Skip to main content

Functional Adaptation of Bone: The Mechanostat and Beyond

  • Chapter
  • First Online:
Multiscale Mechanobiology of Bone Remodeling and Adaptation

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 578))

Abstract

The conceptual model of the mechanostat proposed by Harold Frost in 1983 is among the most significant contributions to musculoskeletal research today. This model states that bone and other musculoskeletal tissues including cartilage, tendon and muscle respond to habitual exercise/loading and that changes in the loading environment lead to adequate structural adaptation of (bone) tissue architecture. The analogy with a thermostat clearly indicates presence of a physiological feedback system which is able to adjust bone mass and structure according to the engendered loads. In the bioengineering community, the mechanostat has been mathematically formulated as a feedback algorithm using a set point criterion based on a particular mechanical quantity such as strain, strain energy density among others. As pointed out by Lanyon and Skerry, while it is widely thought that in a single individual, there exists a single mechanostat set point, this view is flawed by the fact that different bones throughout the skeleton require a specific strain magnitude to maintain bone mass. Consequently, different bones respond differently to increases or decreases in loading depending on the sensitivity of the mechanostat. Osteocytes, i.e., cells embedded in the bone matrix are believed to be the major bone cells involved in sensing and transduction of mechanical loads. The purpose of this chapter is to review the concept of the mechanostat and its role in bone pathophysiology. To do this we provide examples of why and how the skeleton responds to complex loading stimuli made up of numerous different parameters including strain magnitude, frequency and rest intervals among others. We describe latest in vivo and ex vivo loading models, which allow exploration of various mechanobiological relations in the mechanostat model utilising controlled mechanical environments. A review of the bone cells and signalling transduction cascades involved in mechanosensation and bone adaptation will also be provided. Furthermore, we will discuss the mechanostat in a clinical context, e.g., how factors such as sex, age, genetic constitution, concomitant disease, nutrient availability, and exposure to drugs all affect bone’s response to mechanical loading. Understanding the mechanostat and mechanobiological regulatory factors involved in mechanosensation and desensitisation is essential for our ability to control bone mass based on physiological loading, either directly through different exercise regimens, or by manipulating bone cells in a targeted manner using tailored site and individual specific stimuli including pharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.I. Aguirre, L.I. Plotkin, A.R. Gortazar, M.M. Millan, C.A. O’Brien, S.C. Manolagas, T. Bellido, A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction. J. Biol. Chem. 282(35), 25501–25508 (2007)

    Google Scholar 

  2. I. Alam, S.J. Warden, A.G. Robling, C.H. Turner, Mechanotransduction in bone does not require a functional cyclooxygenase-2 (cox-2) gene. J. Bone Miner. Res. 20(3), 438–446 (2005). ISSN 0884-0431

    Article  Google Scholar 

  3. C.B. Alander, L.G. Raisz, Effects of selective prostaglandins e2 receptor agonists on cultured calvarial murine osteoblastic cells. Prostaglandins Other Lipid Mediat. 81(3), 178–183 (2006). ISSN 1098-8823

    Article  Google Scholar 

  4. M.R. Allen, J.J. Turek, R.J. Phipps, D.B. Burr, Greater magnitude of turnover suppression occurs earlier after treatment initiation with risedronate than alendronate. Bone 49(1), 128–132 (2011). ISSN 1873-2763

    Article  Google Scholar 

  5. M.E. Arlot, E. Sornay-Rendu, P. Garnero, B. Vey-Marty, P.D. Delmas, Apparent pre- and postmenopausal bone loss evaluated by dxa at different skeletal sites in women: the ofely cohort. J. Bone Miner. Res. 12(4), 683–690 (1997)

    Article  Google Scholar 

  6. V.J. Armstrong, M. Muzylak, A. Sunters, G. Zaman, L.K. Saxon, J.S. Price, L.E. Lanyon, Wnt/\(\beta \)-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor \(\alpha \). J. Biol. Chem. 282(28), 20715–20727 (2007)

    Article  Google Scholar 

  7. E.J. Arnsdorf, P. Tummala, C.R. Jacobs, Non-canonical wnt signaling and n-cadherin related \(\beta \)-catenin signaling play a role in mechanically induced osteogenic cell fate. PLoS ONE 4(4), e5388 (2009)

    Article  Google Scholar 

  8. R.G. Bacabac, T.H. Smit, M.G. Mullender, S.J. Dijcks, J.J.W.A. Van Loon, J. Klein-Nulend, Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem. Biophys. Res. Commun. 315(4), 823–829 (2004)

    Article  Google Scholar 

  9. M. Bagge, A model of bone adaptation as an optimization process. J. Biomech. 33(11), 1349–1357 (2000)

    Article  Google Scholar 

  10. D.A. Bailey, The saskatchewan pediatric bone mineral accrual study: bone mineral acquisition during the growing years. Int. J. Sports Med. 18(Suppl 3), S191–S194 (1997)

    Article  Google Scholar 

  11. D.A. Bailey, H.A. McKay, R.L. Mirwald, P.R. Crocker, R.A. Faulkner, A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of saskatchewan bone mineral accrual study. J. Bone Miner. Res. 14(10), 1672–1679 (1999)

    Article  Google Scholar 

  12. A.D. Bakker, K. SoeJima, J. Klein-Nulend, E.H. Burger, The production of nitric oxide and prostaglandin e2 by primary bone cells is shear stress dependent. J. Biomech. 34(5), 671–677 (2001). ISSN 0021-9290

    Article  Google Scholar 

  13. A.D. Bakker, J. Klein-Nulend, E.H. Burger, Mechanotransduction in bone cells proceeds via activation of cox-2, but not cox-1. Biochem. Biophys. Res. Commun. 305(3), 677–683 (2003). ISSN 0006-291X

    Article  Google Scholar 

  14. A.D. Bakker, C. Huesa, A. Hughes, R.M. Aspden, R.J. vant Hof, J. Klein-Nulend, M.H. Helfrich, Endothelial nitric oxide synthase is not essential for nitric oxide production by osteoblasts subjected to fluid shear stress in vitro. Calcif. Tissue Int. 92(3), 228–239 (2013)

    Article  Google Scholar 

  15. R. Baron, M. Kneissel, Wnt signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19(2), 179–192 (2013)

    Article  Google Scholar 

  16. N. Basso, J.N.M. Heersche, Characteristics of in vitro osteoblastic cell loading models. Bone 30(2), 347–351 (2002). ISSN 8756-3282

    Article  Google Scholar 

  17. A.P. Baumann, M.W. Aref, T.L. Turnbull, A.G. Robling, G.L. Niebur, M.R. Allen, R.K. Roeder, Development of an in vivo rabbit ulnar loading model. Bone 75, 55–61 (2015)

    Article  Google Scholar 

  18. A.D. Baxter-Jones, S.A. Kontulainen, R.A. Faulkner, D.A. Bailey, A longitudinal study of the relationship of physical activity to bone mineral accrual from adolescence to young adulthood. Bone 43(6), 1101–1107 (2008)

    Article  Google Scholar 

  19. A.D. Baxter-Jones, R.A. Faulkner, M.R. Forwood, R.L. Mirwald, D.A. Bailey, Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J. Bone Miner. Res. 26(8), 1729–1739 (2011)

    Article  Google Scholar 

  20. G.S. Beaupre, T.E. Orr, D.R. Carter, An approach for time-dependent modeling and remodeling - theoretical development. J. Orthop. Res. 8, 651–661 (1990)

    Article  Google Scholar 

  21. T.J. Beck, C.B. Ruff, K.E. Warden Jr., W.W. Scott Jr., G.U. Rao, Predicting femoral neck strength from bone mineral data. a structural approach. Invest. Radiol. 25(1), 6–18 (1990)

    Article  Google Scholar 

  22. V. Bentolila, T.M. Boyce, D.P. Fyhrie, R. Drumb, T.M. Skerry, M.B. Schaffler, Intracortical remodeling in adult rat long bones after fatigue loading. Bone 23(3), 275–81 (1998)

    Article  Google Scholar 

  23. J.E.A. Bertram, A.A. Biewener, Bone curvature: sacrificing strength for load predictability? J. Theor. Biol. 131(1), 75–92 (1988). ISSN 0022-5193

    Article  Google Scholar 

  24. J.E.A. Bertram, A.A. Biewener, Allometry and curvature in the long bones of quadrupedal mammals. J. Zool. 226(3), 455–467 (1992). ISSN 1469-7998

    Article  Google Scholar 

  25. N. Bivi, M.T. Nelson, M.E. Faillace, J. Li, L.M. Miller, L.I. Plotkin, Deletion of cx43 from osteocytes results in defective bone material properties but does not decrease extrinsic strength in cortical bone. Calcif. Tissue Intern. 91(3), 215–224 (2012). ISSN 0171-967X

    Article  Google Scholar 

  26. L.F. Bonewald, Mechanosensation and transduction in osteocytes. BoneKEy Osteovision 3(10), 7–15 (2006). ISSN 1533-4368

    Article  Google Scholar 

  27. L.F. Bonewald, The amazing osteocyte. J. Bone Miner. Res. 26(2), 229–238 (2011)

    Article  Google Scholar 

  28. L.F. Bonewald, M.L. Johnson, Osteocytes, mechanosensing and wnt signaling. Bone 42(4), 606–615 (2008)

    Article  Google Scholar 

  29. M. Bradney, G. Pearce, G. Naughton, C. Sullivan, S. Bass, T. Beck, J. Carlson, E. Seeman, Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J. Bone Miner. Res. 13(12), 1814–1821 (1998)

    Article  Google Scholar 

  30. D.B. Burr, R.B. Martin, Errors in bone remodeling: toward a unified theory of metabolic bone disease. Am. J. Anat. 186(2), 186–216 (1989)

    Article  Google Scholar 

  31. D.B. Burr, M.B. Schaffler, K.H. Yang, M. Lukoschek, N. Sivaneri, J.D. Blaha, E.L. Radin, Skeletal change in response to altered strain environments: is woven bone a response to elevated strain? Bone 10(3), 223–233 (1989)

    Article  Google Scholar 

  32. D.B. Burr, C. Milgrom, D. Fyhrie, M. Forwood, M. Nyska, A. Finestone, S. Hoshaw, E. Saiag, A. Simkin, In vivo measurement of human tibial strains during vigorous activity. Bone 18(5), 405–410 (1996). ISSN 8756-3282

    Article  Google Scholar 

  33. D.R. Carter, The relationship between in vivo strains and cortical bone remodelling. CRC Crit. Rev. Biomed. Eng. 8, 1–28 (1982)

    Google Scholar 

  34. D.R. Carter, Mechanical loading histories and cortical bone remodeling. Calcif. Tissue Int. 36(1), S19–S24 (1984)

    Article  Google Scholar 

  35. D.R. Carter, G.S. Beaupre, Skeletal Funtion and Form - Mechanobiology of Skeletal Development, Aging, and Regeneration (Cambridge University Press, New York, 2001). ISBN 978-0-521-79000-0

    Google Scholar 

  36. A.B. Castillo, J.W. Triplett, F.M. Pavalko, C.H. Turner, Estrogen receptor-\(\beta \) regulates mechanical signaling in primary osteoblasts. Am. J. Physiol.-Endocrinol. Metab. 306(8), E937–E944 (2014)

    Article  Google Scholar 

  37. T.J. Chambers, M. Evans, T.N. Gardner, A. Turner-Smith, J.W. Chow, Induction of bone formation in rat tail vertebrae by mechanical loading. Bone Miner. 20(2), 167–178 (1993)

    Article  Google Scholar 

  38. R. Chapurlat, Cathepsin k inhibitors and antisclerostin antibodies. the next treatments for osteoporosis? Joint Bone Spine 83(3), 254–256 (2016)

    Article  Google Scholar 

  39. N.X. Chen, K.D. Ryder, F.M. Pavalko, C.H. Turner, D.B. Burr, J. Qiu, R.L. Duncan, Ca2+ regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am. J. Physiol. Cell Physio. 278(5), C989–C997 (2000)

    Google Scholar 

  40. N.X. Chen, D.J. Geist, D.C. Genetos, F.M. Pavalko, R.L. Duncan, Fluid shear-induced nfb translocation in osteoblasts is mediated by intracellular calcium release. Bone 33(3), 399–410 (2003). ISSN 8756-3282

    Article  Google Scholar 

  41. B. Cheng, Y. Kato, S. Zhao, J. Luo, E. Sprague, L.F. Bonewald, J.X. Jiang, Pge2 is essential for gap junction-mediated intercellular communication between osteocyte-like mlo-y4 cells in response to mechanical strain. Endocrinology 142(8), 3464–3473 (2001). ISSN 0013-7227

    Article  Google Scholar 

  42. N. Chennimalai Kumar, J.A. Dantzig, I.M. Jasiuk, A.G. Robling, C.H. Turner, Numerical modeling of long bone adaptation due to mechanical loading: correlation with experiments. Ann. Biomed. Eng. 38(3), 594–604 (2010)

    Article  Google Scholar 

  43. S. Choudhary, C. Alander, P. Zhan, Q. Gao, C. Pilbeam, L.G. Raisz, Effect of deletion of the prostaglandin ep2 receptor on the anabolic response to prostaglandin e2 and a selective ep2 receptor agonist. Prostaglandins Other Lipid Mediat. 86(1), 35–40 (2008). ISSN 1098-8823

    Article  Google Scholar 

  44. J.W. Chow, T.J. Chambers, Indomethacin has distinct early and late actions on bone formation induced by mechanical stimulation. Am. J. Physiol.-Endocrinol. Metab. 267(2), E287–E292 (1994). ISSN 0193-1849

    Google Scholar 

  45. J.W. Chow, C.J. Jagger, T.J. Chambers, Characterization of osteogenic response to mechanical stimulation in cancellous bone of rat caudal vertebrae. Am. J. Physiol. 265(2 Pt 1), E340–E347 (1993). ISSN 0002-9513 (Print)

    Google Scholar 

  46. L.A. Colletti, J. Edwards, L. Gordon, J. Shary, N.H. Bell, The effects of muscle-building exercise on bone mineral density of the radius, spine, and hip in young men. Calcif. Tissue Int. 45(1), 12–14 (1989). ISSN 1432-0827

    Article  Google Scholar 

  47. S.C. Cowin, D.H. Hegedus, Bone remodeling i: theory of adaptive elasticity. J. Elast. 6(3), 313–326 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  48. S.C. Cowin, W.C. Van Buskirk, Surface bone remodeling induced by a medullary pin. J. Biomech. 12(4), 269–276 (1979)

    Article  Google Scholar 

  49. S.C. Cowin, A.M. Sadegh, G.M. Luo, An evolutionary wolff’s law for trabecular architecture. J. Biomech. Eng. 114(1), 129–136 (1992)

    Article  Google Scholar 

  50. J.D. Currey, What should bones be designed to do? Calcif. Tissue Int. 36(1), S7–S10 (1984). ISSN 1432-0827

    Article  Google Scholar 

  51. R.M. Daly, L. Saxon, C.H. Turner, A.G. Robling, S.L. Bass, The relationship between muscle size and bone geometry during growth and in response to exercise. Bone 34(2), 281–287 (2004)

    Article  Google Scholar 

  52. E. Damien, J.S. Price, L.E. Lanyon, Mechanical strain stimulates osteoblast proliferation through the estrogen receptor in males as well as females. J. Bone Miner. Res. 15(11), 2169–2177 (2000)

    Article  Google Scholar 

  53. C. Darwin, The Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life (John Murray, London, 1872)

    Google Scholar 

  54. R.L. De Souza, M. Matsuura, F. Eckstein, S.C. Rawlinson, L.E. Lanyon, A.A. Pitsillides, Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element. Bone 37(6), 810–818 (2005)

    Article  Google Scholar 

  55. R.M. Delaine-Smith, B. Javaheri, J.H. Edwards, M. Vazquez, R.M.H. Rumney, Preclinical models for in vitro mechanical loading of bone-derived cells. Bonekey Rep. 4, 728 (2015)

    Google Scholar 

  56. J. Delgado-Calle, J.A. Riancho, J. Klein-Nulend, Nitric oxide is involved in the down-regulation of sost expression induced by mechanical loading. Calcif. Tissue Int. 94(4), 414–422 (2014)

    Article  Google Scholar 

  57. J.M.H. Dibbets, One century of wolff’s law, Bone Biodynamics in Orthodontic and Orthopedic Treatment, vol. 1, 1st edn. (Centre for Human growth and Development, University of Michigan, Ann Arbor, 1991), pp. 1–13

    Google Scholar 

  58. D.L. Ellies, B. Viviano, J. McCarthy, J.P. Rey, N. Itasaki, S. Saunders, R. Krumlauf, Bone density ligand, sclerostin, directly interacts with lrp5 but not lrp5g171v to modulate wnt activity. J. Bone Miner. Res. 21(11), 1738–1749 (2006)

    Article  Google Scholar 

  59. M.C. Erlandson, S.A. Kontulainen, A.D. Baxter-Jones, Precompetitive and recreational gymnasts have greater bone density, mass, and estimated strength at the distal radius in young childhood. Osteoporos. Int. 22(1), 75–84 (2011)

    Article  Google Scholar 

  60. M.C. Erlandson, S.A. Kontulainen, P.D. Chilibeck, C.M. Arnold, A.D. Baxter-Jones, Bone mineral accrual in 4- to 10-year-old precompetitive, recreational gymnasts: a 4-year longitudinal study. J. Bone Miner. Res. 26(6), 1313–1320 (2011)

    Article  Google Scholar 

  61. H.A. Eschenauer, N. Olhoff, Topology optimization of continuum structures: a review. Appl. Mech. Rev. 54(4), 331–390 (2001)

    Article  Google Scholar 

  62. F.G. Evans, Methods of studying the biomechanical significance of bone form. Am. J. Phys. Anthropol. 11(3), 413–436 (1953). ISSN 1096-8644

    Article  Google Scholar 

  63. R.A. Faulkner, M.R. Forwood, T.J. Beck, J.C. Mafukidze, K. Russell, W. Wallace, Strength indices of the proximal femur and shaft in prepubertal female gymnasts. Med. Sci. Sports Exerc. 35(3), 513–518 (2003)

    Article  Google Scholar 

  64. P. Fernandes, H. Rodrigues, C. Jacobs, A model of bone adaptation using a global optimization criterion based on the trajectorial theory of wolff. Comp. Meth. Biomech. Biomed. Eng. 2(2), 125–138 (1999)

    Article  Google Scholar 

  65. I. Fijalkowski, E. Geets, E. Steenackers, V. Van Hoof, F.J. Ramos, G. Mortier, A.M. Fortuna, W. Van Hul, E. Boudin, A novel domain specific mutation in a sclerosteosis patient suggests a role of lrp4 as an anchor for sclerostin in human bone. J. Bone Miner. Res. 31(4), 874–881 (2016)

    Article  Google Scholar 

  66. M.R. Forwood, Inducible cyclo-oxygenase (cox-2) mediates the induction of bone formation by mechanical loading in vivo. J. Bone Miner. Res. 11(11), 1688–1693 (1996)

    Article  Google Scholar 

  67. M.R. Forwood, Mechanical effects on the skeleton: are there clinical implications? Osteoporos. Int. 12(1), 77–83 (2001)

    Article  Google Scholar 

  68. M.R. Forwood, D.B. Burr, Physical activity and bone mass: exercises in futility? Bone Miner. 21, 89–112 (1993)

    Article  Google Scholar 

  69. M.R. Forwood, A.W. Parker, Repetitive loading, in vivo, of the tibiae and femora of rats: effects of repeated bouts of treadmill-running. Bone Miner. 13(1), 35–46 (1991)

    Article  Google Scholar 

  70. M.R. Forwood, C.H. Turner, The response of rat tibiae to incremental bouts of mechanical loading: a quantum concept for bone formation. Bone 15(6), 603–609 (1994)

    Article  Google Scholar 

  71. M.R. Forwood, M.B. Bennett, A.R. Blowers, R.L. Nadorfi, Modification of the in vivo four-point loading model for studying mechanically induced bone adaptation. Bone 23(3), 307–310 (1998)

    Article  Google Scholar 

  72. M.R. Forwood, D.A. Bailey, T.J. Beck, R.L. Mirwald, A.D. Baxter-Jones, K. Uusi-Rasi, Sexual dimorphism of the femoral neck during the adolescent growth spurt: a structural analysis. Bone 35(4), 973–81 (2004)

    Article  Google Scholar 

  73. M.R. Forwood, A.D. Baxter-Jones, T.J. Beck, R.L. Mirwald, A. Howard, D.A. Bailey, Physical activity and strength of the femoral neck during the adolescent growth spurt: a longitudinal analysis. Bone 38(4), 576–583 (2006)

    Article  Google Scholar 

  74. S.W. Fox, T.J. Chambers, J.W. Chow, Nitric oxide is an early mediator of the increase in bone formation by mechanical stimulation. Am. J. Physiol. - Endocrinol. Metab. 270(6), E955–E960 (1996)

    Google Scholar 

  75. S.P. Fritton, C.T. Rubin, In vivo measurement of bone deformations using strain gauges, in Bone Mechanics Handbook, vol. 1, 1st edn., ed. by S.C. Cowin (CRC Press, Boca Raton, 2001), pp. 8–34

    Google Scholar 

  76. S.P. Fritton, K.J. McLeod, C.T. Rubin, Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J. Biomech. 33(3), 317–325 (2000). ISSN 0021-9290

    Article  Google Scholar 

  77. H.M. Frost, Review article mechanical determinants of bone modeling. Metab. Bone Dis. Relat. Res. 4(4), 217–229 (1982). ISSN 0221-8747

    Article  Google Scholar 

  78. H.M. Frost, A determinant of bone architecture. the minimum effective strain. Clin. Orthop. Relat. Res. 1(175), 286–292 (1983)

    Google Scholar 

  79. H.M. Frost, Bone mass and the mechanostat: a proposal. Anat. Rec. 219(1), 1–9 (1987). ISSN 1097-0185

    Article  Google Scholar 

  80. H.M. Frost, Skeletal structural adaptations to mechanical usage (satmu): 1. Redefining wolff’s law: the bone modeling problem. Anat. Rec. 226(4), 403–413 (1990)

    Article  Google Scholar 

  81. H.M. Frost, The utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs. J. Bone Miner. Metab. 18(6), 305–16 (2000)

    Article  Google Scholar 

  82. H.M. Frost, From wolff’s law to the utah paradigm: insights about bone physiology and its clinical applications. Anat. Rec. 262(4), 398–419 (2001)

    Article  Google Scholar 

  83. H.M. Frost, Bone’s mechanostat: a 2003 update. Anat. Rec. 275A(2), 1081–1101 (2003)

    Article  Google Scholar 

  84. R.K. Fuchs, J.J. Bauer, C.M. Snow, Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J. Bone Miner. Res. 16(1), 148–156 (2001)

    Article  Google Scholar 

  85. M. Fujiwara, T. Kubota, W. Wang, Y. Ohata, K. Miura, T. Kitaoka, D. Okuzaki, N. Namba, T. Michigami, Y. Kitabatake, Successful induction of sclerostin in human-derived fibroblasts by 4 transcription factors and its regulation by parathyroid hormone, hypoxia, and prostaglandin e2. Bone 85, 91–98 (2016). ISSN 8756-3282

    Article  Google Scholar 

  86. D.P. Fyhrie, D.R. Carter, A unifying principle relating stress to trabecular bone morphology. J. Orthop. Res. 4(3), 304–317 (1986)

    Article  Google Scholar 

  87. G.L. Galea, Sost down-regulation by mechanical strain in human osteoblastic cells involves pge2 signaling via ep4. FEBS Lett. 585(15), 2450–2454 (2011). ISSN 0014-5793

    Article  Google Scholar 

  88. G.L. Galea, L.B. Meakin, T. Sugiyama, N. Zebda, A. Sunters, H. Taipaleenmaki, G.S. Stein, A.J. van Wijnen, L.E. Lanyon, J.S. Price, Estrogen receptor \(\alpha \) mediates proliferation of osteoblastic cells stimulated by estrogen and mechanical strain, but their acute down-regulation of the wnt antagonist sost is mediated by estrogen receptor \(\beta \). J. Biol. Chem. 288(13), 9035–9048 (2013)

    Article  Google Scholar 

  89. G.L. Galea, L.B. Meakin, D. Savery, H. Taipaleenmaki, P. Delisser, G.S. Stein, A.J. Copp, A.J. van Wijnen, L.E. Lanyon, J.S. Price, Planar cell polarity aligns osteoblast division in response to substrate strain. J. Bone Miner. Res. 30(3), 423–435 (2015)

    Article  Google Scholar 

  90. G. Galileo, Discorsi e demonstrazioni matematiche, intorno a due nuove scienze attentanti all meccanica ed a muovementi locali. Reprinted by University of Wisconsin Press, Madison (1638)

    Google Scholar 

  91. M.A. Garber, D.L. McDowell, W.C. Hutton, Bone loss during simulated weightlessness: a biomechanical and mineralization study in the rat model. Aviat. Space Environ. Med. 71(6), 586–952 (2000)

    Google Scholar 

  92. A. Gaudio, P. Pennisi, C. Bratengeier, V. Torrisi, B. Lindner, R.A. Mangiafico, I. Pulvirenti, G. Hawa, G. Tringali, C.E. Fiore, Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J. Clin. Endocrinol. Metab. 95(5), 2248–2253 (2010)

    Article  Google Scholar 

  93. D.C. Genetos, C.E. Yellowley, G.G. Loots, Prostaglandin e2 signals through ptger2 to regulate sclerostin expression. PloS One 6(3), e17772 (2011). ISSN 1932-6203

    Article  Google Scholar 

  94. D.A. Glass, P. Bialek, J.D. Ahn, M. Starbuck, M.S. Patel, H. Clevers, M.M. Taketo, F. Long, A.P. McMahon, R.A. Lang, Canonical wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 8(5), 751–764 (2005). ISSN 1534-5807

    Article  Google Scholar 

  95. T.S. Gross, S. Srinivasan, C.C. Liu, T.L. Clemens, S.D. Bain, Noninvasive loading of the murine tibia: an in vivo model for the study of mechanotransduction. J. Bone Miner. Res. 17(3), 493–501 (2002). ISSN 0884-0431

    Article  Google Scholar 

  96. T.S. Gross, S.L. Poliachik, B.J. Ausk, D.A. Sanford, B.A. Becker, S. Srinivasan, Why rest stimulates bone formation: a hypothesis based on complex adaptive phenomenon. Exerc. Sport Sci. Rev. 32(1), 9–13 (2004)

    Article  Google Scholar 

  97. K. Gunter, A.D. Baxter-Jones, R.L. Mirwald, H. Almstedt, R.K. Fuchs, S. Durski, C. Snow, Impact exercise increases bmc during growth: an 8-year longitudinal study. J. Bone Miner. Res. 23(7), 986–993 (2008)

    Article  Google Scholar 

  98. A. Gustavsson, T. Olsson, P. Nordstrom, Rapid loss of bone mineral density of the femoral neck after cessation of ice hockey training: a 6-year longitudinal study in males. J. Bone Miner. Res. 18(11), 1964–1969 (2003)

    Article  Google Scholar 

  99. H. Haapasalo, P. Kannus, H. Sievnen, M. Pasanen, K. Uusi-Rasi, A. Heinonen, P. Oja, I. Vuori, Effect of long-term unilateral activity on bone mineral density of female junior tennis players. J. Bone Miner. Res. 13(2), 310–319 (1998). ISSN 1523-4681

    Article  Google Scholar 

  100. H. Haapasalo, S. Kontulainen, H. Sievnen, P. Kannus, M. Jrvinen, I. Vuori, Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27(3), 351–357 (2000)

    Article  Google Scholar 

  101. K. Hamamura, G. Swarnkar, N. Tanjung, E. Cho, J. Li, S. Na, H. Yokota, Rhoa-mediated signaling in mechanotransduction of osteoblasts. Connect. Tissue Res. 53(5), 398–406 (2012)

    Article  Google Scholar 

  102. R.T. Hart, Bone modeling and remodeling: theories and computation, in Bone Mechanics Handbook, vol. 1, 2nd edn., ed. by S.C. Cowin (CRC Press, London, 2001), pp. 31.1–31.42

    Google Scholar 

  103. R. Hattner, B.N. Epker, H.M. Frost, Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature 206(4983), 489–490 (1965)

    Article  Google Scholar 

  104. R.P. Heaney, Is the paradigm shifting? Bone 33(4), 457–465 (2003). ISSN 8756-3282

    Article  Google Scholar 

  105. A. Heinonen, P. Oja, P. Kannus, H. Sievanen, H. Haapasalo, A. Mnttri, I. Vuori, Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone 17(3), 197–203 (1995). ISSN 8756-3282

    Article  Google Scholar 

  106. A. Heinonen, H. Sievnen, P. Kannus, P. Oja, I. Vuori, Effects of unilateral strength training and detraining on bone mineral mass and estimated mechanical characteristics of the upper limb bones in young women. J. Bone Miner. Res. 11(4), 490–501 (1996). ISSN 1523–4681

    Article  Google Scholar 

  107. A. Heinonen, H. Sievanen, P. Kannus, P. Oja, M. Pasanen, I. Vuori, High-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporos. Int. 11(12), 1010–1017 (2000)

    Article  Google Scholar 

  108. J. Hert, M. Liskova, B. Landrgot, Influence of the long-term, continuous bending on the bone. An experimental study on the tibia of the rabbit. Folia Morphol. (Praha) 17(4), 389–399 (1969)

    Google Scholar 

  109. J. Hert, M. Liskova, J. Landa, Reaction of bone to mechanical stimuli. 1. Continuous and intermittent loading of tibia in rabbit. Folia Morphol. (Praha) 19(3), 290–300 (1971)

    Google Scholar 

  110. T. Hirano, D.B. Burr, C.H. Turner, M. Sato, R.L. Cain, J.M. Hock, Anabolic effects of human biosynthetic parathyroid hormone fragment (1–34), ly333334, on remodeling and mechanical properties of cortical bone in rabbits. J. Bone Miner. Res. 14(4), 536–545 (1999). ISSN 0884-0431

    Google Scholar 

  111. S.L. Holmen, C.R. Zylstra, A. Mukherjee, R.E. Sigler, M.-C. Faugere, M.L. Bouxsein, L. Deng, T.L. Clemens, B.O. Williams, Essential role of \(\beta \)-catenin in postnatal bone acquisition. J. Biol. Chem. 280(22), 21162–21168 (2005). ISSN 0021-9258

    Google Scholar 

  112. R.P. Huang, C.T. Rubin, K.J. McLeod, Changes in postural muscle dynamics as a function of age. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 54(8), B352–B357 (1999)

    Article  Google Scholar 

  113. J.M. Hughes, M.A. Petit, Biological underpinnings of frosts mechanostat thresholds: the important role of osteocytes. J. Musculoskelet. Neuronal Interact. 10(2), 128–135 (2010)

    Google Scholar 

  114. S.L. Hui, C.W. Slemenda, C.C. Johnston Jr., The contribution of bone loss to postmenopausal osteoporosis. Osteoporos. Int. 1(1), 30–34 (1990)

    Article  Google Scholar 

  115. R. Huiskes, If bone is the answer, then what is the question? J. Anat. 197(2), 145–156 (2000). ISSN 1469-7580

    Article  Google Scholar 

  116. R. Huiskes, H. Weinans, H.J. Grootenboer, M. Dalstra, B. Fudala, T.J. Slooff, Adaptive bone-remodeling theory applied to prosthetic-design analysis. J. Biomech. 20(11), 1135–1150 (1987)

    Article  Google Scholar 

  117. C.R. Jacobs, C.E. Yellowley, B.R. Davis, Z. Zhou, J.M. Cimbala, H.J. Donahue, Differential effect of steady versus oscillating flow on bone cells. J. Biomech. 31(11), 969–976 (1998)

    Article  Google Scholar 

  118. C.R. Jacobs, S. Temiyasathit, A.B. Castillo, Osteocyte mechanobiology and pericellular mechanics. Annu. Rev. Biomed. Eng. 12(1), 369–400 (2010). ISSN 1523-9829

    Article  Google Scholar 

  119. W.S. Jee, X.J. Li, M.B. Schaffler, Adaptation of diaphyseal structure with aging and increased mechanical usage in the adult rat: a histomorphometrical and biomechanical study. Anat. Rec. 230(3), 332–338 (1991)

    Article  Google Scholar 

  120. W.S.S. Jee, X.J. Li, Skeletal adaptations to mechanical usage in the rat. Cells Mater. Suppl. 1(Supplement 1), 131–142 (1991)

    Google Scholar 

  121. H.L. Jessop, R.F.L. Suswillo, S.C.F. Rawlinson, G. Zaman, K. Lee, V. Das-Gupta, A.A. Pitsillides, L.E. Lanyon, Osteoblast like cells from estrogen receptor \(\alpha \) knockout mice have deficient responses to mechanical strain. J. Bone Miner. Res. 19(6), 938–946 (2004)

    Article  Google Scholar 

  122. R.L. Jilka, R.S. Weinstein, T. Bellido, P. Roberson, A.M. Parfitt, S.C. Manolagas, Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J. Clin. Investig. 104(4), 439–446 (1999). ISSN 0021-9738

    Article  Google Scholar 

  123. H.H. Jones, J.D. Priest, W.C. Hayes, C.C. Tichenor, D.A. Nagel, Humeral hypertrophy in response to exercise. J. Bone Joint Surg. 59(2), 204–208 (1977)

    Article  Google Scholar 

  124. M.A. Kamel, J.L. Picconi, N. Lara-Castillo, M.L. Johnson, Activation of \(\beta \)-catenin signaling in mlo-y4 osteocytic cells versus 2t3 osteoblastic cells by fluid flow shear stress and pge2: implications for the study of mechanosensation in bone. Bone 47(5), 872–881 (2010). ISSN 8756-3282

    Article  Google Scholar 

  125. M. Kanematsu, K. Ikeda, Y. Yamada, Interaction between nitric oxide synthase and cyclooxygenase pathways in osteoblastic mc3t3 e1 cells. J. Bone Miner. Res. 12(11), 1789–1796 (1997)

    Article  Google Scholar 

  126. P. Kannus, H. Haapasalo, M. Sankelo, H. Sievanen, M. Pasanen, A. Heinonen, P. Oja, I. Vuori, Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann. Intern. Med. 123(1), 27–31 (1995)

    Article  Google Scholar 

  127. M.K. Karlsson, C. Linden, C. Karlsson, O. Johnell, K. Obrant, E. Seeman, Exercise during growth and bone mineral density and fractures in old age. Lancet 355(9202), 469–70 (2000)

    Article  Google Scholar 

  128. H.Z. Ke, V.W. Shen, H. Qi, D.T. Crawford, D.D. Wu, X.G. Liang, K.L. Chidsey-Frink, C.M. Pirie, H.A. Simmons, D.D. Thompson, Prostaglandin e2 increases bone strength in intact rats and in ovariectomized rats with established osteopenia. Bone 23(3), 249–255 (1998). ISSN 8756-3282

    Google Scholar 

  129. S. Keila, A. Kelner, M. Weinreb, Systemic prostaglandin e2 increases cancellous bone formation and mass in aging rats and stimulates their bone marrow osteogenic capacity in vivo and in vitro. J. Endocrinol. 168(1), 131–139 (2001). ISSN 0022-0795

    Article  Google Scholar 

  130. L.J. Kidd, A.S. Stephens, J.S. Kuliwaba, N.L. Fazzalari, A.C. Wu, M.R. Forwood, Temporal pattern of gene expression and histology of stress fracture healing. Bone 46(2), 369–378 (2010). ISSN 1873-2763

    Article  Google Scholar 

  131. Y. Kitase, L. Barragan, H. Qing, S. Kondoh, J.X. Jiang, M.L. Johnson, L.F. Bonewald, Mechanical induction of pge2 in osteocytes blocks glucocorticoid induced apoptosis through both the \(\beta \) catenin and pka pathways. J. Bone Miner. Res. 25(12), 2657–2668 (2010). ISSN 1523-4681

    Article  Google Scholar 

  132. J. Klein-Nulend, C.M. Semeins, N.E. Ajubi, P.J. Nijweide, E.H. Burger, Pulsating fluid flow increases nitric oxide (no) synthesis by osteocytes but not periosteal fibroblasts-correlation with prostaglandin upregulation. Biochem. Biophys. Res. Commun. 217(2), 640–648 (1995). ISSN 0006-291X

    Article  Google Scholar 

  133. J. Klein-Nulend, A. Van der Plas, C.M. Semeins, N.E. Ajubi, J.A. Frangos, P.J. Nijweide, E.H. Burger, Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 9(5), 441–445 (1995). ISSN 0892-6638

    Google Scholar 

  134. J. Klein-Nulend, E.H. Burger, C.M. Semeins, L.G. Raisz, C.C. Pilbeam, Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin g/h synthase mrna expression in primary mouse bone cells. J. Bone Miner. Res. 12(1), 45–51 (1997). ISSN 1523-4681

    Article  Google Scholar 

  135. J. Klein-Nulend, M.H. Helfrich, J.G.H. Sterck, H. MacPherson, M. Joldersma, S.H. Ralston, C.M. Semeins, E.H. Burger, Nitric oxide response to shear stress by human bone cell cultures is endothelial nitric oxide synthase dependent. Biochem. Biophys. Res. Commun. 250(1), 108–114 (1998)

    Article  Google Scholar 

  136. S. Kontulainen, P. Kannus, H. Haapasalo, H. Sievnen, M. Pasanen, A. Heinonen, P. Oja, I. Vuori, Good maintenance of exercise-induced bone gain with decreased training of female tennis and squash players: a prospective 5-year follow-up study of young and old starters and controls. J. Bone Miner. Res. 16(2), 195–201 (2001)

    Article  Google Scholar 

  137. S. Kontulainen, H. Sievanen, P. Kannus, M. Pasanen, I. Vuori, Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls. J. Bone Miner. Res. 17(12), 2281–2289 (2002)

    Article  Google Scholar 

  138. I. Kramer, C. Halleux, H. Keller, M. Pegurri, J.H. Gooi, P.B. Weber, J.Q. Feng, L.F. Bonewald, M. Kneissel, Osteocyte wnt/\(\beta \)-catenin signaling is required for normal bone homeostasis. Mol. Cell. Biol. 30(12), 3071–3085 (2010). ISSN 0270-7306

    Article  Google Scholar 

  139. T.M. Kringelbach, D. Aslan, I. Novak, M. Ellegaard, S. Syberg, C.K.B. Andersen, K.A. Kristiansen, O. Vang, P. Schwarz, N.R. Jorgensen, Fine-tuned atp signals are acute mediators in osteocyte mechanotransduction. Cell. Signal. 27(12), 2401–2409 (2015). ISSN 0898-6568

    Article  Google Scholar 

  140. R.N. Kulkarni, A.D. Bakker, V. Everts, J. Klein-Nulend, Inhibition of osteoclastogenesis by mechanically loaded osteocytes: involvement of mepe. Calcif. Tissue Int. 87(5), 461–468 (2010)

    Article  Google Scholar 

  141. F.M. Lambers, G. Kuhn, C. Weigt, K.M. Koch, F.A. Schulte, R. Mller, Bone adaptation to cyclic loading in murine caudal vertebrae is maintained with age and directly correlated to the local micromechanical environment. J. Biomech. 48(6), 1179–1187 (2015). ISSN 0021-9290

    Article  Google Scholar 

  142. T. Lang, A. LeBlanc, H. Evans, Y. Lu, H. Genant, A. Yu, Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J. Bone Miner. Res. 19(6), 1006–1012 (2004). ISSN 1523-4681

    Article  Google Scholar 

  143. L.E. Lanyon, Analysis of surface bone strain in the calcaneus of sheep during normal locomotion. J. Biomech. 6(1), 41–49 (1973). ISSN 0021-9290

    Article  Google Scholar 

  144. L.E. Lanyon, The influence of function on the development of bone curvature. An experimental study on the rat tibia. J. Zool. 192(4), 457–466 (1980). ISSN 1469-7998

    Article  Google Scholar 

  145. L.E. Lanyon, R.N. Smith, Bone strain in the tibia during normal quadrupedal locomotion. Acta Orthop. Scand. 41(3), 238–248 (1970). ISSN 0001-6470

    Article  Google Scholar 

  146. L.E. Lanyon, W.G.J. Hampson, A.E. Goodship, J.S. Shah, Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthop. Scand. 46(2), 256–268 (1975). ISSN 0001-6470

    Article  Google Scholar 

  147. N. Lara-Castillo, N.A. Kim-Weroha, M.A. Kamel, B. Javaheri, D.L. Ellies, R.E. Krumlauf, G. Thiagarajan, M.L. Johnson, In vivo mechanical loading rapidly activates \(\beta \)-catenin signaling in osteocytes through a prostaglandin mediated mechanism. Bone 76, 58–66 (2015). ISSN 8756-3282

    Google Scholar 

  148. K. Lee, H. Jessop, R. Suswillo, G. Zaman, L.E. Lanyon, Endocrinology: bone adaptation requires oestrogen receptor-\(\alpha \). Nature 424(6947), 389 (2003)

    Article  Google Scholar 

  149. K.C. Lee, H. Jessop, R. Suswillo, G. Zaman, L.E. Lanyon, The adaptive response of bone to mechanical loading in female transgenic mice is deficient in the absence of oestrogen receptor-\(\alpha \) and -\(\beta \). J. Endocrinol. 182(2), 193–201 (2004). ISSN 0022-0795

    Article  Google Scholar 

  150. I. Leichter, A. Simkin, J.Y. Margulies, A. Bivas, R. Steinberg, M. Giladi, Ch. Milgrom, Gain in mass density of bone following strenuous physical activity. J. Orthop. Res. 7(1), 86–90 (1989). ISSN 1554-527X

    Article  Google Scholar 

  151. T. Lekszycki, Functional adaptation of bone as an optimal control problem. J. Theor. Appl. Mech. 43(3), 555–574 (2005)

    Google Scholar 

  152. O. Leupin, E. Piters, C. Halleux, S. Hu, I. Kramer, F. Morvan, T. Bouwmeester, M. Schirle, M. Bueno-Lozano, F.J.R. Fuentes, Bone overgrowth-associated mutations in the lrp4 gene impair sclerostin facilitator function. J. Biol. Chem. 286(22), 19489–19500 (2011)

    Article  Google Scholar 

  153. J. Li, R.L. Duncan, D.B. Burr, V.H. Gattone, C.H. Turner, Parathyroid hormone enhances mechanically induced bone formation, possibly involving l-type voltage-sensitive calcium channels. Endocrinology 144(4), 1226–1233 (2003)

    Article  Google Scholar 

  154. J. Li, D. Liu, H.Z. Ke, R.L. Duncan, C.H. Turner, The p2x7 nucleotide receptor mediates skeletal mechanotransduction. J. Biol. Chem. 280(52), 42952–42959 (2005)

    Article  Google Scholar 

  155. X. Li, Y. Zhang, H. Kang, W. Liu, P. Liu, J. Zhang, S.E. Harris, D. Wu, Sclerostin binds to lrp5/6 and antagonizes canonical wnt signaling. J. Biol. Chem. 280(20), 19883–19887 (2005). ISSN 0021-9258

    Article  Google Scholar 

  156. X. Li, M.S. Ominsky, Q.T. Niu, N. Sun, B. Daugherty, D. D’Agostin, C. Kurahara, Y. Gao, J. Cao, J. Gong, F. Asuncion, M. Barrero, K. Warmington, D. Dwyer, M. Stolina, S. Morony, I. Sarosi, P.J. Kostenuik, D.L. Lacey, W.S. Simonet, H.Z. Ke, C. Paszty, Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J. Bone Miner. Res. 23(6), 860–869 (2008)

    Google Scholar 

  157. X. Li, M.S. Ominsky, K.S. Warmington, S. Morony, J. Gong, J. Cao, Y. Gao, V. Shalhoub, B. Tipton, R. Haldankar, Q. Chen, A. Winters, T. Boone, Z. Geng, Q.T. Niu, H.Z. Ke, P.J. Kostenuik, W.S. Simonet, D.L. Lacey, C. Paszty, Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J. Bone Miner. Res. 24(4), 578–588 (2009)

    Google Scholar 

  158. X.J. Li, W.S.S. Jee, Y.L. Li, P. Patterson-Buckendahl, Transient effects of subcutaneously administered prostaglandin e2 on cancellous and cortical bone in young adult dogs. Bone 11(5), 353–364 (1990). ISSN 8756-3282

    Article  Google Scholar 

  159. A. Liedert, L. Wagner, L. Seefried, R. Ebert, F. Jakob, A. Ignatius, Estrogen receptor and wnt signaling interact to regulate early gene expression in response to mechanical strain in osteoblastic cells. Biochem. Biophys. Res. Commun. 394(3), 755–759 (2010)

    Article  Google Scholar 

  160. C. Lin, X. Jiang, Z. Dai, X. Guo, T. Weng, J. Wang, Y. Li, G. Feng, X. Gao, L. He, Sclerostin mediates bone response to mechanical unloading through antagonizing wnt/\(\beta \) catenin signaling. J. Bone Miner. Res. 24(10), 1651–1661 (2009)

    Article  Google Scholar 

  161. M.K. Lindberg, S.L. Alatalo, J.M. Halleen, S. Mohan, J.-A. Gustafsson, C. Ohlsson, Estrogen receptor specificity in the regulation of the skeleton in female mice. J. Endocrinol. 171(2), 229–236 (2001)

    Article  Google Scholar 

  162. A.-H. Lutter, U. Hempel, U. Anderer, P. Dieter, Biphasic influence of pge 2 on the resorption activity of osteoclast-like cells derived from human peripheral blood monocytes and mouse raw264.7 cells. Prostaglandins, Leukot. Essent. Fat. Acids (PLEFA) 111, 1–7 (2016). ISSN 0952-3278

    Article  Google Scholar 

  163. H. Macdonald, S. Kontulainen, M. Petit, P. Janssen, H. McKay, Bone strength and its determinants in pre- and early pubertal boys and girls. Bone 39(3), 598–608 (2006)

    Article  Google Scholar 

  164. H.M. Macdonald, S.A. Kontulainen, K.M. Khan, H.A. McKay, Is a school-based physical activity intervention effective for increasing tibial bone strength in boys and girls? J. Bone Miner. Res. 22(3), 434–446 (2007)

    Article  Google Scholar 

  165. H.M. Macdonald, S.A. Kontulainen, M.A. Petit, T.J. Beck, K.M. Khan, H.A. McKay, Does a novel school-based physical activity model benefit femoral neck bone strength in pre- and early pubertal children? Osteoporos. Int. 19(10), 1445–1456 (2008)

    Article  Google Scholar 

  166. H.M. Macdonald, D.M. Cooper, H.A. McKay, Anterior-posterior bending strength at the tibial shaft increases with physical activity in boys: evidence for non-uniform geometric adaptation. Osteoporos. Int. 20(1), 61–70 (2009)

    Article  Google Scholar 

  167. M. Machwate, S. Harada, C.T. Leu, G. Seedor, M. Labelle, M. Gallant, S. Hutchins, N. Lachance, N. Sawyer, D. Slipetz, Prostaglandin receptor ep4 mediates the bone anabolic effects of pge2. Mol. Pharmacol. 60(1), 36–41 (2001). ISSN 1521-0111

    Google Scholar 

  168. I. MacIntyre, M. Zaidi, A.S. Alam, H.K. Datta, B.S. Moonga, P.S. Lidbury, M. Hecker, J.R. Vane, Osteoclastic inhibition: an action of nitric oxide not mediated by cyclic gmp. Proc. Natl. Acad. Sci. 88(7), 2936–2940 (1991)

    Article  Google Scholar 

  169. K.J. MackElvie, H.A. McKay, K.M. Khan, P.R. Crocker, A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J. Pediatr. 139(4), 501–508 (2001)

    Article  Google Scholar 

  170. K.J. MacKelvie, H.A. McKay, M.A. Petit, O. Moran, K.M. Khan, Bone mineral response to a 7-month randomized controlled, school-based jumping intervention in 121 prepubertal boys: associations with ethnicity and body mass index. J. Bone Miner. Res. 17(5), 834–844 (2002)

    Article  Google Scholar 

  171. K.J. MacKelvie, M.A. Petit, K.M. Khan, T.J. Beck, H.A. McKay, Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone 34(4), 755–764 (2004)

    Article  Google Scholar 

  172. B.R. Martin, A genealogy of biomechanics: Presidential lecture, in 23rd Annual Conference of the American Society of Biomechanics, 23 Oct: pp. 1–8 (1999)

    Google Scholar 

  173. R.N. McCarthy, L.B. Jeffcott, Effects of treadmill exercise on cortical bone in the third metacarpus of young horses. Res. Vet. Sci. 52, 28–37 (1992)

    Article  Google Scholar 

  174. M.R. McClung, A. Grauer, S. Boonen, M.A. Bolognese, J.P. Brown, A. Diez-Perez, B.L. Langdahl, J.-Y. Reginster, J.R. Zanchetta, S.M. Wasserman, Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 370(5), 412–420 (2014)

    Article  Google Scholar 

  175. H. McKay, L. MacLean, M. Petit, K. MacKelvie-O’Brien, P. Janssen, T. Beck, K. Khan, “bounce at the bell”: a novel program of short bouts of exercise improves proximal femur bone mass in early pubertal children. Br. J. Sports Medi. 39(8), 521–526 (2005)

    Article  Google Scholar 

  176. K.M. Melville, N.H. Kelly, G. Surita, D.B. Buchalter, J.C. Schimenti, R.P. Main, F.P. Ross, M.C.H. van der Meulen, Effects of deletion of er\(\alpha \) in osteoblast lineage cells on bone mass and adaptation to mechanical loading differ in female and male mice. J. Bone Miner. Res. 30(8), 1468–1480 (2015)

    Article  Google Scholar 

  177. T. Minamizaki, Y. Yoshiko, K. Kozai, J.E. Aubin, N. Maeda, Ep2 and ep4 receptors differentially mediate mapk pathways underlying anabolic actions of prostaglandin e2 on bone formation in rat calvaria cell cultures. Bone 44(6), 1177–1185 (2009). ISSN 8756-3282

    Article  Google Scholar 

  178. D.G. Monroe, M.E. McGee-Lawrence, M.J. Oursler, J.J. Westendorf, Update on wnt signaling in bone cell biology and bone disease. Gene 492(1), 1–18 (2012)

    Article  Google Scholar 

  179. F.L. Morris, G.A. Naughton, J.L. Gibbs, J.S. Carlson, J.D. Wark, Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J. Bone Miner. Res. 12(9), 1453–1462 (1997)

    Article  Google Scholar 

  180. J.R. Mosley, L.E. Lanyon, Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone 23(4), 313–318 (1998). ISSN 8756-3282

    Article  Google Scholar 

  181. J.R. Mosley, B.M. March, J. Lynch, L.E. Lanyon, Strain magnitude related changes in whole bone architecture in growing rats. Bone 20(3), 191–198 (1997)

    Article  Google Scholar 

  182. A. Moustafa, T. Sugiyama, J. Prasad, G. Zaman, T.S. Gross, L.E. Lanyon, J.S. Price, Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporos. Int. 23(4), 1225–1234 (2012)

    Article  Google Scholar 

  183. M.G. Mullender, R. Huiskes, H. Weinans, A physiological approach to the simulation of bone remodeling as a self-organizational control process. J. Biomech. 27(11), 1389–1394 (1994)

    Article  Google Scholar 

  184. T. Nakashima, M. Hayashi, T. Fukunaga, K. Kurata, M. Oh-hora, J.Q. Feng, L.F. Bonewald, T. Kodama, A. Wutz, E.F. Wagner, Evidence for osteocyte regulation of bone homeostasis through rankl expression. Nat. Med. 17(10), 1231–1234 (2011)

    Article  Google Scholar 

  185. A. Nordstrom, T. Olsson, P. Nordstrom, Bone gained from physical activity and lost through detraining: a longitudinal study in young males. Osteoporos. Int. 16(7), 835–841 (2005)

    Article  Google Scholar 

  186. J.A. O’Connor, L.E. Lanyon, H. MacFie, The influence of strain rate on adaptive bone remodelling. J. Biomech. 15(10), 767–781 (1982). ISSN 0021-9290

    Article  Google Scholar 

  187. M.S. Ominsky, F. Vlasseros, J. Jolette, S.Y. Smith, B. Stouch, G. Doellgast, J. Gong, Y. Gao, J. Cao, K. Graham, Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J. Bone Miner. Res. 25(5), 948–959 (2010)

    Article  Google Scholar 

  188. E. Ozcivici, Y.K. Luu, B. Adler, Y.-X. Qin, J. Rubin, St Judex, C.T. Rubin, Mechanical signals as anabolic agents in bone. Nat. Rev. Rheumatol. 6(1), 50–59 (2010). ISSN 1759-4790

    Article  Google Scholar 

  189. D. Padhi, G. Jang, B. Stouch, L. Fang, E. Posvar, Single dose, placebo controlled, randomized study of amg 785, a sclerostin monoclonal antibody. J. Bone Miner. Res. 26(1), 19–26 (2011)

    Article  Google Scholar 

  190. A.M. Parfitt, The two faces of growth: Benefits and risks to bone integrity. Osteoporos. Int. 4(6), 382–398 (1994). ISSN 1433-2965

    Article  Google Scholar 

  191. J.L. Pathak, N. Bravenboer, F.P. Luyten, P. Verschueren, W.F. Lems, J. Klein-Nulend, A.D. Bakker, Mechanical loading reduces inflammation-induced human osteocyte-to-osteoclast communication. Calcif. Tissue Int. 97(2), 169–178 (2015)

    Article  Google Scholar 

  192. F.M. Pavalko, R.L. Gerard, S.M. Ponik, P.J. Gallagher, Y. Jin, S.M. Norvell, Fluid shear stress inhibits tnf induced apoptosis in osteoblasts: A role for fluid shear stress induced activation of pi3kinase and inhibition of caspase3. J. Cell. Physiol. 194(2), 194–205 (2003). ISSN 1097-4652

    Article  Google Scholar 

  193. B.L. Pennypacker, L.T. Duong, T.E. Cusick, P.J. Masarachia, M.A. Gentile, J.Y. Gauthier, W.C. Black, B.B. Scott, R. Samadfam, S.Y. Smith, D.B. Kimmel, Cathepsin k inhibitors prevent bone loss in estrogen-deficient rabbits. J. Bone Miner. Res. 26(2), 252–262 (2011). ISSN 1523-4681

    Article  Google Scholar 

  194. A.F. Pereira, Cortical Bone Adaptation - A finite-element study of the mouse tibia. Ph.d. thesis, Imperial College, London, UK (2014)

    Google Scholar 

  195. A.F. Pereira, B. Javaheri, A.A. Pitsillides, S.J. Shefelbine, Predicting cortical bone adaptation to axial loading in the mouse tibia. J. R. Soc. Interface 12(110), 1–14 (2015)

    Article  Google Scholar 

  196. M.A. Petit, H.A. McKay, K.J. MacKelvie, A. Heinonen, K.M. Khan, T.J. Beck, A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J. Bone Miner. Res. 17(3), 363–372 (2002)

    Article  Google Scholar 

  197. H.E. Pettermann, T.J. Reiter, F.G. Rammerstorfer, Computational simulation of internal bone remodeling. Arch. Comput. Methods Eng. 4(4), 295–323 (1997)

    Article  Google Scholar 

  198. P. Pivonka, P.R. Buenzli, S. Scheiner, C. Hellmich, C.R. Dunstan, The influence of bone surface availability in bone remodelling a mathematical model including coupled geometrical and biomechanical regulations of bone cells. Eng. Struct. 47, 134–147 (2013)

    Article  Google Scholar 

  199. A. Prentice, T.J. Parsons, T.J. Cole, Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am. J. Clin. Nutr. 60(6), 837–842 (1994)

    Google Scholar 

  200. Y.-X. Qin, C.T. Rubin, K.J. McLeod, Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology. J. Orthop. Res. 16(4), 482–489 (1998). ISSN 1554-527X

    Article  Google Scholar 

  201. D.M. Raab-Cullen, M.P. Akhter, D.B. Kimmel, R.R. Recker, Bone response to alternate-day mechanical loading of the rat tibia. J. Bone Miner. Res. 9(2), 203–211 (1994)

    Article  Google Scholar 

  202. J. Rahnert, X. Fan, N. Case, T.C. Murphy, F. Grassi, B. Sen, J. Rubin, The role of nitric oxide in the mechanical repression of rankl in bone stromal cells. Bone 43(1), 48–54 (2008)

    Article  Google Scholar 

  203. L.G. Raisz, F.N. Woodiel, Effects of selective prostaglandin ep 2 and ep 4 receptor agonists on bone resorption and formation in fetal rat organ cultures. Prostaglandins Other Lipid Mediat. 71(3), 287–292 (2003). ISSN 1098-8823

    Article  Google Scholar 

  204. H. Rangaswami, R. Schwappacher, T. Tran, G.C. Chan, S. Zhuang, G.R. Boss, R.B. Pilz, Protein kinase g and focal adhesion kinase converge on src/akt/\(\beta \)-catenin signaling module in osteoblast mechanotransduction. J. Biol. Chem. 287(25), 21509–21519 (2012)

    Article  Google Scholar 

  205. K.M. Reich, J.A. Frangos, Effect of flow on prostaglandin e2 and inositol trisphosphate levels in osteoblasts. Am. J. Physiol.Cell Physiol. 261(3), C428–C432 (1991). ISSN 0363-6143

    Google Scholar 

  206. T.J. Reiter, Functional adaptation of bone and application in optimal structural design. Ph.d. thesis, Vienna University of Technology, Vienna, Austria (1995)

    Google Scholar 

  207. J. Ren, X.-H. Wang, G.-C. Wang, J.-H. Wu, 17\(\beta \) estradiol regulation of connexin 43-based gap junction and mechanosensitivity through classical estrogen receptor pathway in osteocyte-like mlo-y4 cells. Bone 53(2), 587–596 (2013)

    Article  Google Scholar 

  208. M.D. Roberts, R.T. Hart, Shape adaptation of long bone structures using a contour based approach. Comput. Methods Biomech. Biomed. Eng. 8(3), 145–156 (2005)

    Article  Google Scholar 

  209. A.G. Robling, D.B. Burr, C.H. Turner, Partitioning a daily mechanical stimulus into discrete loading bouts improves the osteogenic response to loading. J. Bone Miner. Res. 15(8), 1596–1602 (2000)

    Article  Google Scholar 

  210. A.G. Robling, D.B. Burr, C.H. Turner, Recovery periods restore mechanosensitivity to dynamically loaded bone. J. Exp. Biol. 204(Pt 19), 3389–3399 (2001)

    Google Scholar 

  211. A.G. Robling, F.M. Hinant, D.B. Burr, Ch.H Turner, Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J. Bone Miner. Res. 17(8), 1545–1554 (2002). ISSN 1523-4681

    Google Scholar 

  212. A.G. Robling, A.B. Castillo, C.H. Turner, Biomechanical and molecular regulation of bone remodeling. Annu. Rev. Biomed. Eng. 8, 455–498 (2006). ISSN 1523-9829

    Article  Google Scholar 

  213. A.G. Robling, P.J. Niziolek, L.A. Baldridge, K.W. Condon, M.R. Allen, I. Alam, S.M. Mantila, J. Gluhak-Heinrich, T.M. Bellido, S.E. Harris, Mechanical stimulation of bone in vivo reduces osteocyte expression of sost/sclerostin. J. Biol. Chem. 283(9), 5866–5875 (2008)

    Article  Google Scholar 

  214. H. Roesler, The history of some fundamental concepts in bone biomechanics. J. Biomech. 20(11), 1025–1034 (1987). ISSN 0021-9290

    Article  Google Scholar 

  215. C.J. Rosen, M.L. Bouxsein, Mechanisms of disease: is osteoporosis the obesity of bone? Nat. Clin. Pract. Rheum. 2(1), 35–43 (2006). ISSN 1745-8382

    Article  Google Scholar 

  216. W. Roux, Beitrage zur morphologie der funktionellen anspassung. Arch. Anat. Physiol. Abt. 9, 120–158 (1885)

    Google Scholar 

  217. C. Rubin, T. Gross, Y.X. Qin, S. Fritton, F. Guilak, K. McLeod, Differentiation of the bone-tissue remodeling response to axial and torsional loading in the turkey ulna. J. Bone Joint Surg. Am. 78(10), 1523–1533 (1996)

    Article  Google Scholar 

  218. C. Rubin, G. Xu, S. Judex, The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J. 15(12), 2225–2229 (2001)

    Article  Google Scholar 

  219. C.T. Rubin, L.E. Lanyon, Regulation of bone formation by applied dynamic loads. J. Bone Joint Surg. 66(3), 397–402 (1984)

    Article  Google Scholar 

  220. C.T. Rubin, L.E. Lanyon, Regulation of bone mass by mechanical strain magnitude. Calcif. Tissue Int. 37(4), 411–417 (1985)

    Article  Google Scholar 

  221. C.T. Rubin, L.E. Lanyon, Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. J. Orthop. Res. 5(2), 300–310 (1987). ISSN 1554-527X

    Article  Google Scholar 

  222. C.T. Rubin, K.J. McLeod, Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin. Orthop. 298, 165–174 (1994)

    Google Scholar 

  223. C.T. Rubin, T.S. Gross, K.J. McLeod, S.D. Bain, Morphologic stages in lamellar bone formation stimulated by a potent mechanical stimulus. J. Bone Miner. Res. 10(3), 488–495 (1995)

    Article  Google Scholar 

  224. J. Rubin, X. Fan, D.M. Biskobing, W.R. Taylor, C.T. Rubin, Osteoclastogenesis is repressed by mechanical strain in an in vitro model. J. Orthop. Res. 17(5), 639–645 (1999)

    Article  Google Scholar 

  225. Ch. Ruff, B. Holt, E. Trinkaus, Who’s afraid of the big bad wolff?: wolff’s law and bone functional adaptation. Am. J. Phys. Anthropol. 129(4), 484–498 (2006). ISSN 1096-8644

    Article  Google Scholar 

  226. K. Sabanai, M. Tsutsui, A. Sakai, H. Hirasawa, S. Tanaka, E. Nakamura, A. Tanimoto, Y. Sasaguri, M. Ito, H. Shimokawa, Genetic disruption of all no synthase isoforms enhances bmd and bone turnover in mice in vivo: involvement of the renin angiotensin system. J. Bone Miner. Res. 23(5), 633–643 (2008)

    Google Scholar 

  227. Y. Sakuma, Z. Li, C.C. Pilbeam, C.B. Alander, D. Chikazu, H. Kawaguchi, L.G. Raisz, Stimulation of camp production and cyclooxygenase-2 by prostaglandin e2 and selective prostaglandin receptor agonists in murine osteoblastic cells. Bone 34(5), 827–834 (2004). ISSN 8756-3282

    Article  Google Scholar 

  228. S.J. Sample, R.J. Collins, A.P. Wilson, M.A. Racette, M. Behan, M.D. Markel, V.L. Kalscheur, Z. Hao, P. Muir, Systemic effects of ulna loading in male rats during functional adaptation. J. Bone Miner. Res. 25(9), 2016–2028 (2010). ISSN 1523-4681

    Google Scholar 

  229. A. Santos, A.D. Bakker, B. ZandiehDoulabi, C.M. Semeins, J. Klein Nulend, Pulsating fluid flow modulates gene expression of proteins involved in wnt signaling pathways in osteocytes. J. Orthop. Res. 27(10), 1280–1287 (2009)

    Article  Google Scholar 

  230. A. Santos, A.D. Bakker, J.M.A. de Blieck-Hogervorst, J. Klein-Nulend, Wnt5a induces osteogenic differentiation of human adipose stem cells via rho-associated kinase rock. Cytotherapy 12(7), 924–932 (2010)

    Article  Google Scholar 

  231. A. Santos, A.D. Bakker, B. Zandieh-Doulabi, J.M.A. de Blieck-Hogervorst, J. Klein-Nulend, Early activation of the \(\beta \)-catenin pathway in osteocytes is mediated by nitric oxide, phosphatidylinositol-3 kinase/akt, and focal adhesion kinase. Biochem. Biophys. Res. Commun. 391(1), 364–369 (2010)

    Article  Google Scholar 

  232. L.K. Saxon, A.G. Robling, A.B. Castillo, S. Mohan, C.H. Turner, The skeletal responsiveness to mechanical loading is enhanced in mice with a null mutation in estrogen receptor-\(\beta \). Am. J. Physiol.-Endocrinol. Metab. 293(2), E484–E491 (2007)

    Article  Google Scholar 

  233. L.K. Saxon, G. Galea, L. Meakin, J. Price, L.E. Lanyon, Estrogen receptors \(\alpha \) and \(\beta \) have different gender-dependent effects on the adaptive responses to load bearing in cancellous and cortical bone. Endocrinology 153(5), 2254–2266 (2012)

    Article  Google Scholar 

  234. T.A. Scerpella, J.N. Dowthwaite, P.F. Rosenbaum, Sustained skeletal benefit from childhood mechanical loading. Osteoporos. Int. 22(7), 2205–2210 (2011)

    Article  Google Scholar 

  235. S. Scheiner, P. Pivonka, C. Hellmich, Coupling systems biology with multiscale mechanics, for computer simulations of bone remodeling. Comput. Methods Appl. Mech. Eng. 254, 181–196 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  236. S. Scheiner, P. Pivonka, C. Hellmich, Poromicromechanics reveals that physiological bone strains induce osteocyte-stimulating lacunar pressure. Biomech. Model. Mechanobiol. 15(1), 9–28 (2016). ISSN 1617-7940

    Article  Google Scholar 

  237. M. Semnov, K. Tamai, X. He, Sost is a ligand for lrp5/lrp6 and a wnt signaling inhibitor. J. Biol. Chem. 280(29), 26770–26775 (2005). ISSN 0021-9258

    Google Scholar 

  238. N.A. Sims, S. Dupont, A. Krust, P. Clement-Lacroix, D. Minet, M. Resche-Rigon, M. Gaillard-Kelly, R. Baron, Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-in bone remodeling in females but not in males. Bone 30(1), 18–25 (2002)

    Article  Google Scholar 

  239. T.M. Skerry, Mechanical loading and bone: what sort of exercise is beneficial to the skeleton? Bone 20(3), 179–181 (1997). ISSN 8756-3282

    Article  Google Scholar 

  240. T.M. Skerry, One mechanostat or many? modifications of the site-specific response of bone to mechanical loading by nature and nurture. J. Musculoskelet. Neuronal Interact. 6(2), 122–127 (2006)

    Google Scholar 

  241. T.M. Skerry, The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch. Biochem. Biophys. 473(2), 117–123 (2008). ISSN 0003-9861

    Article  Google Scholar 

  242. E.L. Smith, C. Gilligan, Dose-response relationship between physical loading and mechanical competence of bone. Bone 18(1), S45–S50 (1996). ISSN 8756-3282

    Article  Google Scholar 

  243. D. Somjen, I. Binderman, E. Berger, A. Harell, Bone remodelling induced by physical stress is prostaglandin e2 mediated. Biochimica et Biophysica Acta (BBA)-Gen. Subj. 627(1), 91–100 (1980). ISSN 0304-4165

    Article  Google Scholar 

  244. S. Srinivasan, D.A. Weimer, S.C. Agans, S.D. Bain, T.S. Gross, Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J. Bone Miner. Res. 17(9), 1613–1620 (2002). ISSN 1523-4681

    Article  Google Scholar 

  245. T. Sugiyama, G.L. Galea, L.E. Lanyon, J.S. Price, Mechanical loading-related bone gain is enhanced by tamoxifen but unaffected by fulvestrant in female mice. Endocrinology 151(12), 5582–5590 (2010)

    Article  Google Scholar 

  246. A. Sunters, V.J. Armstrong, G. Zaman, R.M. Kypta, Y. Kawano, L.E. Lanyon, J.S. Price, Mechano-transduction in osteoblastic cells involves strain-regulated estrogen receptor \(\alpha \)-mediated control of insulin-like growth factor (igf) i receptor sensitivity to ambient igf, leading to phosphatidylinositol 3-kinase/akt-dependent wnt/lrp5 receptor-independent activation of \(\beta \)-catenin signaling. J. Biol. Chem. 285(12), 8743–8758 (2010)

    Article  Google Scholar 

  247. S.D. Tan, A.M. Kuijpers-Jagtman, C.M. Semeins, A.L.J.J. Bronckers, J.C. Maltha, J.W. Von den Hoff, V. Everts, J. Klein-Nulend, Fluid shear stress inhibits tnfinduced osteocyte apoptosis. J. Dent. Res. 85(10), 905–909 (2006). ISSN 0022-0345

    Article  Google Scholar 

  248. S.D. Tan, T.J. de Vries, A.M. Kuijpers-Jagtman, C.M. Semeins, V. Everts, J. Klein-Nulend, Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone 41(5), 745–751 (2007)

    Article  Google Scholar 

  249. W.R. Thompson, C.T. Rubin, J. Rubin, Mechanical regulation of signaling pathways in bone. Gene 503(2), 179–193 (2012). ISSN 0378-1119

    Article  Google Scholar 

  250. A.G. Torrance, J.R. Mosley, R.F. Suswillo, L.E. Lanyon, Noninvasive loading of the rat ulna in vivo induces a strain-related modeling response uncomplicated by trauma or periostal pressure. Calcif. Tissue Int. 54(3), 241–247 (1994)

    Article  Google Scholar 

  251. C.H. Turner, Three rules for bone adaptation to mechanical stimuli. Bone 23(5), 399–407 (1998). ISSN 8756-3282

    Article  Google Scholar 

  252. C.H. Turner, A.G. Robling, Designing exercise regimens to increase bone strength. Exerc. Sport Sci. Rev. 31(1), 45–50 (2003)

    Article  Google Scholar 

  253. C.H. Turner, A.G. Robling, Mechanical loading and bone formation. BoneKEy 1(9), 15–23 (2004)

    Article  Google Scholar 

  254. C.H. Turner, M.P. Akhter, D.M. Raab, D.B. Kimmel, R.R. Recker, A noninvasive, in vivo model for studying strain adaptive bone modeling. Bone 12(2), 73–79 (1991)

    Article  Google Scholar 

  255. C.H. Turner, T.A. Woltman, D.A. Belongia, Structural changes in rat bone subjected to long-term, in vivo mechanical loading. Bone 13, 417–422 (1992)

    Article  Google Scholar 

  256. C.H. Turner, M.R. Forwood, M.W. Otter, Mechanotransduction in bone: do bone cells act as sensors of fluid flow? FASEB J. 8(11), 875–878 (1994)

    Google Scholar 

  257. C.H. Turner, M.R. Forwood, J.Y. Rho, T. Yoshikawa, Mechanical loading thresholds for lamellar and woven bone formation. J. Bone Miner. Res. 9(1), 87–97 (1994). ISSN 0884-0431 (Print)

    Article  Google Scholar 

  258. C.H. Turner, I. Owan, Y. Takano, Mechanotransduction in bone: role of strain rate. Am. J. Physiol. Endocrinol. Metab. 269(3), E438–E442 (1995)

    Google Scholar 

  259. C.H. Turner, Y. Takano, I. Owan, G.A. Murrell, Nitric oxide inhibitor l-name suppresses mechanically induced bone formation in rats. Am. J. Physiol. Endocrinol. Metab. 270(4), E634–E639 (1996)

    Google Scholar 

  260. M. Tveit, B.E. Rosengren, J.A. Nilsson, M.K. Karlsson, Exercise in youth: High bone mass, large bone size, and low fracture risk in old age. Scand. J. Med. Sci. Sports 25(4), 453–461 (2015)

    Article  Google Scholar 

  261. Y. Umemura, T. Ishiko, T. Yamauchi, M. Kurono, S. Mashiko, Five jumps per day increase bone mass and breaking force in rats. J. Bone Miner. Res. 12(9), 1480–1485 (1997)

    Article  Google Scholar 

  262. B.A. Uthgenannt, M.J. Silva, Use of the rat forelimb compression model to create discrete levels of bone damage in vivo. J. Biomech. 40(2), 317–324 (2007). ISSN 0021-9290

    Article  Google Scholar 

  263. A.H. van Lierop, N.A.T. Hamdy, M.E. van Egmond, E. Bakker, F.G. Dikkers, S.E. Papapoulos, Van buchem disease: clinical, biochemical, and densitometric features of patients and disease carriers. J. Bone Miner. Res. 28(4), 848–854 (2013)

    Article  Google Scholar 

  264. O. Verborgt, G.J. Gibson, M.B. Schaffler, Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J. Bone Miner. Res. 15(1), 60–7 (2000)

    Article  Google Scholar 

  265. S.J. Warden, R.K. Fuchs, A.B. Castillo, I.R. Nelson, C.H. Turner, Exercise when young provides lifelong benefits to bone structure and strength. J. Bone Miner. Res. 22(2), 251–259 (2007)

    Article  Google Scholar 

  266. S.J. Warden, S.M. Mantila Roosa, M.E. Kersh, A.L. Hurd, G.S. Fleisig, M.G. Pandy, R.K. Fuchs, Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc. Natl. Acad. Sci. 111(14), 5337–5342 (2014)

    Article  Google Scholar 

  267. R.S. Weinstein, R.L. Jilka, A.M. Parfitt, S.C. Manolagas, Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. potential mechanisms of their deleterious effects on bone. J. Clin. Investig. 102(2), 274–282 (1998)

    Article  Google Scholar 

  268. A.R. Wijenayaka, M. Kogawa, H.P. Lim, L.F. Bonewald, D.M. Findlay, G.J. Atkins, Sclerostin stimulates osteocyte support of osteoclast activity by a rankl-dependent pathway. PLoS ONE 6(10), e25900 (2011)

    Article  Google Scholar 

  269. S.H. Windahl, L. Saxon, A.E. Brjesson, M.K. Lagerquist, B. Frenkel, P. Henning, U.H. Lerner, G.L. Galea, L.B. Meakin, C. Engdahl, Estrogen receptor \(\alpha \) is required for the osteogenic response to mechanical loading in a ligand independent manner involving its activation function 1 but not 2. J. Bone Miner. Res. 28(2), 291–301 (2013)

    Article  Google Scholar 

  270. D.G. Winkler, M.K. Sutherland, J.C. Geoghegan, C. Yu, T. Hayes, J.E. Skonier, D. Shpektor, M. Jonas, B.R. Kovacevich, K. Staehling, Hampton. Osteocyte control of bone formation via sclerostin, a novel bmp antagonist. EMBO J. 22(23), 6267–6276 (2003)

    Article  Google Scholar 

  271. J. Wolff, Das Gesetz der Transformation der Knochen (Hirschwald, Berlin, 1892)

    Google Scholar 

  272. T.J. Wronski, E. Morey-Holton, W.S. Jee, Skeletal alterations in rats during space flight. Adv. Space Res. 1(14), 135–140 (1981)

    Article  Google Scholar 

  273. X. Xia, N. Batra, Q. Shi, L.F. Bonewald, E. Sprague, J.X. Jiang, Prostaglandin promotion of osteocyte gap junction function through transcriptional regulation of connexin 43 by glycogen synthase kinase 3/\(\beta \)-catenin signaling. Mol. Cell. Biol. 30(1), 206–219 (2010). ISSN 0270-7306

    Article  Google Scholar 

  274. J. Xiong, M. Onal, R.L. Jilka, R.S. Weinstein, S.C. Manolagas, C.A. O’Brien, Matrix-embedded cells control osteoclast formation. Nat. Med. 17(10), 1235–1241 (2011)

    Article  Google Scholar 

  275. P.F. Yang, G.P. Brggemann, J. Rittweger, What do we currently know from in vivo bone strain measurements in humans? J. Musculoskelet. Neuronal Interact. 11(1), 8–20 (2011)

    Google Scholar 

  276. J. You, G.C. Reilly, X. Zhen, C.E. Yellowley, Q. Chen, H.J. Donahue, C.R. Jacobs, Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in mc3t3e1 osteoblasts. J. Biol. Chem. 276(16), 13365–13371 (2001)

    Article  Google Scholar 

  277. J. You, C.R. Jacobs, T.H. Steinberg, H.J. Donahue, P2y purinoceptors are responsible for oscillatory fluid flow-induced intracellular calcium mobilization in osteoblastic cells. J. Biol. Chem. 277(50), 48724–48729 (2002)

    Article  Google Scholar 

  278. L. You, S. Temiyasathit, P. Lee, C.H. Kim, P. Tummala, W. Yao, W. Kingery, A.M. Malone, R.Y. Kwon, C.R. Jacobs, Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bone 42(1), 172–179 (2008)

    Article  Google Scholar 

  279. G. Zaman, M.Z. Cheng, H.L. Jessop, R. White, L.E. Lanyon, Mechanical strain activates estrogen response elements in bone cells. Bone 27(2), 233–239 (2000)

    Article  Google Scholar 

  280. G. Zaman, H.L. Jessop, M. Muzylak, R.L. De Souza, A.A. Pitsillides, J.S. Price, L.E. Lanyon, Osteocytes use estrogen receptor alpha to respond to strain but their eralpha content is regulated by estrogen. J. Bone Miner. Res. 21(8), 1297–1306 (2006)

    Article  Google Scholar 

  281. M. Zayzafoon, W.E. Gathings, J.M. McDonald, Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology 145(5), 2421–2432 (2004). ISSN 0013-7227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Forwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Pivonka, P., Park, A., Forwood, M.R. (2018). Functional Adaptation of Bone: The Mechanostat and Beyond. In: Pivonka, P. (eds) Multiscale Mechanobiology of Bone Remodeling and Adaptation. CISM International Centre for Mechanical Sciences, vol 578. Springer, Cham. https://doi.org/10.1007/978-3-319-58845-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58845-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58843-8

  • Online ISBN: 978-3-319-58845-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics