grass. Brazilian Journal of Botany, 35, 241–248.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Saleem Arif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Arif, M.S. et al. (2017). Improving Plant Phosphorus (P) Acquisition by Phosphate-Solubilizing Bacteria. In: Naeem, M., Ansari, A., Gill, S. (eds) Essential Plant Nutrients. Springer, Cham. https://doi.org/10.1007/978-3-319-58841-4_21

Download citation

Publish with us

Policies and ethics