Skip to main content

Use of Soft Tissue Properties for Ergonomic Product Design

  • Conference paper
  • First Online:
Advances in Physical Ergonomics and Human Factors (AHFE 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 602))

Included in the following conference series:

Abstract

In order to achieve better comfort and fit for designed products it is important to understand the product and user interface and to analyze the interaction at the region of contact. Study of biomechanical properties of soft tissue can provide a good insight of this interface between user and the product. Biomechanical properties can help the designers in material selection which can improve the comfort and fit and help in serving the purpose of the designed product. A sample study of soft tissue thickness of human head and face was conducted using an ultrasound indentation device at selected locations. Results showed the variation in soft tissue thickness levels, which was further used to discuss the role of soft tissue properties in the field of ergonomic product design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhuang, Z., Bradtmiller, B.: Head-and-face anthropometric survey of US respirator users. J. Occup. Environ. Hyg. 2(11), 567–576 (2005)

    Article  PubMed  Google Scholar 

  2. Vasavada, A.N., Danaraj, J., Siegmund, G.P.: Head and neck anthropometry, vertebral geometry and neck strength in height-matched men and women. J. Biomech. 41(1), 114–121 (2008)

    Article  PubMed  Google Scholar 

  3. Yokota, M.: Head and facial anthropometry of mixed-race US army male soldiers for military design and sizing: a pilot study. Appl. Ergon. 36(3), 379–383 (2005)

    Article  PubMed  Google Scholar 

  4. Quant, J.R., Woo, G.C.: Normal values of eye position and head size in Chinese children from Hong Kong. Optom. Vis. Sci. 70(8), 668–671 (1993)

    Article  CAS  PubMed  Google Scholar 

  5. Shah, P., Mahajan, S., Nageswaran, S., Paul, S.K.: A novel way to acquire foot contour measurements of remotely located patients having foot deformities. In: 2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI), pp. 211–214. IEEE, January 2016

    Google Scholar 

  6. Fourie, Z., Damstra, J., Gerrits, P.O., Ren, Y.: Evaluation of anthropometric accuracy and reliability using different three-dimensional scanning systems. Forensic Sci. Int. 207(1), 127–134 (2011)

    Article  PubMed  Google Scholar 

  7. Kouchi, M., Mochimaru, M.: Errors in landmarking and the evaluation of the accuracy of traditional and 3D anthropometry. Appl. Ergon. 42(3), 518–527 (2011)

    Article  PubMed  Google Scholar 

  8. Ozsoy, U., Demirel, B.M., Yildirim, F.B., Tosun, O., Sarikcioglu, L.: Method selection in craniofacial measurements: advantages and disadvantages of 3D digitization method. J. Cranio-Maxillofac. Surg. 37(5), 285–290 (2009)

    Article  Google Scholar 

  9. Lin, Y.L., Wang, M.J.J.: Constructing 3D human model from front and side images. Expert Syst. Appl. 39(5), 5012–5018 (2012)

    Article  Google Scholar 

  10. Galantucci, L.M., Di Gioia, E., Lavecchia, F., Percoco, G.: Is principal component analysis an effective tool to predict face attractiveness? A contribution based on real 3D faces of highly selected attractive women, scanned with stereophotogrammetry. Med. Biol. Eng. Comput. 52(5), 475–489 (2014)

    Article  PubMed  Google Scholar 

  11. Xia, J., Ip, H.H., Samman, N., Wang, D., Kot, C.S., Yeung, R.W., Tideman, H.: Computer-assisted three-dimensional surgical planning and simulation: 3D virtual osteotomy. Int. J. Oral Maxillofac. Surg. 29(1), 11–17 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. Lacko, D., Huysmans, T., Parizel, P.M., De Bruyne, G., Verwulgen, S., Van Hulle, M.M., Sijbers, J.: Evaluation of an anthropometric shape model of the human scalp. Appl. Ergon. 48, 70–85 (2015)

    Article  PubMed  Google Scholar 

  13. Luximon, Y., Ball, R., Justice, L.: The Chinese face: a 3D anthropometric analysis. In: Proceedings of TMCE, pp. 12–16 (2010)

    Google Scholar 

  14. Baik, H.S., Jeon, J.M., Lee, H.J.: Facial soft-tissue analysis of Korean adults with normal occlusion using a 3-dimensional laser scanner. Am. J. Orthod. Dentofac. Orthop. 131(6), 759–766 (2007)

    Article  Google Scholar 

  15. Ball, R., Shu, C., Xi, P., Rioux, M., Luximon, Y., Molenbroek, J.: A comparison between Chinese and Caucasian head shapes. Appl. Ergon. 41(6), 832–839 (2010)

    Article  PubMed  Google Scholar 

  16. Zhuang, Z., Shu, C., Xi, P., Bergman, M., Joseph, M.: Head-and-face shape variations of US civilian workers. Appl. Ergon. 44(5), 775–784 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lewis, H.E., Mayer, J., Pandiscio, A.A.: Recording skinfold calipers for the determination of subcutaneous edema. J. Lab. Clin. Med. 66(1), 154–160 (1965)

    Google Scholar 

  18. Anderson, W.A.D.: Pathology, 4th edn, p. 1381. Mosby, St. Louis (1961)

    Google Scholar 

  19. Zheng, Y.P., Choi, Y.K.C., Wong, K., Chan, S., Mak, A.F.: Biomechanical assessment of plantar foot tissue in diabetic patients using an ultrasound indentation system. Ultrasound Med. Biol. 26(3), 451–456 (2000)

    Article  CAS  PubMed  Google Scholar 

  20. Li, J., Zhou, Y., Lu, Y., Zhou, G., Wang, L., Zheng, Y.P.: The sensitive and efficient detection of quadriceps muscle thickness changes in cross-sectional plane using ultrasonography: a feasibility investigation. IEEE J. Biomed. Health Inform. 18(2), 628–635 (2014)

    Article  PubMed  Google Scholar 

  21. Wang, L.K., Zhang, J.Y., Tian, L., Ko, M. W.L., Huang, Y.F., Zheng, Y.P.: OCT based air jet indentation for corneal biomechanical assessment. Guangxue Jingmi Gongcheng Opt. Preci. Eng. 23, 325–333(2015)

    Article  CAS  Google Scholar 

  22. Callaghan, S., Trapp, M.: Evaluating two dressings for the prevention of nasal bridge pressure sores. Prof. Nurse 13, 361–364 (1998)

    CAS  PubMed  Google Scholar 

  23. Brienza, D.M., Karg, P.E., Brubaker, C.E.: Seat cushion design for elderly wheelchair users based on minimization of soft tissue deformation using stiffness and pressure measurements. IEEE Trans. Rehab. Eng. 4(4), 320–327 (1996)

    Article  CAS  Google Scholar 

  24. Li, Y., Zhang, X., Yeung, K.W.: A 3D biomechanical model for numerical simulation of dynamic mechanical interactions of bra and breast during wear. Sen’i Gakkaishi 59(1), 12–21 (2003)

    Article  Google Scholar 

  25. Zheng, Y.P., Mak, A.F.: An ultrasound indentation system for biomechanical properties assessment of soft tissues in-vivo. IEEE Trans. Biomed. Eng. 43(9), 912–918 (1996)

    Article  CAS  PubMed  Google Scholar 

  26. Lu, M.H., Yu, W., Huang, Q.H., Huang, Y.P., Zheng, Y.P.: A hand-held indentation system for the assessment of mechanical properties of soft tissues in vivo. IEEE Trans. Instrum. Meas. 58(9), 3079–3085 (2009)

    Article  Google Scholar 

  27. Chao, C.Y., Zheng, Y.P., Huang, Y.P., Cheing, G.L.: Biomechanical properties of the forefoot plantar soft tissue as measured by an optical coherence tomography-based air-jet indentation system and tissue ultrasound palpation system. Clin. Biomech. 25(6), 594–600 (2010)

    Article  Google Scholar 

  28. Xiong, S., Goonetilleke, R.S., Jiang, Z.: Pressure thresholds of the human foot: measurement reliability and effects of stimulus characteristics. Ergonomics 54(3), 282–293 (2011)

    Article  PubMed  Google Scholar 

  29. Portolese Dias, L.: Generational buying motivations for fashion. J. Fash. Mark. Manag. Int. J. 7(1), 78–86 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

GRF/ECS Grant (Ref. No. F-PP2P) financially supported the research. Authors would also like to thank all the participants of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Luximon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Shah, P., Luximon, Y., Luximon, A. (2018). Use of Soft Tissue Properties for Ergonomic Product Design. In: Goonetilleke, R., Karwowski, W. (eds) Advances in Physical Ergonomics and Human Factors. AHFE 2017. Advances in Intelligent Systems and Computing, vol 602. Springer, Cham. https://doi.org/10.1007/978-3-319-60825-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60825-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60824-2

  • Online ISBN: 978-3-319-60825-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics