Skip to main content

Mass Spectrometry: A Powerful Tool for the Identification of Wine-Related Bacteria and Yeasts

  • Chapter
  • First Online:
Biology of Microorganisms on Grapes, in Must and in Wine

Abstract

Traditional methods for identifying microorganisms in microbiology laboratories are based on microscopic and biochemical methods (phenotyping) and gene sequencing identification techniques (genotyping). However in the past decade, the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been established as a new reliable, rapid, and inexpensive automatable method for identifying a wide array of bacteria, archaea, fungi, dermatophytes and even viruses. Its “molecular-phenotypic”-based methodology is based on the reproducible detection of protein mass patterns (proteomic profile) obtained from whole cells, cell lysates, or crude bacterial extracts. Microbial MALDI-TOF MS mass spectra can be regarded as snapshots of the protein composition of the strains under study. Many of the mass spectral signals have been assigned as high-abundance proteins with housekeeping functions, such as basic ribosomal proteins or DNA-binding proteins. These proteins are highly conserved and consistently expressed under nearly all growth conditions. They can thus be regarded as robust biomarker candidates of the respective microorganism and their identification. As ribosomal protein genealogies mirror the rRNA genes reconstructed phylogenies, the mass spectra show congruency with the genealogy of microorganisms, and hence, can be implemented as a valuable analytical tool for polyphasic approaches in microbial systematics.

For microbial characterization by MALDI-TOF MS, the protein mass spectra can be analyzed in two principally different ways, library-based approaches and bioinformatics-enabled approaches. Considering the more widespread application of library-based approaches to profile microorganisms at the species and even subspecies level, this review will focus on challenges and limits associated with this MS profiling technique and its successful real-world application of identifying microbes involved in the winemaking process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agustini BC, Silva P, Bloch C Jr, Bonfim TMB, Da Silva GA (2014) Evaluation of MALDI-TOF MS for identification of environmental yeasts and development of supplementary database. Appl Microbiol Biotechnol 98:5645–5654

    Article  CAS  PubMed  Google Scholar 

  • Alby K, Gilligan PH, Miller MB (2013) Comparison of MALDI-TOF MS platforms for the identification of gram-negative rods from cystic fibrosis patients. J Clin Microbiol 11:3852–3854

    Article  CAS  Google Scholar 

  • Alispahic M, Hummel K, Jandreski-Cvetkovic D, Nöbauer K, Razzazi-Fazeli E, Hess M, Hess C (2010) Species-specific identification of Arcobacter, Helicobacter, and Campylobacter by full-spectral MALDI-TOF MS. J Med Microbiol 59:295–301

    Article  CAS  PubMed  Google Scholar 

  • Amiri-Eliasi B, Fenselau C (2001) Charaterization of protein biomarkers desorbed by MALDI from whole fungal cells. Anal Chem 73:5228–5231

    Article  CAS  PubMed  Google Scholar 

  • Anhalt JP, Fenselau C (1975) Identification of bacteria using mass spectrometry. Anal Chem 47:19–225

    Article  Google Scholar 

  • Azumi M, Goto-Yamamoto N (2001) AFLP analysis of type strains and laboratory and industrial strains of Saccharomyces sensu stricto and its application to phenetic clustering. Yeast 18:1145–1154

    Article  CAS  PubMed  Google Scholar 

  • Barata A, Malfeito-Ferreira M, Loureiro V (2011) The microbial ecology of wine grape berries. Int J Food Microbiol 153:243–259

    Article  PubMed  CAS  Google Scholar 

  • Bargeri B, Bauer FF, Setati ME (2015) The diversity and dynamics of indigenous yeast communities in grape must from vineyards employing different agronomic practices and their influence on wine fermentations. S Afr J Enol Vitic 36:243–251

    Google Scholar 

  • Bartowsky EJ, Pretorius IS (2009) Microbial formation and modification of flavor and off-flavor compounds in wine. In: König H, Unden G, Fröhlich J (eds) Biology of microorganisms on grapes, in must and in wine. Springer, Heidelberg, pp 209–232

    Chapter  Google Scholar 

  • Basile F, Mignon RK (2016) Methods and instrumentation in mass spectrometry for the differences of closely related microorganisms. In: Demirev P, Sandrin TR (eds) Applications of mass spectrometry in microbiology. Springer International Publishing, Switzerland, pp 13–50

    Chapter  Google Scholar 

  • Beavis R, Chait B (1989) Factors affecting the ultraviolet laser desorption of proteins. Rapid Commun Mass Spectrom 3:233–237

    Article  CAS  PubMed  Google Scholar 

  • Benagli C, Rossi V, Dolina M, Tonolla M, Petrini O (2011) MALDI-TOF MS for the identification of clinically relevant bacteria. PLoS One 6:e16424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bizzini A, Durussel C, Bille J, Greub G, Prod’hom G (2010) Performance of MALDI-TOF MS for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J Clin Microbiol 48:1549–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blasco L, Ferrer S, Pardo I (2003) Development of specific fluorescent oligonucleotide probes for in situ identification of wine LAB. FEMS Microbiol Lett 225:115–123

    Article  CAS  PubMed  Google Scholar 

  • Blättel V, Petri A, Rabenstein A, Kuever J, König H (2013) Differentiation of species of the genus Saccharomyces using biomolecular fingerprinting methods. Appl Microbiol Biotechnol 97:4597–4606

    Article  PubMed  CAS  Google Scholar 

  • Boehme K, Fernandez-No IC, Barros-Velazquez Gallardo JM, Canas B, Calo-Mata P (2012) SpectraBank: an open access tool for rapid microbial identification by MALDI-TOF MS fingerprinting. Electrophoresis 33:2138–2142

    Article  CAS  Google Scholar 

  • Boehme K, Fernandez-No IC, Pazos M, Gallardo JM, Barros-Velazquez J, Canas B, Calo-Mata P (2013) Identification and classification of seafood-borne pathogenic and spoilage bacteria: 16S rRNA sequencing versus MALDI-TOF MS fingerprinting. Electrophoresis 34:877–887

    Article  CAS  Google Scholar 

  • Bokulich NA, Thorngate JH, Richardson PM, Mills DA (2013) Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc Natl Acad Sci USA 111:E139–E148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bokulich NA, Collins TS, Masarweh C, Allen G, Heymann H, Ebeler SE, Mills DA (2016) Associations among wine grape microbiome, metabolome, and fermentation behavior suggest microbial contribution to regional wine characteristics. MBio 7:e00631–e00616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchan BW, Riebe KM, Ledeboer NA (2011) Comparison of the MALDI Biotyper system using Sepsityper specimen processing to routine microbiological methods for identification of bacteria from positive culture bottles. J Clin Microbiol 50:346–352

    Article  PubMed  CAS  Google Scholar 

  • Cafaro C, Bonomo MG, Guerrieri A, Crispo F, Ciriello R, Salzano G (2016) Assessment of the genetic polymorphism and physiological characterization of indigenous Oenococcus oeni strains isolated from Anglianico del Vulture red wine. Folia Microbiol 61:1–10

    Article  CAS  Google Scholar 

  • Cain TC, Lubman DM, Weber WJ (1994) Differentiation of bacteria using protein profiles from MALDI-TOF MS. Rapid Commun Mass Spectrom 8:1026–1030

    Article  CAS  Google Scholar 

  • Cassagne C, Normand A-C, L’Ollivier C, Ranque S, Piarroux R (2016) Performance of MALDI-TOF MS platforms for fungal identification. Mycoses 59:678–690

    Article  PubMed  Google Scholar 

  • Chao QT, Lee TF, Teng SH, Peng LY, Chen PH, Teng LJ, Hsueh PR (2014) Comparison of the accuracy of two conventional phenotypic methods and two MALDI-TOF MS systems with that of DNA sequencing analysis for correctly encountered yeasts. PLoS One 9:e109376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cherkaoui A, Hibbs J, Emonet S, Tangomo M, Girard M, Francois P, Schrenzel J (2010) Comparison of two MALDI-TOF MS methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol 48:1169–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark AE, Kaleta EJ, Arora A, Wolk DM (2013) MALDI-TOF MS: a fundamental shift in routine practice of clinical microbiology. Clin Microbiol Rev 26:547–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claydon MA, Davey SN, Edwards-Jones V, Gordon DB (1996) The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol 14:1584–1586

    Article  CAS  PubMed  Google Scholar 

  • Croxatto A, Prod’hom G, Greub G (2012) Applications of MALDI-TOF MS in clinical diagnostic microbiology. FEMS Microbiol Rev 36:380–407

    Article  CAS  PubMed  Google Scholar 

  • Del Carmen Portillo M, Franques J, Araque I, Reguant C, Bordons A (2016) Bacterial diversity of Grenache and Carignan grape surface from different vineyards at Priorat wine region (Catalonia, Spain). Int J Food Microbiol 219:56–63

    Article  Google Scholar 

  • Demirev P, Ho YP, Rhyzov V, Fenselau C (1999) Microorganism identification by mass spectrometry and protein database searches. Anal Chem 71:2732–2738

    Article  CAS  PubMed  Google Scholar 

  • Dhiman N, Hall L, Wohlfiel SL, Buckwalter SP, Wengenack NL (2011) Performance and cost analysis of MALDI-TOF MS for routine identification of yeast. J Clin Microbiol 49:1614–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieckmann R, Graeber L, Kaesler I, Szewzyk U, Von Döhren H (2005) Rapid screening and dereplication of bacterial isolates from marine sponges of the Sula Ridge by intact-cell-MALDI-TOF MS (ICM-MS). Appl Microbiol Biotechnol 67:539–548

    Article  CAS  PubMed  Google Scholar 

  • Dieckmann R, Helmuth R, Erhard M, Malorny B (2008) Rapid classification and identification of Salmonellae at the species and subspecies levels by whole-cell MALDI-TOF MS. Appl Environ Microbiol 74:7767–7778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubourg G, Lagier JC, Armougom F, Robert C, Hamad I, Brouqui P, Raoult D (2013) The gut microbiota of a patient with resistant tuberculosis is more comprehensively studied by culturomics than by metagenomics. Eur J Clin Microbiol Infect Dis 32:637–645

    Article  CAS  PubMed  Google Scholar 

  • Emami K, Askari V, Ullrich M, Mohinudeen K, Anil AC, Khandeparker L, Burgess JG, Mesbahi E (2012) Characterization of bacteria in ballast water using MALDI-TOF MS. PLoS One 7:e38515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emami K, Nelson A, Hack E, Zhang J, Green DH, Caldwell GS, Mesbahi E (2016) MALDI-TOF MS discriminates known species and marine environmental isolates of Pseudoalteromonas. Front Microbiol 7:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Fenselau C, Demirev PA (2001) Characterization of intact microorganisms by MALDI MS. Mass Spectrom Rev 20:157–171

    Article  CAS  PubMed  Google Scholar 

  • Ferrand J, Hochard H, Girard V, Aissa N, Bogard B, Alauzet C, Losniewski A (2016) Comparison of Vitek MS and MALDI Biotyper for identication of Actinomycetaceae of clinical importance. J Clin Microbiol 54:782–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira L, Sanchez-Juanes F, Garcia-Fraile P, Rivas P, Mateos PF, Martinez-Molina E, Gonzalez-Buitrago JM, Velazquez E (2011) MALDI-TOF MS is a fast and reliable platform for identification and ecological studies of species from family Rhizobiaceae. PLoS One 6:e20223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freiwald A, Sauer S (2009) Phylogenetic classification and identification of bacteria by mass spectrometry. Nat Protoc 4:732–742

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich J, Pfannebecker J (2007) Species-idependent DNS fingerprint analysis with primers derived from NotI identification sequence. Germany, 380 Patent number: EP2027285 (A1)

    Google Scholar 

  • Fröhlich J, König H, Claus H (2009) Rapid detection and identification with molecular methods. In: König H, Unden G, Fröhlich J (eds) Biology of microorganisms on grapes, in must and in wine. Springer, Berlin, pp 429–449

    Chapter  Google Scholar 

  • Gayevskiy V, Goddard MR (2012) Geographic delineations of yeast communities associated with vines and wines in New Zealand. ISME J 6:1281–1290

    Article  CAS  PubMed  Google Scholar 

  • Ge MC, Kuo AJ, Liu KL, Wen YH, Chia JH, Chang PY, Lee MH, Wu TL, Chang SC, Lu JJ (2016) Routine identification of microorganisms by MALDI-TOF MS: success rate, economic analysis, and clinical outcome. J Microbiol Immunol Infect 1:1–7

    Google Scholar 

  • Giebel R, Worden C, Rust SM, Kleinheinz GT, Robbins M, Sandrin TR (2010) Microbial fingerprinting using MALDI-TOF MS: applications and challenges. Adv Appl Microbiol 71:149–184

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Arenzana L, Santamaria P, Lopez R, Lopez-Alfaro I (2014) Oenococcus oeni strain typification by combination of MLST and PFGE analysis. Food Microbiol 38:295–302

    Article  CAS  PubMed  Google Scholar 

  • Haag A, Taylor MSN, Johnston KH, Cole RB (1998) Rapid identification and speciation of Haemophilus bacteria by MALDI-TOF MS. J Mass Spectrom 33:750–756

    Article  CAS  PubMed  Google Scholar 

  • Hasan N, Gopal J, Wu HF (2014) Surface pretreatment effects on titanium chips for the adhesion of pathogenic bacteria in the MALDI-TOF MS. Appl Surf Sci 314:52–63

    Article  CAS  Google Scholar 

  • Hathout Y, Demirev PA, Ho YP (1999) Identification of Bacillus spores by MALDI-TOF MS. Appl Environ Microbiol 65:4313–4319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heller DN, Cotter RJ, Fenselau C, Uy OM (1987) Profiling of bacteria by fast atom bombardment mass spectrometry. Anal Chem 59:2806–2809

    Article  CAS  PubMed  Google Scholar 

  • Heller DN, Murphy CM, Cotter RJ, Fenselau C, Uy OM (1988) Constant neutral loss scanning for the characterization of bacterial phospholipids desorbed by fast atom bombardment. Anal Chem 60:2787–2791

    Article  CAS  PubMed  Google Scholar 

  • Hillenkamp F (1989) Laser desorption mass spectrometry: mechanisms, techniques and applications. Adv Mass Spectrom 11A:354–362

    CAS  Google Scholar 

  • Hirschhäuser S, Fröhlich J, Gneipel A, Schönig I, König H (2005) Fast protocols for the 5S rDNA and ITS-2 based identification of Oenococcus oeni. FEMS Microbiol Lett 244:165–171

    Article  PubMed  CAS  Google Scholar 

  • Holland RD, Wilkes JG, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO (1996) Rapid identification of intact whole bacteria based on spectral patterns using MALDI-TOF MS. Rapid Commun Mass Spectrom 14:911–917

    Article  Google Scholar 

  • Holland RD, Duffy CR, Rafii F, Sutherland JB, Persons CC, Voorhees KJ, Lay JO (1999) Identification of bacterial proteins observed in MALDI TOF mass spectra from whole cells. Anal Chem 71:3226–3230

    Article  CAS  PubMed  Google Scholar 

  • Hu YY, Cai JC, Zhou HW, Zhang R, Chen GX (2015) Rapid detection of porins by MALDI-TOF MS. Front Microbiol 6:784

    PubMed  PubMed Central  Google Scholar 

  • Huber H, Ziegler D, Pflüger V, Vogel G (2011) Prevalence and characteristics of methicllin-resistant coagulase-negative staphylococci from livestock, chicken, carcasses, bulk tank milk, minced meat, and contact persons. BMC Vet Res 7:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivey ML, Phister TG (2011) Detection and identification of microorganisms in wine: a review of molecular techniques. J Ind Microbiol Biotechnol 38:1619–1634

    Article  CAS  PubMed  Google Scholar 

  • Kantor A, Kacaniova M (2015) Isolation and identification of spoilage yeasts in wine samples by MALDI-TOF MS biotyper. Sci Pap Anim Sci Biotechnol 48:156–161

    Google Scholar 

  • Kantor A, Kluz M, Puchalski C, Terentjeva M, Kacaniova M (2016a) Identification of LAB isolated from wine using real-time PCR. J Environ Sci Health Part B Pestic Food Contam Agric Wastes 51:52–56

    Article  CAS  Google Scholar 

  • Kantor A, Petrova J, Hutkova J, Kacaniova M (2016b) Yeast diversity in new, still fermenting wine “Federweisser”. Potravinarstrov 10:120–125

    Google Scholar 

  • Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Processes 78:53–68

    Article  CAS  Google Scholar 

  • Kim YJ, Freas A, Fenselau C (2001) Analysis of viral glycoproteins by MALDI-TOF MS. Anal Chem 73:1544–1548

    Article  CAS  PubMed  Google Scholar 

  • Knight S, Klaere S, Fedrizzi B, Goddard MR (2015) Regional microbes signatures positively correlate with differential wine phenotypes: evidence for a microbial aspect to terroir. Sci Rep 5:14233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolecka A, Khayhan K, Groenewald M, Theelen B, Arabatzis M, Velegraki A, Kostrzewa M, Mares M, Taj-Aldeen SJ, Boekhout T (2013) Identification of medically relevant species of arthroconidial yeasts by use of MALDI-TOF MS. J Clin Microbiol 51:2491–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • König H, Fröhlich J (2009) Lactic acid bacteria. In: König H, Unden G, Fröhlich J (eds) Biology of microorganisms on grapes, in must and in wine. Springer, Berlin, pp 3–30

    Chapter  Google Scholar 

  • Kopcakova A, Stramova Z, Kvasnova S, Godany A, Perhacova Z, Pristas P (2014) Need for database extension for reliable identification of bacteria from extreme environments using MALDI-TOF MS. Chem Pap 68:1435–1442

    Article  CAS  Google Scholar 

  • Koubek J, Uhlik O, Jecna K, Junkova P, Vrkoslavova J, Lipov J, Kurzawowa V, Macek, Mackova (2012) Whole-cell MALDI-TOF: rapid screening method in environmental microbiology. Int Biodeter Biodegr 69:82–86

    Article  CAS  Google Scholar 

  • Krader P, Emerson D (2004) Identification of archaea and some extremophilic bacteria using MALDI-TOF MS. Extremophiles 8:259–268

    Article  CAS  PubMed  Google Scholar 

  • Krause E, Wenschuh H, Jungblut PR (1999) The dominance of arginine-containing peptides in MALDI-derived tryptic mass fingerprints of proteins. Anal Chem 71:4160–4165

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy T, Ross PL, Rajamani U (1996) Detection of pathogenic and non-pathogenic bacteria by MALDI-TOF MS. Rapid Commun Mass Spectrom 10:883–888

    Article  CAS  PubMed  Google Scholar 

  • Laforgue R, Guerin L, Pernelle JJ, Monnet C, Dupont J, Bouix M (2009) Evaluation of PCR-DGGE methodology to monitor fungal communities on grapes. J Appl Microbiol 107:1208–1218

    Article  CAS  PubMed  Google Scholar 

  • Lagier JC, Million M, Hugon P, Armougom F, Raoult D (2012) Human gut microbiota: repertoire and variations. Front Cell Infect Microbiol 2:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Larisika M, Claus H, König H (2008) PFGE for the discrimination of Oenococcus oeni isolates from different wine-growing regions in Germany. Int J Food Microbiol 123:171–176

    Article  CAS  PubMed  Google Scholar 

  • Lasch P, Beyer W, Nattermann H, Stämmler M (2008) MALDI-TOF MS compatible inactivation method for highly pathogenic microbial cells and spores. Anal Chem 80:2026–2034

    Article  CAS  PubMed  Google Scholar 

  • Lasch P, Jacob D, Klee SR, Werner G (2016) Discriminatory power of MALDI-TOF MS for phylogenetically closely related microbial strains. In: Demirev P, Sandrin TR (eds) Applications of mass spectrometry in microbiology. Springer International Publishing, Switzerland, pp 203–234

    Chapter  Google Scholar 

  • Lin YS, Tsai PJ, Weng MF, Chen YC (2005) Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria. Anal Chem 77:1753–1760

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Du Z, Wang J, Yang R (2007) Universal sample preparation method for characterization of bacteria by MALDI-TOF MS. Appl Environ Microbiol 73:1899–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopaticki S, Morrow CJ, Gorman JJ (1998) Characterization of pathotype-specific epitopes of newcastle disease virus fusion glycoproteins by MALDI-TOF MS and post-source sequencing. J Mass Spectrom 33:950–960

    Article  CAS  PubMed  Google Scholar 

  • Lopez Diez LI, Juanes FS, Bahena MHR, Buitrago JMG, Peix A, Velaquez E (2016) MALDI-TOF MS analysis of rhizobia nodulating Phaseolus vulgaris in different soils. In: Demirev P, Sandrin TR (eds) Applications of mass spectrometry in microbiology. Springer International Publishing, Switzerland, pp 73–83

    Google Scholar 

  • Lopez I, Ruiz-Larrea F, Cocolin L, Orr E, Phister T, Marshal M, VanderGheynst J, Mills DA (2003) Design and evalutation of PCR primers for analysis of bacterial populations in wine by DGGE. Appl Environ Microbiol 69:6801–6807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv XC, Jia RB, Li Y, Chen F, Chen ZC, Liu B, Chen SJ, Rao PF, Ni L (2016) Characterization of the dominant bacterial communities of traditional fermentation starters for Hong Qu glutinous rice wine by means of MALDI-TOF MS fingerprinting, 16S rRNA gene sequencing, and species-specific PCR. Food Control 67:292–302

    Article  CAS  Google Scholar 

  • Mahe P, Arsac M, Chatellier S, Monnin V, Perrot N, Mailler S, Girard V, Ramjeet M, Surre J, Lacroix B, van Belkum A, Veyrieras JB (2014) Automatic identification of mixed bacterial species fingerprints in a MALDI-TOF mass spectrum. Bioinformatics (Oxf) 30:1280–1286

    Article  CAS  Google Scholar 

  • Mancini N, De Carolis E, Infurnari L, Veila A, Clementi N, Vaccaro L, Ruggeri A, Posteraro B, Burioni R, Clementi M, Sanguinetti M (2013) Comparative evaluation of the Bruker Biotyper and Vitek MS MALDI-TOF MS systems for identification of yeasts of medical importance. J Clin Microbiol 51:2453–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marklein G, Josten M, Klanke U, Müller E, Horre R, Maier T, Wenzel T, Kostrzewa M, Bierbaum G, Hoerauf A, Sahl H-G (2009) MALDI-TOF MS for fast and reliable identification of clinical yeast isolates. J Clin Microbiol 47:2912–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marko DC, Saffert RT, Cunningham SA, Hyman J, Walsh J, Arbefeville S, Howard W, Pruessner J, Safwat N, Cockerill FR, Bossler AD, Patel R, Richter SS (2012) Evaluation of the Bruker Biotyper and Vitek MS MALDI-TOF MS systems for identification of nonfermenting gram-negative bacilli isolated from cultures from cystic fibrosis patients. J Clin Microbiol 50:2034–2039

    Article  PubMed  PubMed Central  Google Scholar 

  • Martiny D, Busson L, Wybo I, El Haj RA, Dediste A, Vandenberg O (2012) Comparison of the microflex LT and Vitek MS systems for routine identification of bacteria by MALDI-TOF MS. J Clin Microbiol 50:1313–1325

    Article  PubMed  PubMed Central  Google Scholar 

  • Mather CA, Rivera SF, Butler-Wu SM (2014) Comparison of the Bruker Biotyper and Vitek MS MALDI-TOF systems for identification of mycobacteria using simplified protein extraction protocols. J Clin Microbiol 52:130–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meetani MA, Voorhees KJ (2005) MALDI MS analysis of high molecular weight proteins from whole bacterial cells: pretreatment of samples with surfactants. J Am Soc Mass Spectrom 16:1422–1426

    Article  CAS  PubMed  Google Scholar 

  • Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, Iwen P, Dunn J, Gall G, Wilson D, LaSala P, Kostrzewa M, Harmsen D (2008) Evaluation of MALDI-TOF MS in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J Clin Microbiol 46:1946–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellmann A, Bimet F, Bizet C, Borovskaya AD, Drake RR, Eigner U, Fahr AM, He Y, Ilina EN, Kostrzewa M, Mauer T, Mancinelli L, Moussaoui W, Prevost G, Putignani L, Seachord CL, Tang YW, Harmsen D (2009) High interlaboratory reproducibility of MALDI-TOF MS-based species identification of nonfermenting bacteria. J Clin Microbiol 47:3732–3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munteanu B, von Reitzenstein C, Hänsch GM, Meyer B, Hopf C (2012) Sensitive, robust and automated protein analysis of cell differentiation and of primary human blood cells by intact cell MALDI spectrometry biotyping. Anal Bioanal Chem 404:2277–2286

    Article  CAS  PubMed  Google Scholar 

  • Nilsson CL (1999) Fingerprinting of Helicobacter pylori by MALDI-TOF MS. Rapid Commun Mass Spectrom 13:1067–1071

    Article  CAS  PubMed  Google Scholar 

  • Normand AC, Cassagne C, Ranque S, L’Ollivier C, Fourquet P, Roesems S, Hendrickx M, Piarroux R (2013) Assessment of various parameters to improve MALDI-TOF MS reference spectra libraries constructed for the routine identification of filamentous fungi. BMC Microbiol 13:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paauw A, Trip H, Niemcewicz M, Sellek R, Sellek R, Heng JME, Mars-Groenendijk RH, de Jong AL, Majchrzykiewicz-Koehorst JA, Olsen JS, Tsivtsivadze E (2014) OmpU as a biomarker for rapid discrimination between toxigenic and epidemic Vibrio cholerae O1/O139, and non-epidemic Vibrio cholerae in a modified MALDI-TOF MS assay. BMC Microbiol 14:158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park IK, Hsu AP, Tettelin H, Shallom SJ (2015) Clonal diversification and changes in lipid traits and colony morphology in Mycobacterium abscessus. J Clin Microbiol 53:3438–3447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perera MR, Vanstone VA, Jones MGK (2005) A novel approach to identify plant parasitic nematodes using MALDI-TOF MS. Rapid Commun Mass Spectrom 19:1454–1460

    Article  CAS  PubMed  Google Scholar 

  • Perez-Martin F, Sesena S, Fernandez-Gonzalez M, Arevalo M, Palop ML (2014) Microbial communities in air and wine of the winery at two consecutive vintages. Int J Food Microbiol 190:44–53

    Article  CAS  PubMed  Google Scholar 

  • Petri A, Rabenstein A, Kuever J, König H (2015) Application of MALDI-TOF MS and nSAPD-PCR for discrimination of Oenococcus oeni isolates at the strain level. J Wine Res 26:69–80

    Article  Google Scholar 

  • Pfannebecker J, Fröhlich J (2008) Use of species-specific multiplex PCR for the identification of pediococci. Int J Food Microbiol 128:288–296

    Article  CAS  PubMed  Google Scholar 

  • Piao H, Hawley E, Kopf S, DeScenzo R, Sealock S, Henick-Kling T, Hess M (2015) Insights into the bacterial community and its temporal succession during the fermentation of wine grapes. Front Microbiol 6:809

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinto A, Halliday C, Zahra M, van Hal S, Olma T, Maszewska K, Iredell JR, Meyer W, Chen SCA (2011) MALDI-TOF MS of yeasts is contingent on robust reference spectra. PLoS One 6:e25712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto C, Pinho D, Sousa S, Pinheiro M, Egas C, Gomes AC (2014) Unravelling the diversity of grapevine microbiome. PLoS One 9:e85622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinto C, Pinho D, Cardoso R, Custodio V, Fernandes J, Sousa S, Pinheiro M, Egas C, Gomes AC (2015) Wine fermentation microbiome: a landscape from different Portuguese wine appellations. Front Microbiol 6:905

    Article  PubMed  PubMed Central  Google Scholar 

  • Platt JA, Uy OM, Heller DN, Cotter RJ, Fenselau C (1988) Computer-based linear regression analysis of desorption mass spectra of microorganisms. Anal Chem 60:1415–1419

    Article  CAS  PubMed  Google Scholar 

  • Posterano B, de Carolis E, Vella A, Sanguinetti M (2013) MALDI-TOF MS in clinical mycology laboratory: identification of fungi and beyond. Expert Rev Proteomics 10:151–164

    Article  CAS  Google Scholar 

  • Pozo-Bayon MA, Pardo I, Ferrer S, Moreno-Arribas V (2009) Molecular approaches for the identification and characterization of oenological lactic acid bacteria. Afr J Biotechnol 8:3995–4001

    CAS  Google Scholar 

  • Prod’hom G, Bizzini A, Durussel C, Bille J, Greub G (2010) MALDI biotyper: experience in the routine of a university hospital. J Clin Microbiol 48:1481–1483

    Article  PubMed  PubMed Central  Google Scholar 

  • Renouf V, Claisse O, Lonvaud-Funel A (2005) Understanding the microbial ecosystem on the grape berry surface through numeration and identification of yeast and bacteria. Aust J Grape Wine Res 11:316–327

    Article  Google Scholar 

  • Renouf V, Claisse O, Miot-Sertier C, Lonvaud-Funel A (2006) LAB evolution during wine-making: use of rpoB gene as target for PCR-DGGE analysis. Food Microbiol 23:136–145

    Article  CAS  PubMed  Google Scholar 

  • Renouf V, Claisse O, Lonvaud-Funel A (2007) Inventory and monitoring of wine microbial consortia. Appl Microbiol Biotechnol 75:149–164

    Article  CAS  PubMed  Google Scholar 

  • Renouf V, Vayssieres LC, Claisse O, Lonvaud-Funel A (2009) Genetic and phenotypic evidence for two groups of Oenococcus oeni strains and their prevalence during winemaking. Appl Microbiol Biotechnol 83:85–97

    Article  CAS  PubMed  Google Scholar 

  • Reuß J, Rachel R, Kämpfer P, Rabenstein A, Kuever J, Dröge S, König H (2015) Isolation of methanotrophic bacteria from termite gut. Microbiol Res 179:29–37

    Article  PubMed  CAS  Google Scholar 

  • Rhyzov V, Fenselau C (2001) Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem 73:746–750

    Article  CAS  Google Scholar 

  • Rizzato C, Lombardi L, Zoppo M, Lupetti A, Tavanti A (2015) Pushing the limits of the MALDI-TOF MS: beyond the fungal species identification. J Fungi 1:367–383

    Article  Google Scholar 

  • Rodas AM, Ferrer S, Pardo I (2005) Polyphasic study of wine Lactobacillus strains: taxonomic implications. Int J Syst Evol Microbiol 55:197–207

    Article  CAS  PubMed  Google Scholar 

  • Röder C, König H, Fröhlich J (2007) Species-specific identification of Dekkera/Brettanomyces yeasts by fluorescently labeled DNA probes targeting 26S rRNA. FEMS Yeast Res 7:1013–1026

    Article  PubMed  CAS  Google Scholar 

  • Ruelle V, Moualij B, Zorzi W, Ledent P, Pauw ED (2004) Rapid identification of environmental bacterial strains by MALDI-TOF MS. Rapid Commun Mass Spectrom 18:2013–2019

    Article  CAS  PubMed  Google Scholar 

  • Ruiz P, Izquierdo PM, Sesena S, Palop ML (2008) Intraspecific genetic diversity of LAB from malolactic fermentation of Cencibel wines as derived from combined analysis of RAPD-PCR and PFGE patterns. Food Microbiol 25:942–948

    Article  CAS  PubMed  Google Scholar 

  • Russo P, Capozzi V, Spano G, Corbo MR, Sinigaglia M, Bevilacqua A (2016) Metabolites of microbial origin with impact on health: ochratoxin A and biogenic amines. Front Microbiol 7:482

    PubMed  PubMed Central  Google Scholar 

  • Saenz AJ, Petersen CE, Valentine NB, Gant SL, Jarman KH, Kingsley MT, Wahl KL (1999) Reproducibility of MALDI-TOF MS for replicate bacterial culture analysis. Rapid Commun Mass Spectrom 13:1580–1585

    Article  CAS  PubMed  Google Scholar 

  • Saffert RT, Cunningham SA, Ihde SM, Monson Jobe KE, Mandrekar J, Patel R (2011) Comparison of Bruker Biotyper MALDI-TOF MS to BD Phoenix automated microbiology system for identification of Gram-negative Bacilli. J Clin Microbiol 49:887–892

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandrin TR, Goldstein JE, Schumaker S (2013) MALDI-TOF MS profiling of bacteria at the strain level: a review. Mass Spectrom Rev 32:188–217

    Article  CAS  PubMed  Google Scholar 

  • Santos IC, Hildenbrand ZL, Schug KA (2016) Applications of MALDI-TOF MS in environmental microbiology. Analyst 141:2827–2837

    Article  CAS  PubMed  Google Scholar 

  • Sauer S, Kliem M (2010) Mass spectrometry tools for the classification and identification of bacteria. Nat Rev 8:74–82

    CAS  Google Scholar 

  • Sauer S, Freiwald A, Maier T, Kube M, Reinhardt R, Kostrzewa M, Geider K (2008) Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One 3:e2843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt F, Fiege T, Hustoft HK, Kneis S, Thiede B (2009) Shotgun mass mapping of Lactobacillus species and subspecies from caries related isolates by MALDI-MS. Proteomics 9:1994–2003

    Article  CAS  PubMed  Google Scholar 

  • Schuerenberg M, Luebbert C, Eickhoff H, Kalkum M, Lehrach H, Nordhoff E (2000) Prestructured MALDI-MS sample supports. Anal Chem 72:3436–3442

    Article  CAS  PubMed  Google Scholar 

  • Sebastian P, Herr P, Fischer U, König H (2011) Molecular identification of LAB occurring in mus and wine. S Afr J Enol Vitic 32:300–309

    CAS  Google Scholar 

  • Sedo O, Sedlacek I, Zdrahal Z (2011) Sample preparation methods for MALDI-MS profiling of bacteria. Mass Spectrom Rev 30:417–434

    Article  CAS  PubMed  Google Scholar 

  • Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by MALDI-TOF MS. Clin Infect Dis 49:543–551

    Article  CAS  PubMed  Google Scholar 

  • Seng P, Rolain JM, Fournier P-E, La Scola B, Drancourt M, Raoult D (2010) MALDI-TOF MS applications in clinical microbiology. Future Microbiol 5:1733–1754

    Article  CAS  PubMed  Google Scholar 

  • Setati ME, Jacobson D, Andong UC, Bauer F (2012) The vineyard yeast microbiome, a mixed model microbial map. PLoS One 7:e52609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setati ME, Jacobson D, Baue FF (2015) Sequence-based analysis of the Vitis vinifera L. cv Cabernet Sauvignon grape must microbiome in three South African vineyards employing distinct agronomic systems. Front Microbiol 5:1358

    Google Scholar 

  • Shah HN, Rajakaruna L, Ball G, Misra R (2011) Tracing the transition of methicillin resistance in sub-populations of Staphylococcus aureus, using SELDI-TOF MS and artificial neural network analysis. Syst Appl Microbiol 34:81–86

    Article  CAS  PubMed  Google Scholar 

  • Spitaels F, Wieme AD, Vandamme P (2016) MALDI-TOF MS as a novel tool for dereplication and characterization of microbiota in bacterial diversity studies. In: Demirev P, Sandrin TR (eds) Applications of mass spectrometry in microbiology. Springer International Publishing, Switzerland, pp 235–256

    Chapter  Google Scholar 

  • Stantscheff R, Kuever J, Rabenstein A, Seyfarth K, Dröge S, König H (2014) Isolation and differentiation of methanogenic Archaea from mesophilic corn-fed on-farm biogas plants with special emphasis on the genus Methanobacterium. Appl Microbiol Biotechnol 98:5719–5735

    Article  CAS  PubMed  Google Scholar 

  • Stets MI, Pinto AS, Huergo LF, de Souza EM, Guimaraes VF, Alves AC, Steffens MBR, Monteiro RA, De Oliveira Pedrosa F (2013) Rapid identification of bacterial isolates from wheat roots by high resolution whole cell MALDI-TOF MS analysis. J Biotechnol 165:167–174

    Article  CAS  PubMed  Google Scholar 

  • Stursa P, Uhlik O, Kurzawova V, Koubek J, Ionescu M, Strohalm M, Lovecka P, Macek T, Mackova M (2009) Approaches for diversity analysis of cultivable and non-cultivable bacteria in real soil. Plant Soil Environ 55:389–396

    CAS  Google Scholar 

  • Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius IS (2005) Yeast and bacterial modulation of wine aroma and flavour. Aust J Grape Wine Res 11:139–173

    Article  CAS  Google Scholar 

  • Toh-Boyo GM, Wulff SS, Basile F (2012) Comparison of sample preparation methods and evaluation of intra- and intersample reproducibility in bacteria MALDI-MS profiling. Anal Chem 84:9971–9980

    Article  CAS  PubMed  Google Scholar 

  • Usbeck JC, Kern CC, Vogel RF, Behr J (2013) Optimization of experimental and modelling parameters for the differentiation of beverage spoiling yeasts by MALDI-TOF MS in response to varying growth conditions. Food Microbiol 36:379–387

    Article  CAS  PubMed  Google Scholar 

  • Usbeck JC, Wilde C, Bertrand D, Behr J, Vogel RF (2014) Wine yeast typing by MALDI-TOF MS. Appl Microbiol Biotechnol 98:3737–3752

    Article  CAS  PubMed  Google Scholar 

  • Valentine NW, Wunschel S, Wunschel D, Petersen C, Wahl K (2005) Effect of culture conditions on microorganism identification by MALDI-TOF MS. Appl Environ Microbiol 71:58–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Belkum A, Chatellier S, Girard V, Pincus D, Deol P, Dunne WM (2015) Progress in proteomics for clinical microbiology: MALDI-TOF MS for microbial species identification and more. Expert Rev Proteomics 12:595–605

    Article  PubMed  CAS  Google Scholar 

  • Van Veen SQ, Claas ECJ, Kuijper EJ (2010) High throughput identification of bacteria and yeast by MALDI-TOF MS in conventional microbiology laboratories. J Clin Microbiol 48:900–907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verroken A, Janssens M, Berhin C, Bogaerts P, Huang TD, Wauters G, Glupczynski Y (2010) Evaluation of MALDI-TOF MS for identification of Nocardia species. J Clin Microbiol 48:4015–4021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virgentini I, Praz A, Domeneghetti D, Zenato S, Picozzi C, Barmaz A, Foschino R (2016) Characterization of malolactic bacteria isolated from Aosta Valley wines and evidence of psychrotrophy in some strains. J Appl Microbiol 120:934–945

    Article  CAS  Google Scholar 

  • Viver T, Cifuentes A, Diaz S, Rodriguez-Valdecantos G, Gonzalez B, Anton J, Rossello-Mora R (2015) Diversity of extremely halophilic prokaryotes in Mediterranean, Atlantic, and Pacific solar salterns: Evidence that unexplored sites constitute sources of cultivable novelty. Syst Appl Microbiol 38:266–275

    Article  CAS  PubMed  Google Scholar 

  • Von Wintzingerode F, Böcker S, Schlötelburg C, Chiu NHL, Storm N, Jurinke C, Cantor R, Göbel UB, van den Boom D (2002) Base-specific fragmentation of amplified 16S rRNA genes analyzed by MS: a tool for rapid bacterial identification. Proc Natl Acad Sci USA 99:7039–7044

    Article  CAS  Google Scholar 

  • Wahl KL, Wunschel SC, Jarman KH, Valentine NB, Petersen CE, Kingsley MT, Zartolas KA, Saenz AJ (2002) Analysis of microbial mixtures by MALDI-TOF MS. Anal Chem 74:6191–6199

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Russon L, Li L, Roser DC, Long R (1998) Investigation of spectral reproducibility in direct analysis of bacteria proteins by MALDI-TOF MS. Rapid Commun Mass Spectrom 12:456–464

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Li H, Wang H, Su J (2015) Multilocus sequence typing and PFGE analysis of Oenococcus oeni from different wine-producing region in China. Int J Food Microbiol 199:47–53

    Article  CAS  PubMed  Google Scholar 

  • Welham KJ, Domin MA, Johnson Jones L, Ashton DS (2000) Characterization of fungal spores by MALDI-TOF MS. Rapid Commun Mass Spectrom 14:307–310

    Article  CAS  PubMed  Google Scholar 

  • Welker M (2011) Proteomics for routine identification of microorganisms. Proteomics 11:3143–3151

    Article  CAS  PubMed  Google Scholar 

  • Wieme AD, Spitaels F, Aerts M, De Bruyne K, Van Landschoot A, Vandamme P (2014) Effects of growth medium on MALDI-TOF MS: a case study of acetic acid bacteria. Appl Environ Microbiol 80:1528–1538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wunschel SC, Jarman KH, Petersen CE, Valentine NB, Wahl KL (2005) Bacterial analysis by MALDI-TOF MS: an inter-laboratory comparison. J Am Soc Mass Spectrom 16:456–462

    Article  CAS  PubMed  Google Scholar 

  • Zavaleta AI, Martinez-Murcia AJ, Rodriguez-Valera F (1997) Intraspecific genetic diversity of Oenococcus oeni as derived from DNA fingerprinting and sequence analyses. Appl Environ Microbiol 63:1261–1267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Sandrin TR (2016) Maximizing the taxonomic resolution of MALDI-TOF MS-based approaches to bacterial characterization: from culture conditions through data analysis. In: Demirev P, Sandrin TR (eds) Applications of mass spectrometry in microbiology. Springer International Publishing, Switzerland, pp 147–181

    Chapter  Google Scholar 

  • Zhang L, Smart S, Sandrin TR (2015) Biomarker- and similarity coefficient-based approaches to bacterial characterization using MALDI-TOF MS. Sci Rep 5:15834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Rabenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meyer, B., Rabenstein, A., Kuever, J. (2017). Mass Spectrometry: A Powerful Tool for the Identification of Wine-Related Bacteria and Yeasts. In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Cham. https://doi.org/10.1007/978-3-319-60021-5_27

Download citation

Publish with us

Policies and ethics