Skip to main content

Numerical Simulations and Experimental Human Gait Analysis Using Wearable Sensors

  • Conference paper
  • First Online:
New Trends in Medical and Service Robots (MESROB 2016)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 48))

Included in the following conference series:

Abstract

The paper presents a comparison between an experimental study of flexion-extension movement in human legs joints and numerical simulations on a virtual mannequin computed in ADAMS virtual environment. Using Biometrics system which is a data acquisition system based on electrogoniometers, data were collected for the right and left ankle, knee and hip during experimental gait overground on force platforms. The mean flexion-extension cycles for legs joints were obtained. The obtained experimental data series were be introduced as input data in the joints of the virtual mannequin and a walking simulation was performed in ADAMS environment software. The variation of ground forces during walking are obtained by experimental data and by virtual simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tlalolini, D., Christine, C., Yannick, A.: Human-like walking: optimal motion of a bipedal robot with toe-rotation motion. Trans. Mechatron. Inst. Electr. Electron. Eng. 16(2), 310–320 (2011)

    Google Scholar 

  2. Kanako, M., Mitsuharu, M., Fumio, K., Shuuji, K., Kenji, K., Kazuhito, Y.: Human-like walking with toe supporting for humanoids. In: International Conference on Intelligent Robots and Systems, San Francisco, CA, USA (2011)

    Google Scholar 

  3. Kim, J.Y., Park, I.W., Lee, J., Kim, M.S., Cho, B.K., Oh, J.H.: System design and dynamic walking of humanoid robot khr-2. In: International Conference on Robotics and Automation Barcelona, Spain (2005)

    Google Scholar 

  4. Matthieu, L., et al.: The poppy humanoid robot: leg design for biped locomotion. In: International Conference on Intelligent Robots and Systems, Tokyo, Japan (2013)

    Google Scholar 

  5. Fumiya, L., Yohei, M., Jürgen, R., André, S.: Toward a human-like biped robot with compliant legs. Robot. Auton. Syst. 57, 139–144 (2009)

    Article  Google Scholar 

  6. Muro-de-la-Herran, A., et al.: Gait analysis methods: an overview of wearable and non-wearable systems highlighting clinical applications. Sensors 14, 3362–3394 (2014)

    Article  Google Scholar 

  7. Shull, P.B., Jirattigalachote, W., Hunt, M.A., Cutkosky, M.R., et al.: Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait Posture 40, 11–19 (2014)

    Article  Google Scholar 

  8. Tao, W., et al.: Gait analysis using wearable sensors. Sensors 12, 2255–2283 (2012)

    Article  Google Scholar 

  9. Abdul, R.A.H., Zayegh, A., Begg, R.K., Wahab, Y.: Foot plantar pressure measurement system a review. Sensors 12, 9884–9912 (2012)

    Article  Google Scholar 

  10. Tarnita, D., Marghitu, D.: Analysis of a hand arm system. Robot. Comp. Integr. Manuf. 29(6), 493–501 (2013)

    Article  Google Scholar 

  11. Tarnita, D., Catana, M., Tarnita, D.N.: Nonlinear analysis of normal human gait for different activities with application to bipedal locomotion. Ro. J. Tech. Sci. Appl. Mech. 58(1–2), 177–192 (2013)

    Google Scholar 

  12. Mohamed, A.A., Baba, J., Beyea, J., Landry, J., Sexton, A., McGibbon, C.A.: Comparison of strain-gage and fiber-optic goniometry for measuring knee kinematics during activities of daily living and exercise. J. Biomech. Eng. 134, 084502 (2012)

    Article  Google Scholar 

  13. Van der Linden, M.L., Rowe, P.J., Nutton, R.W.: Between-day repeatability of knee kinematics during functional tasks recorded using flexible electrogoniometry. Gait Posture 28, 292–296 (2008)

    Article  Google Scholar 

  14. Tarnita, D., Catana, M., et al.: Experimental measurement of flexion-extension movement in normal and osteoarthritic human knee. Rom. J. Morphol. Embryol. 54(2), 309–313 (2013)

    Google Scholar 

  15. Tarnita, D.: Wearable sensors used for human gait analysis. Rom. J. Morphol. Embryol. 57(2), 373–382 (2016)

    Google Scholar 

  16. Sutherland, D.H.: The evolution of clinical gait analysis Part III—kinetics and energy assessment. Gait Posture 21, 447–461 (2005)

    Article  Google Scholar 

  17. Leusmann, P., Mollering, C., Klack, L., et al.: Your floor knows where you are: sensing and acquisition of movement data. In: Proceedings of 2011 12th IEEE International Conference on Mobile Data Management (MDM), Luleå, Sweden, pp. 61–66 (2011)

    Google Scholar 

  18. Lincoln, L. S., et al.: An elastomeric insole for 3-axis ground reaction force measurement. In: Proceedings of 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, pp. 1512–1517 (2012)

    Google Scholar 

  19. http://www.biometricsltd.com

  20. Moriguchi, C.S., Sato, T.O., Gil Coury, H.J.C.: Ankle movements during normal gait evaluated by flexible electrogoniometer. Rev. bras. Fisioter. 11(3) (2007)

    Google Scholar 

  21. Hirakawa, Y., Hara, M., Fujiwara, A., Hanada, H., Morioka, S.: The relationship among psychological factors, neglect-like symptoms and postoperative pain after total knee arthroplasty. Pain Res. Manag. 19(5), 251–256 (2014)

    Article  Google Scholar 

  22. Alexandru, C.: Software platform for analyzing and optimizing the mechanical systems. In: Proceedings of the 10th IFToMM International Symposium on Science of Mechanisms and Machines—SYROM, 665–677 (2009)

    Google Scholar 

  23. Alexandru, C.: Optimal design of the mechanical systems using parametric technique & MBS (Multi-Body Systems) software. Adv. Mater. Res. 463–464, 1129–1132 (2012)

    Article  Google Scholar 

  24. Wojtyra, M.: Dynamical analysis of human walking. 15th European ADAMS Users, Conference Technical Papers, Rome, Italy (2000)

    Google Scholar 

  25. Lu, T.W., Chang, C.F.: Biomechanics of human movement and its clinical applications. Kaohsiung J. Med. Sci. 28, 13–25 (2012)

    Article  Google Scholar 

  26. Kecskemethy, A.: Integrating efficient kinematics in biomechanics of human motions. Procedia IUTAM 2, 86–92 (2011)

    Article  Google Scholar 

  27. Chowdhury, S., Kumar, N.: Estimation of forces and moments of lower limb joints from kinematics data and inertial properties of the body by using inverse dynamics technique. J. Rehabil. Robot. 1, 93–98 (2013)

    Google Scholar 

  28. MSC.ADAMS 2013 User Manual

    Google Scholar 

  29. Stansfield, B.W., Hillman, S.J., et al.: Regression analysis of gait parameters with speed in normal children walking at self-selected speeds. Gait Posture 23, 288–294 (2006)

    Article  Google Scholar 

  30. Fregly, B. J., Reinbolt, J. A., et al.: Design of Patient-specific gait modifications for knee osteoarthritis rehabilitation. IEEE Trans. Biomed. Eng. 54 (9) (2007)

    Google Scholar 

  31. Calafeteanu, D., Tarnita, D., et al.: Influences of varus tilt on the stresses in human prosthetic knee joint. Appl. Mech. Mater. 823, 143–148 (2016)

    Article  Google Scholar 

  32. Tarnita, D., Catana, M., Dumitru, N., Tarnita, D.N.: Design and simulation of an orthotic device for patients with osteoarthritis, In: New Trends in Medical and Service Robots, Mechanisms and Machine Science, vol. 38, pp. 61–77, Springer Publishing House (2016)

    Google Scholar 

  33. Catana, M.: Tarnita, D., Tarnita, D.N.: Modeling, simulation and optimization of a human knee orthotic device. Appl. Mech. Mater. 371, 549–553 (2013)

    Article  Google Scholar 

  34. Bolcu, D., Stanescu, M.M., et al.: Study about the nonuniformity from composite materials reinforced with fiber glass fabric. Mater. Plast. 51(1), 97–100 (2014)

    Google Scholar 

  35. Stănescu, M.M., Bolcu, D., et al.: Determination of damping factor, to vibrations of composite bars, reinforced with carbon and kevlar texture. Mater. Plast. 47(4), 492–496 (2010)

    Google Scholar 

  36. Tarnita, D., Tarnita, D.N., et al.: Numerical simulations of human tibia osteosynthesis using modular plates based on Nitinol staples. Rom. J. Morphol embryol 51(1), 145–150 (2010)

    Google Scholar 

  37. Tarnita, D., Catana, M., Tarnita, D.N.: Contributions on the modeling and simulation of the human knee joint with applications to the robotic structures, In: New Trends on Medical and Service Robotics, Mechanisms and Machine Science vol. 20, pp. 283–297, Springer (2014)

    Google Scholar 

  38. Pisla, D., et al.: Kinematics and workspace modeling of a new hybrid robot used in minimally invasive surgery. Robot. Comp. Integr. Manuf. 29(2), 463–474 (2013)

    Article  Google Scholar 

  39. Vaida, C., et al.: Orientation module for surgical instruments-a systematical approach. Meccanica 48(1), 145–158 (2013)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tarnita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Tarnita, D., Geonea, I., Petcu, A., Tarnita, D.N. (2018). Numerical Simulations and Experimental Human Gait Analysis Using Wearable Sensors. In: Husty, M., Hofbaur, M. (eds) New Trends in Medical and Service Robots. MESROB 2016. Mechanisms and Machine Science, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-59972-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59972-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59971-7

  • Online ISBN: 978-3-319-59972-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics