Skip to main content

Identifying Associations Between Brain Imaging Phenotypes and Genetic Factors via a Novel Structured SCCA Approach

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2017)

Abstract

Brain imaging genetics attracts more and more attention since it can reveal associations between genetic factors and the structures or functions of human brain. Sparse canonical correlation analysis (SCCA) is a powerful bi-multivariate association identification technique in imaging genetics. There have been many SCCA methods which could capture different types of structured imaging genetic relationships. These methods either use the group lasso to recover the group structure, or employ the graph/network guided fused lasso to find out the network structure. However, the group lasso methods have limitation in generalization because of the incomplete or unavailable prior knowledge in real world. The graph/network guided methods are sensitive to the sign of the sample correlation which may be incorrectly estimated. We introduce a new SCCA model using a novel graph guided pairwise group lasso penalty, and propose an efficient optimization algorithm. The proposed method has a strong upper bound for the grouping effect for both positively and negatively correlated variables. We show that our method performs better than or equally to two state-of-the-art SCCA methods on both synthetic and real neuroimaging genetics data. In particular, our method identifies stronger canonical correlations and captures better canonical loading profiles, showing its promise for revealing biologically meaningful imaging genetic associations.

L. Shen—This work was supported by NSFC under Grant 61602384, and the Fundamental Research Funds for the Central Universities under Grant 3102016OQD0065. This work was also supported by NIH R01 EB022574, R01 LM011360, U01 AG024904, P30 AG10133, R01 AG19771, UL1 TR001108, R01 AG 042437, R01 AG046171, and R01 AG040770, by DoD W81XWH-14-2-0151, W81XWH-13-1-0259, W81XWH-12-2-0012, and NCAA 14132004.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Each \(u_i\) can be solved with \(u_j\)’s (\(j \ne i\)) fixed (i.e., we use \(u_j^t\) to approximate \(u_j^{t+1}\) in C), thus \(u_j\)’s do not contribute to the optimization of \(u_i\) [9].

  2. 2.

    Note that an element of diagonal matrix \(\mathbf {D}_1\) will nonexist if \(\sqrt{u_i^2+u_{k_1}^2}=0\). We handle this issue by regularizing it as \(\sqrt{u_i^2+u_{k_1}^2+\zeta }\) with \(\zeta \) being a tiny positive number. Then the objective function regarding \(\mathbf {u}\) becomes \(\mathbf {\tilde{\mathcal {L}}(u)} = \sum _{i=1}^p (-u_i \mathbf {x}_{i}^T \mathbf {Y} \mathbf {v} + \lambda _1\sum _{k_1}\sqrt{u_i^2+u_{k_1}^2+\zeta } +\frac{\gamma _1}{2}||\mathbf {x}_{i}u_i||_{2}^{2})\). We can prove that \(\tilde{\mathcal {L}}(\mathbf {u})\) will reduce to the original problem (3) when \(\zeta \) approaching zero. Likewise, \(\sqrt{v_j^2+v_{k_2}^2}=0\) can be regularized by the same method.

References

  1. Chen, J., Bushman, F.D., Lewis, J.D., Wu, G.D., Li, H.: Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis. Biostatistics 14(2), 244–258 (2013)

    Article  Google Scholar 

  2. Chen, X., Liu, H.: An efficient optimization algorithm for structured sparse CCA, with applications to eQTL mapping. Stat. Biosci. 4(1), 3–26 (2012)

    Article  Google Scholar 

  3. Chen, X., Liu, H., Carbonell, J.G.: Structured sparse canonical correlation analysis. In: AISTATS (2012)

    Google Scholar 

  4. Du, L., Huang, H., Yan, J., Kim, S., Risacher, S.L., Inlow, M., Moore, J.H., Saykin, A.J., Shen, L.: Structured sparse canonical correlation analysis for brain imaging genetics: an improved GraphNet method. Bioinformatics 32(10), 1544–1551 (2016)

    Article  Google Scholar 

  5. Du, L., Huang, H., Yan, J., Kim, S., Risacher, S.L., Inlow, M., Moore, J.H., Saykin, A.J., Shen, L.: Structured sparse CCA for brain imaging genetics via graph OSCAR. BMC Syst. Biol. 10(Suppl. 3), 335–345 (2016)

    Google Scholar 

  6. Du, L., et al.: A novel structure-aware sparse learning algorithm for brain imaging genetics. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 329–336. Springer, Cham (2014). doi:10.1007/978-3-319-10443-0_42

    Google Scholar 

  7. Du, L., et al.: GN-SCCA: GraphNet based sparse canonical correlation analysis for brain imaging genetics. In: Guo, Y., Friston, K., Aldo, F., Hill, S., Peng, H. (eds.) BIH 2015. LNCS, vol. 9250, pp. 275–284. Springer, Cham (2015). doi:10.1007/978-3-319-23344-4_27

    Chapter  Google Scholar 

  8. Du, L., Zhang, T., Liu, K., Yao, X., Yan, J., Risacher, S.L., Guo, L., Saykin, A.J., Shen, L.: Sparse canonical correlation analysis via truncated \(\ell _1\)-norm with application to brain imaging genetics. In: BIBM, pp. 707–711. IEEE Computer Society (2016)

    Google Scholar 

  9. Friedman, J.H., Hastie, T., Hofling, H., Tibshirani, R.: Pathwise coordinate optimization. Ann. Appl. Stat. 1(2), 302–332 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gorski, J., Pfeuffer, F., Klamroth, K.: Biconvex sets and optimization with biconvex functions: a survey and extensions. Math. Methods Oper. Res. 66(3), 373–407 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim, S., Swaminathan, S., Inlow, M., Risacher, S.L., Nho, K., Shen, L., Foroud, T.M., Petersen, R.C., Aisen, P.S., Soares, H., et al.: Influence of genetic variation on plasma protein levels in older adults using a multi-analyte panel. PLoS One 8(7), e70269 (2013)

    Article  Google Scholar 

  12. Potkin, S.G., Turner, J.A., Guffanti, G., Lakatos, A., Torri, F., Keator, D.B., Macciardi, F.: Genome-wide strategies for discovering genetic influences on cognition and cognitive disorders: methodological considerations. Cognit. Neuropsychiatry 14(4–5), 391–418 (2009)

    Article  Google Scholar 

  13. Saykin, A.J., Shen, L., Yao, X., Kim, S., Nho, K., Risacher, S.L., Ramanan, V.K., Foroud, T.M., Faber, K.M., Sarwar, N., et al.: Genetic studies of quantitative MCI and AD phenotypes in ADNI: progress, opportunities, and plans. Alzheimer’s Dement. 11(7), 792–814 (2015)

    Article  Google Scholar 

  14. Shen, L., Kim, S., Risacher, S.L., Nho, K., Swaminathan, S., West, J.D., Foroud, T., Pankratz, N., Moore, J.H., Sloan, C.D., et al.: Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: a study of the ADNI cohort. Neuroimage 53(3), 1051–1063 (2010)

    Article  Google Scholar 

  15. Shen, L., Thompson, P.M., Potkin, S.G., Bertram, L., Farrer, L.A., Foroud, T.M., Green, R.C., Hu, X., Huentelman, M.J., Kim, S., et al.: Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers. Brain Imaging Behav. 8(2), 183–207 (2014)

    Article  Google Scholar 

  16. Witten, D.M., Tibshirani, R., Hastie, T.: A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10(3), 515–534 (2009)

    Article  Google Scholar 

  17. Yang, S., Yuan, L., Lai, Y.C., Shen, X., Wonka, P., Ye, J.: Feature grouping and selection over an undirected graph. In: KDD, pp. 922–930. ACM (2012)

    Google Scholar 

  18. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. Royal Stat. Soc.: Ser. B (Stat. Methodol.) 68(1), 49–67 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Royal Stat. Soc.: Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Li Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Du, L. et al. (2017). Identifying Associations Between Brain Imaging Phenotypes and Genetic Factors via a Novel Structured SCCA Approach. In: Niethammer, M., et al. Information Processing in Medical Imaging. IPMI 2017. Lecture Notes in Computer Science(), vol 10265. Springer, Cham. https://doi.org/10.1007/978-3-319-59050-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59050-9_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59049-3

  • Online ISBN: 978-3-319-59050-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics