Skip to main content

MNE: Software for Acquiring, Processing,and Visualizing MEG/EEG Data

  • Living reference work entry
  • First Online:
Magnetoencephalography

Abstract

The methods for acquiring, processing, and visualizing magnetoencephalography (MEG) and electroencephalography (EEG) data are rapidly evolving. Advancements in hardware and software development offer new opportunities for cognitive and clinical neuroscientists but at the same time introduce new challenges as well. In recent years the MEG/EEG community has developed a variety of software tools to overcome these challenges and cater to individual research needs. As part of this endeavor, the MNE software project, which includes MNE-C, MNE-Python, MNE-CPP, and MNE-MATLAB as its subprojects, offers an efficient set of tools addressing certain common needs. Even more importantly, the MNE software family covers diverse use case scenarios. Here, we present the landscape of the MNE project and discuss how it will evolve to address the current and emerging needs of the MEG/EEG community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahn S, Cho H, Kwon M, Kim K, Kwon H, Kim BS, Chang WS, Chang JW, Jun SC (2018) Interbrain phase synchronization during turn-taking verbal interaction a hyperscanning study using simultaneous EEG/MEG. Hum Brain Mapp 39(1):171–188

    Article  Google Scholar 

  • Allen N, Sudlow C, Downey P, Peakman T, Danesh J, Elliott P, Gallacher J, Green J, Matthews P, Pell J et al (2012) UK biobank: current status and what it means for epidemiology. Health Policy Technol 1(3):123–126

    Article  Google Scholar 

  • Baillet S (2017) Magnetoencephalography for brain electrophysiology and imaging. Nat Neurosci 20:327–339. https://doi.org/10.1038/nn.4504

    Article  Google Scholar 

  • Bilek E, Stößel G, Schäfer A, Clement L, Ruf M, Robnik L, Neukel C, Tost H, Kirsch P, Meyer-Lindenberg A (2017) State-dependent cross-brain information flow in borderline personality disorder. JAMA Psychiat 74(9):949–957

    Article  Google Scholar 

  • Dalal SS, Zumer JM, Guggisberg AG, Trumpis M, Wong DDE, Sekihara K, Nagarajan SS (2011) MEG/EEG source reconstruction, statistical evaluation, and visualization with NUTMEG. Comput Intell Neurosci 2011:1–17. https://doi.org/10.1155/2011/758973, http://www.hindawi.com/journals/cin/2011/758973/

  • De Tiège X, Carrette E, Legros B, Vonck K, Bourguignon M, Massager N, David P, Van Roost D, Meurs A, Lapere S et al (2012) Clinical added value of magnetic source imaging in the presurgical evaluation of refractory focal epilepsy. J Neurol Neurosurg Psychiatry 83(4): 417–423

    Article  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1): 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009, http://linkinghub.elsevier.com/retrieve/pii/S0165027003003479, arXiv:1011.1669v3

  • Delorme A, Mullen T, Kothe C, Akalin Acar Z, Bigdely-Shamlo N, Vankov A, Makeig S (2011) EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing. Comput Intell Neurosci 2011:1–12. https://doi.org/10.1155/2011/130714, http://www.hindawi.com/journals/cin/2011/130714/, 130714

  • Dinh C, Strohmeier D, Luessi M, Güllmar D, Baumgarten D, Haueisen J, Hämäläinen MS (2015) Real-time MEG source localization using regional clustering. Brain Topogr 28(6):771–784. https://doi.org/10.1007/s10548-015-0431-9

    Article  Google Scholar 

  • Dinh C, Esch L, Rühle J, Bollmann S, Güllmar D, Baumgarten D, Hämäläinen MS, Haueisen J (2018) Real-time clustered multiple signal classification (RTC-MUSIC). Brain Topogr 31(1):125–128. https://doi.org/10.1007/s10548-017-0586-7

    Article  Google Scholar 

  • Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, Fetcho RN, Zebley B, Oathes DJ, Etkin A et al (2017) Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23(1):28

    Article  Google Scholar 

  • Engemann DA, Gramfort A (2015) Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals. NeuroImage 108:328–342

    Article  Google Scholar 

  • Engemann DA, Raimondo F, King JR, Rohaut B, Louppe G, Faugeras F, Annen J, Cassol H, Gosseries O, Fernandez-Slezak D, Laureys S, Naccache L, Dehaene S, Sitt JD (2018) Robust EEG-based cross-site and cross-protocol classification of states of consciousness. Brain 141(11):3179–3192. https://doi.org/10.1093/brain/awy251

    Article  Google Scholar 

  • Esch L, Sun L, Klüber V, Lew S, Baumgarten D, Grant PE, Okada Y, Haueisen J, Hämäläinen MS, Dinh C (2018) MNE scan: software for real-time processing of electrophysiological data. J Neurosci Methods 303:55–67. https://doi.org/10.1016/j.jneumeth.2018.03.020, https://linkinghub.elsevier.com/retrieve/pii/S0165027018300979

  • Esteban O, Birman D, Schaer M, Koyejo OO, Poldrack RA, Gorgolewski KJ (2017a) Mriqc: advancing the automatic prediction of image quality in MRI from unseen sites. PLoS one 12(9):e0184661

    Article  Google Scholar 

  • Esteban O, Blair RW, Nielson D, Varada J, Marrett S, Thomas A, Poldrack R, Gorgolewski KJ (2017b) MRIQC Web-API: crowdsourcing image quality metrics and expert quality ratings of structural and functional MRI. bioRxiv, p 216671

    Google Scholar 

  • Esteban O, Markiewicz C, Blair RW, Moodie C, Isik AI, Aliaga AE, Kent J, Goncalves M, DuPre E, Snyder M et al (2018) Fmriprep: a robust preprocessing pipeline for functional MRI. bioRxiv, p 306951

    Google Scholar 

  • Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis: inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207

    Article  Google Scholar 

  • Glatard T, Kiar G, Aumentado-Armstrong T, Beck N, Bellec P, Bernard R, Bonnet A, Brown ST, Camarasu-Pop S, Cervenansky F et al (2018) Boutiques: a flexible framework to integrate command-line applications in computing platforms. GigaScience 7(5):giy016

    Google Scholar 

  • Goldstein P, Weissman-Fogel I, Dumas G, Shamay-Tsoory SG (2018) Brain-to-brain coupling during handholding is associated with pain reduction. Proc Nat Acad Sci 115:201703643

    Article  Google Scholar 

  • Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, Flandin G, Ghosh SS, Glatard T, Halchenko YO et al (2016) The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data 3:160044

    Article  Google Scholar 

  • Gorgolewski K, Esteban O, Schaefer G, Wandell BA, Poldrack RA (2017a) OpenNeuro a free online platform for sharing and analysis of neuroimaging data. Organization for Human Brain Mapping, Vancouver, p 1677

    Google Scholar 

  • Gorgolewski KJ, Alfaro-Almagro F, Auer T, Bellec P, Capotă M, Chakravarty MM, Churchill NW, Cohen AL, Craddock RC, Devenyi GA et al (2017b) BIDS apps: improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLoS Comput Biol 13(3):e1005209

    Article  Google Scholar 

  • Graichen U, Eichardt R, Fiedler P, Strohmeier D, Zanow F, Haueisen J (2015) SPHARA – a generalized spatial Fourier analysis for multi-sensor systems with non-uniformly arranged sensors: application to EEG. PLoS ONE 10:1–22. https://doi.org/10.1371/journal.pone.0121741

    Article  Google Scholar 

  • Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L et al (2013a) MEG and EEG data analysis with MNE-Python. Front Neurosci 7:267

    Article  Google Scholar 

  • Gramfort A, Strohmeier D, Haueisen J, Hämäläinen MS, Kowalski M (2013b) Time-frequency mixed-norm estimates: Sparse M/EEG 70:410–422. https://doi.org/10.1016/j.neuroimage.2012.12.051

    Google Scholar 

  • Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Parkkonen L, Hämäläinen MS (2014) MNE software for processing MEG and EEG data. NeuroImage 86:446–460. https://doi.org/10.1016/j.neuroimage.2013.10.027, http://www.sciencedirect.com/science/article/pii/S1053811913010501, http://linkinghub.elsevier.com/retrieve/pii/S1053811913010501, NIHMS150003

  • Gross J, Kujala J, Hämäläinen MS, Timmermann L, Schnitzler A, Salmelin R (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Nat Acad Sci 98(2):694–699

    Article  Google Scholar 

  • Guennebaud G, Benoît J, Others (2018) Eigen v3. http://eigen.tuxfamily.org/index.php?title=BibTeX

  • Höhne J, Holz E, Staiger-Sälzer P, Müller KR, Kübler A, Tangermann M (2014) Motor imagery for severely motor-impaired patients: evidence for brain-computer interfacing as superior control solution. PLoS ONE 9(8):1–11. https://doi.org/10.1371/journal.pone.0104854

    Article  Google Scholar 

  • Jas M, Engemann DA, Bekhti Y, Raimondo F, Gramfort A (2017) Autoreject: automated artifact rejection for MEG and EEG data. NeuroImage 159:417–429

    Article  Google Scholar 

  • Jas M, Larson E, Engemann DA, Leppakangas J, Taulu S, Brooks T, Hämäläinen MS, Gramfort A (2018) A reproducible MEG/EEG group study with the MNE software: recommendations, quality assessments and good practices. Front Neurosci 12:530. https://doi.org/10.3389/fnins.2018.00530, https://www.frontiersin.org/article/10.3389/fnins.2018.00530

  • Jiang L, Stocco A, Losey DM, Abernethy JA, Prat CS, Rao RPN (2018) BrainNet: a multi-person brain-to-brain interface for direct collaboration between brains. ArXiv e-prints 1809.08632

    Google Scholar 

  • Khan S, Michmizos K, Tommerdahl M, Ganesan S, Kitzbichler MG, Zetino M, Garel KLA, Herbert MR, Hämäläinen MS, Kenet T (2015) Somatosensory cortex functional connectivity abnormalities in autism show opposite trends, depending on direction and spatial scale. Brain 138(5):1394–1409. https://doi.org/10.1093/brain/awv043

    Article  Google Scholar 

  • Khan S, Hashmi JA, Mamashli F, Michmizos K, Kitzbichler MG, Bharadwaj H, Bekhti Y, Ganesan S, Garel KLA, Whitfield-Gabrieli S, Gollub RL, Kong J, Vaina LM, Rana KD, Stufflebeam SM, Hämäläinen MS, Kenet T (2018) Maturation trajectories of cortical resting-state networks depend on the mediating frequency band. NeuroImage 174:57–68. https://doi.org/10.1016/j.neuroimage.2018.02.018, https://linkinghub.elsevier.com/retrieve/pii/S105381191830106X

  • King JR, Gwilliams L, Holdgraf C, Sassenhagen J, Barachant A, Engemann D, Larson E, Gramfort A (2018) Encoding and decoding neuronal dynamics: methodological framework to uncover the algorithms of cognition. In: The cognitive neurosciences VI. https://hal.archives-ouvertes.fr/hal-01848442

    Google Scholar 

  • Kriegeskorte N, Mur M, Bandettini P (2008) Representational similarity analysis–connecting the branches of systems neuroscience. Front Syst Neurosci 2:4

    Article  Google Scholar 

  • Leonelli S (2016) Data-centric biology: a philosophical study. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Liem F, Varoquaux G, Kynast J, Beyer F, Masouleh SK, Huntenburg JM, Lampe L, Rahim M, Abraham A, Craddock RC et al (2017) Predicting brain-age from multimodal imaging data captures cognitive impairment. NeuroImage 148:179–188

    Article  Google Scholar 

  • Litvak V, Mattout J, Kiebel S, Phillips C, Henson R, Kilner J, Barnes G, Oostenveld R, Daunizeau J, Flandin G, Penny W, Friston K (2011) EEG and MEG data analysis in SPM8. Comput Intell Neurosci 2011:1–32. https://doi.org/10.1155/2011/852961, http://www.hindawi.com/journals/cin/2011/852961/

  • Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164(1):177–190

    Article  Google Scholar 

  • Mohanty R, Sinha AM, Remsik AB, Dodd KC, Young BM, Jacobson T, Mcmillan M, Thoma J, Advani H, Nair VA et al (2018) Machine learning classification to identify the stage of brain-computer interface therapy for stroke rehabilitation using functional connectivity. Front Neurosci 12:353

    Article  Google Scholar 

  • Mosher JC, Leahy RM (1999) Source localization using recursively applied and projected (RAP) MUSIC. IEEE Trans Sig Process 47(2):332–340

    Article  Google Scholar 

  • Niso G, Rogers C, Moreau JT, Chen LY, Madjar C, Das S, Bock E, Tadel F, Evans AC, Jolicoeur P et al (2016) OMEGA: the open MEG archive. Neuroimage 124:1182–1187

    Article  Google Scholar 

  • Niso G, Gorgolewski KJ, Bock E, Brooks TL, Flandin G, Gramfort A, Henson RN, Jas M, Litvak V, Moreau JT et al (2018) MEG-BIDS, the brain imaging data structure extended to magnetoencephalography. Sci Data 5:180110

    Article  Google Scholar 

  • Okada Y, Hämäläinen MS, Pratt K, Mascarenas A, Miller P, Han M, Robles J, Cavallini A, Power B, Sieng K, Sun L, Lew S, Dosh C, Ahtam B, Dinh C, Esch L, Grant E, Nummenmaa A, Paulson D (2016) BabyMEG: a whole-head pediatric magnetoencephalography system for human brain development research. Rev Sci Instrum 87(9):1–13

    Article  Google Scholar 

  • Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011: 1–9. https://doi.org/10.1155/2011/156869, 156869

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  • Poldrack RA, Baker CI, Durnez J, Gorgolewski KJ, Matthews PM, Munafò MR, Nichols TE, Poline JB, Vul E, Yarkoni T (2017) Scanning the horizon: towards transparent and reproducible neuroimaging research. Nat Rev Neurosci 18(2):115

    Article  Google Scholar 

  • QtProject (2018) Qt. http://qt-project.org/

  • Rao RPN, Stocco A, Bryan M, Sarma D, Youngquist TM, Wu J, Prat CS (2014) A direct brain-to-brain interface in humans. PLoS ONE 9(11):1–12. https://doi.org/10.1371/journal.pone.0111332

    Article  Google Scholar 

  • Rivet B, Souloumiac A, Attina V, Gibert G (2009) xDAWN algorithm to enhance evoked potentials: application to brain–computer interface. IEEE Trans Biomed Eng 56(8):2035–2043

    Article  Google Scholar 

  • Sharon D, Hämäläinen MS, Tootell RBH, Halgren E, Belliveau JW (2007) The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex. Neuroimage 36:1225–1235. https://doi.org/10.1016/j.neuroimage.2007.03.066

    Article  Google Scholar 

  • Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011:1–13. https://doi.org/10.1155/2011/879716, http://www.hindawi.com/journals/cin/2011/879716/, 879716

  • Taulu S, Kajola M (2005) Presentation of electromagnetic multichannel data: the signal space separation method. J Appl Phys 97(12):124905

    Article  Google Scholar 

  • Taylor JR, Williams N, Cusack R, Auer T, Shafto MA, Dixon M, Tyler LK, Henson RN et al (2017) The Cambridge centre for ageing and neuroscience (Cam-CAN) data repository: structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample. Neuroimage 144:262–269

    Article  Google Scholar 

  • Uusitalo MA, Ilmoniemi RJ (1997) Signal-space projection method for separating MEG or EEG into components. Med Biol Eng Comput 35(2):135–140

    Article  Google Scholar 

  • Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K, Consortium WMH et al (2013) The WU-Minn human connectome project: an overview. Neuroimage 80:62–79

    Article  Google Scholar 

  • Van Veen BD, Van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44(9):867–880

    Article  Google Scholar 

  • Westner BU, Dalal SS, Hanslmayr S, Staudigl T (2018) Across-subjects classification of stimulus modality from human MEG high frequency activity. PLoS Comput Biol 14(3):e1005938

    Article  Google Scholar 

  • Wipf D, Nagarajan S (2009) A unified Bayesian framework for MEG/EEG source imaging. NeuroImage 44(3):947–966. https://doi.org/10.1016/j.neuroimage.2008.02.059, http://www.sciencedirect.com/science/article/pii/S1053811908001870

  • Wolpaw JR, McFarland DJ, Neat GW, Forneris CA (1991) An eeg-based brain-computer interface for cursor control. Electroencephalogr Clin Neurophysiol 78(3):252–259

    Article  Google Scholar 

  • Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 8(8):665

    Article  Google Scholar 

  • Zhang GQ, Cui L, Mueller R, Tao S, Kim M, Rueschman M, Mariani S, Mobley D, Redline S (2018) The national sleep research resource: towards a sleep data commons. J Am Med Inform Assoc 25(10):1351–1358

    Article  Google Scholar 

  • Zhdanov A, Nurminen J, Baess P, Hirvenkari L, Jousmäki V, Mäkelä JP, Mandel A, Meronen L, Hari R, Parkkonen L (2015) An internet-based real-time audiovisual link for dual MEG recordings. PLoS One 10(6):e0128485

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Gramfort .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Esch, L. et al. (2019). MNE: Software for Acquiring, Processing,and Visualizing MEG/EEG Data. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Cham. https://doi.org/10.1007/978-3-319-62657-4_59-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62657-4_59-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62657-4

  • Online ISBN: 978-3-319-62657-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics