Skip to main content

Quantifying the Uncertainty in Model Parameters Using Gaussian Process-Based Markov Chain Monte Carlo: An Application to Cardiac Electrophysiological Models

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10265))

Included in the following conference series:

Abstract

Estimation of patient-specific model parameters is important for personalized modeling, although sparse and noisy clinical data can introduce significant uncertainty in the estimated parameter values. This importance source of uncertainty, if left unquantified, will lead to unknown variability in model outputs that hinder their reliable adoptions. Probabilistic estimation model parameters, however, remains an unresolved challenge because standard Markov Chain Monte Carlo sampling requires repeated model simulations that are computationally infeasible. A common solution is to replace the simulation model with a computationally-efficient surrogate for a faster sampling. However, by sampling from an approximation of the exact posterior probability density function (pdf) of the parameters, the efficiency is gained at the expense of sampling accuracy. In this paper, we address this issue by integrating surrogate modeling into Metropolis Hasting (MH) sampling of the exact posterior pdfs to improve its acceptance rate. It is done by first quickly constructing a Gaussian process (GP) surrogate of the exact posterior pdfs using deterministic optimization. This efficient surrogate is then used to modify commonly-used proposal distributions in MH sampling such that only proposals accepted by the surrogate will be tested by the exact posterior pdf for acceptance/rejection, reducing unnecessary model simulations at unlikely candidates. Synthetic and real-data experiments using the presented method show a significant gain in computational efficiency without compromising the accuracy. In addition, insights into the non-identifiability and heterogeneity of tissue properties can be gained from the obtained posterior distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adrieu, C., Freitas, N., Doucet, A., Jordan, M.: An introduction to Markov chain Monte Carlo for machine learning. Mach. Learn. 50, 5–43 (2003)

    Article  Google Scholar 

  2. Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos, Solitons Fractals 7(3), 293–301 (1996)

    Article  Google Scholar 

  3. Christen, J.A., Fox, C.: Markov chain Monte Carlo using an approximation. J. Comput. Graph. Stat. 14(4), 795–810 (2005)

    Article  MathSciNet  Google Scholar 

  4. Dhamala, J., Sapp, J.L., Horacek, M., Wang, L.: Spatially-adaptive multi-scale optimization for local parameter estimation: application in cardiac electrophysiological models. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 282–290. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_33

    Chapter  Google Scholar 

  5. Konukoglu, E., et al.: Efficient probabilistic model personalization integrating uncertainty on data and parameters: application to eikonal-diffusion models in cardiac electrophysiology. Prog. Biophys. Mol. Biol. 107(1), 134–146 (2011)

    Article  Google Scholar 

  6. Lê, M., Delingette, H., Kalpathy-Cramer, J., Gerstner, E.R., Batchelor, T., Unkelbach, J., Ayache, N.: Bayesian personalization of brain tumor growth model. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 424–432. Springer, Cham (2015). doi:10.1007/978-3-319-24571-3_51

    Chapter  Google Scholar 

  7. Plonsey, R.: Bioelectric Phenomena. Wiley Online Library, Hoboken (1969)

    Google Scholar 

  8. Powell, M.J.: Developments of NEWUOA for minimization without derivatives. IMA J. Numer. Anal. 28(4), 649–664 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  10. Sapp, J., Dawoud, F., Clements, J., Horáček, M.: Inverse solution mapping of epicardial potentials: quantitative comparison to epicardial contact mapping. Circ. Arrhythmia Electrophysiol. 5(5), 1001–1009 (2012)

    Article  Google Scholar 

  11. Schiavazzi, D., Arbia, G., Baker, C., et al.: Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation. Int. J. Numer. Methods Biomed. Eng. (2015)

    Google Scholar 

  12. Sermesant, M., Chabiniok, R., Chinchapatnam, P., et al.: Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med. Image Anal. 16(1), 201–215 (2012)

    Article  Google Scholar 

  13. Siekmann, I., Sneyd, J., Crampin, E.J.: MCMC can detect nonidentifiable models. Biophys. J. 103(11), 2275–2286 (2012)

    Article  Google Scholar 

  14. Wang, L., Zhang, H., Wong, K.C., Liu, H., Shi, P.: Physiological-model-constrained noninvasive reconstruction of volumetric myocardial transmembrane potentials. IEEE Trans. Biomed. Eng. 57(2), 296–315 (2010)

    Article  Google Scholar 

  15. Wong, K.C.L., Relan, J., Wang, L., Sermesant, M., Delingette, H., Ayache, N., Shi, P.: Strain-based regional nonlinear cardiac material properties estimation from medical images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 617–624. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33415-3_76

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation under CAREER Award ACI-1350374 and the National Institute of Heart, Lung, and Blood of the National Institutes of Health under Award R21Hl125998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jwala Dhamala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dhamala, J., Sapp, J.L., Horacek, M., Wang, L. (2017). Quantifying the Uncertainty in Model Parameters Using Gaussian Process-Based Markov Chain Monte Carlo: An Application to Cardiac Electrophysiological Models. In: Niethammer, M., et al. Information Processing in Medical Imaging. IPMI 2017. Lecture Notes in Computer Science(), vol 10265. Springer, Cham. https://doi.org/10.1007/978-3-319-59050-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59050-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59049-3

  • Online ISBN: 978-3-319-59050-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics