Skip to main content

Spatial Distribution of Air Pollutants in Cities

  • Chapter
  • First Online:
Clinical Handbook of Air Pollution-Related Diseases

Abstract

This chapter discusses the spatial distribution of air pollutants in cities in light of progress made by the scientific community in the field of flow and pollutant dispersion around buildings and within complex urban geometries. With the rate of urbanisation expected to increase in the next years, countries are forced to face challenges in addressing air pollution. Starting from the process of urbanisation and the problem of outdoor air pollution, the discussion focuses on main factors affecting flow and pollutant dispersion in cities. The dynamic of the urban atmosphere is sensitive to a large number of factors related to meteorology, building geometry and city density as well as to the presence of urban obstacles such as trees, parked cars and other barriers, buoyancy effects due to thermal exchanges at urban surfaces, traffic-induced turbulence and others. Some of them are reviewed here. The recent research towards unregulated pollutants, such as airborne ultrafine particles, which are considered to show higher health impacts compared with fine particles, is briefly addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hilber C, Palmer C. Urban development and air pollution: evidence from a global panel of cities. Grantham Research Institute on Climate Change and the Environment, Working Paper No. 175. http://www.lse.ac.uk/GranthamInstitute/wp-content/uploads/2014/12/Working-Paper-175-Hilber-Palmer-2014.pdf; 2014. Accessed 30 Dec 2016.

  2. Ahmad K, Khare M, Chaudhry KK. Wind tunnel simulation studies on dispersion at urban street canyons and intersections – a review. J Wind Eng Ind Aerodyn. 2005;93:697–717. https://doi.org/10.1016/j.jweia.2005.04.002.

    Article  Google Scholar 

  3. Britter RE, Hanna SR. Flow and dispersion in urban areas. Annu Rev. Fluid Mech. 2003;35:469–96. https://doi.org/10.1146/annurev.fluid.35.101101.161147.

    Article  Google Scholar 

  4. Blocken B, Tominaga Y, Stathopoulos T. CFD simulation of micro-scale pollutant dispersion in the built environment. Build Environ. 2013;64:225–30. https://doi.org/10.1016/j.buildenv.2013.01.001.

    Article  Google Scholar 

  5. Gallagher J, Baldauf R, Fuller CH, Kumar P, Gill LW, McNabola A. Passive methods for improving air quality in the built environment: a review of porous and solid barriers. Atmos Environ. 2015;120:61–70. https://doi.org/10.1016/j.atmosenv.2015.08.075.

    Article  CAS  Google Scholar 

  6. Lateb M, Meroney RN, Yataghene M, Fellouah H, Saleh F, Boufadel MC. On the use of numerical modelling for near-field pollutant dispersion in urban environments. A review. Environ Pollut. 2016;208:271–83. https://doi.org/10.1016/j.envpol.2015.07.039.

    Article  CAS  PubMed  Google Scholar 

  7. Soubbotina TP. Beyond economic growth. An introduction to sustainable development. 2nd ed. Washington, DC: World Bank; 2004. https://openknowledge.worldbank.org/handle/10986/14865 Accessed 30 Dec 2016

    Book  Google Scholar 

  8. United Nations. World urbanization prospects: the 2014 revision (CD-ROM edition). New York: Department of Economic and Social Affairs, United Nations; 2014. https://esa.un.org/unpd/wup/Publications/Files/WUP2014-Report.pdf Accessed 30 Dec 2016

    Google Scholar 

  9. UN-Habitat. Urbanization and development: emerging futures. World cities report 2016. Nairobi: United Nations Human Settlements Programme (UN-Habitat); 2016. http://wcr.unhabitat.org/main-report Accessed 30 Dec 2016

    Book  Google Scholar 

  10. Ericson B, Hanrahan D, Kong V (2008) The World’s worst pollution problems: the top ten of toxic twenty. Project report Blacksmith Institute, New York. Available from: http://www.worstpolluted.org. Accessed 30 Dec 2016.

  11. Parrish DD, Stockwell WR. Urbanization and air pollution: then and now. EOS Earth & Space Science News. https://eos.org/features/urbanization-air-pollution-now; 2015. Accessed 30 Dec 2016.

  12. AMS. Meteorological glossary. American Meteorological Society. http://glossary.ametsoc.org/wiki/Main_Page; 2015. Accessed 30 Dec 2016.

  13. Barlow JF. Progress in observing and modelling the urban boundary layer. Urban Clim. 2014;10:216–40. https://doi.org/10.1016/j.uclim.2014.03.011.

    Article  Google Scholar 

  14. Cui P-Y, Li A, Tao W-Q. Buoyancy flows and pollutant dispersion through different scale urban areas: CFD simulations and wind-tunnel measurements. Build Environ. 2016;104:76–91. https://doi.org/10.1016/j.buildenv.2016.04.028.

    Article  Google Scholar 

  15. Kumar P, Ketzel M, Vardoulakis S, Pirjola L, Britter R. Dynamics and dispersion modelling of nanoparticles from road traffic in the urban atmospheric environment - a review. J Aerosol Sci. 2011;42:580–603. https://doi.org/10.1016/j.jaerosci.2011.06.001.

    Article  CAS  Google Scholar 

  16. Vardoulakis S, Fisher BEA, Pericleous K, Gonzalez-Flesca N. Modelling air quality in street canyons: a review. Atmos Environ. 2003;37:155–82. https://doi.org/10.1016/S1352-2310(02)00857-9.

    Article  CAS  Google Scholar 

  17. Tominaga Y, Stathopoulos T. CFD simulation of near-field pollutant dispersion in the urban environment: a review of current modeling techniques. Atmos Environ. 2013;79:716–30. https://doi.org/10.1016/j.atmosenv.2013.07.028.

    Article  CAS  Google Scholar 

  18. Li X-X, Liu C-H, Leung DYC, Lam KM. Recent progress in CFD modelling of wind field and pollutant transport in street canyons. Atmos Environ. 2006;40:5640–58. https://doi.org/10.1016/j.atmosenv.2006.04.055.

    Article  CAS  Google Scholar 

  19. Di Sabatino S, Buccolieri R, Salizzoni P. Recent advancements in numerical modelling of flow and dispersion in urban areas: a short review. Int J Environ Pollut. 2013;52:172–91. https://doi.org/10.1504/IJEP.2013.058454.

    Article  Google Scholar 

  20. Blocken B. 50 years of computational wind engineering: past, present and future. J Wind Eng Ind Aerodyn. 2014;129:69–102. https://doi.org/10.1016/j.jweia.2014.03.008.

    Article  Google Scholar 

  21. Yazid AWM, Sidik NAC, Salim SM, Saqr KM. A review on the flow structure and pollutant dispersion in urban street canyons for urban planning strategies. Simulation. 2014;90(8):892–916. https://doi.org/10.1177/0037549714528046.

    Article  Google Scholar 

  22. Gromke C, Ruck B. Influence of trees on the dispersion of pollutants in an urban street canyon - experimental investigation of the flow and concentration field. Atmos Environ. 2007;41:3287–302. https://doi.org/10.1016/j.atmosenv.2006.12.043.

    Article  CAS  Google Scholar 

  23. CODASC. Concentration data of street canyon database. Laboratory of Building- and Environmental Aerodynamics, IfH. Karlsruhe Institute of Technology. http://www.windforschung.de/CODASC.htm; 2008. Accessed 23 Nov 2016.

  24. Oke TR. Street design and urban canopy layer climate. Energ Buildings. 1988;11:103–13. https://doi.org/10.1016/0378-7788(88)90026-6.

    Article  Google Scholar 

  25. Oke TR. Boundary layer climates. 2nd Edition. Abingdon: Routledge; 1987.

    Google Scholar 

  26. Tiwary A, Robins A, Namdeo A, Bell M. Air flow and concentration fields at urban road intersections for improved understanding of personal exposure. Environ Int. 2011;37:1005–18. https://doi.org/10.1016/j.envint.2011.02.006.

    Article  CAS  PubMed  Google Scholar 

  27. Soulhac L, Garbero V, Salizzoni P, Mejean P, Perkins RJ. Flow and dispersion in street intersections. Atmos Environ. 2009;43:2981–96. https://doi.org/10.1016/j.atmosenv.2009.02.061.

    Article  CAS  Google Scholar 

  28. Di Sabatino S, Leo LS, Cataldo R, Ratti C, Britter RE. Construction of digital elevation models for a southern European city and a comparative morphological analysis with respect to northern European and north American cities. J Appl Meteorol Climatol. 2010;49:1377–96. https://doi.org/10.1175/2010JAMC2117.1.

    Article  Google Scholar 

  29. Yee E, Biltoft CA. Concentration fluctuation measurements in a plume dispersing through a regular array of obstacles. Bound-Layer Meteorol. 2004;111:363–415. https://doi.org/10.1023/B:BOUN.0000016496.83909.ee.

    Article  Google Scholar 

  30. Allwine KJ. Overview of JOINT URBAN 2003 an atmospheric dispersion study in Oklahoma City. Proceedings of the AMS symposium on planning, nowcasting, and forecasting in the urban zone, Seattle, Washington, USA, January 11-15; 2004.

    Google Scholar 

  31. Wood CR, Barlow JF, Belcher SE, Dobre A, Arnold SJ, Balogun AA, Lingard JJN, Smalley RJ, Tate JE, Tomlin AS, Britter RE, Cheng H, Martin D, Petersson FK, Shallcross DE, White IR, Neophytou MK, Robins AG. Dispersion experiments in central London: the 2007 DAPPLE project. Bull Am Meteorol Soc. 2009;90:955–69. https://doi.org/10.1175/2009BAMS2638.1.

    Article  Google Scholar 

  32. Buccolieri R, Sandberg M, Di Sabatino S. City breathability and its link to pollutant concentration distribution within urban-like geometries. Atmos Environ. 2010;44:1894–903. https://doi.org/10.1016/j.atmosenv.2010.02.022.

    Article  CAS  Google Scholar 

  33. Buccolieri R, Salizzoni P, Soulhac L, Garbero V, Di Sabatino S. The breathability of compact cities. Urban Clim. 2015;13:73–93. https://doi.org/10.1016/j.uclim.2015.06.002.

    Article  Google Scholar 

  34. Iqbal QMZ, Chan ALS. Pedestrian level wind environment assessment around group of high-rise cross-shaped buildings: effect of building shape, separation and orientation. Build Environ. 2016;101:45–63. https://doi.org/10.1016/j.buildenv.2016.02.015.

    Article  Google Scholar 

  35. Mao J, Yang W, Gao N. The transport of gaseous pollutants due to stack and wind effect in high-rise residential buildings. Build Environ. 2015;94:543–57. https://doi.org/10.1016/j.buildenv.2015.10.012.

    Article  Google Scholar 

  36. Tominaga Y. Visualization of city breathability based on CFD technique: case study for urban blocks in Niigata City. J Vis. 2012;15:269–76. https://doi.org/10.1007/s12650-012-0128-z.

    Article  Google Scholar 

  37. Janhall S. Review on urban vegetation and particle air pollution – deposition and dispersion. Atmos Environ. 2015;105:130–7. https://doi.org/10.1016/j.atmosenv.2015.01.052.

    Article  Google Scholar 

  38. Abhijith KV, Kumar P, Gallagher J, McNabola A, Baldauf R, Pilla F, Broderick B, Di Sabatino S, Pulvirenti P. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – A review. Atmos Environ. 2017;162:71–86.

    Google Scholar 

  39. Di Sabatino S, Buccolieri R, Pappaccogli G, Leo LS. The effects of trees on micrometeorology in a real street canyon: consequences for local air quality. Int J Environ Pollut. 2015;58:100–11. https://doi.org/10.1504/IJEP.2015.076587.

    Article  Google Scholar 

  40. Kumar P, Wiedensohler A, Birmili W, Quincey P, Hallquist M. Ultrafine particles pollution and measurements. Compr Anal Chem. 2016a;73:369–90.

    Article  Google Scholar 

  41. Kumar P, Khare M, Harrison RM, Bloss WJ, Lewis AC, Coe H, Morawska L. New directions: air pollution challenges for developing megacities like Delhi. Atmos Environ. 2015;122:657–61. https://doi.org/10.1016/j.atmosenv.2015.10.032.

    Article  CAS  Google Scholar 

  42. Heal MR, Kumar P, Harrison RM. Particles, air quality, policy and health. Chem Soc Rev. 2012;41:6606–30. https://doi.org/10.1039/c2cs35076a.

    Article  CAS  PubMed  Google Scholar 

  43. HEI. HEI review panel on ultrafine particles. Understanding the health effects of ambient ultrafine particles HEI perspectives 3. Boston, MA: Health Effects Institute; 2013. https://www.healtheffects.org/publication/understanding-health-effects-ambient-ultrafine-particles Accessed 30 Dec 2016

    Google Scholar 

  44. Kumar P, Robins A, Vardoulakis S, Britter R. A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmos Environ. 2010;44:5035–52. https://doi.org/10.1016/j.atmosenv.2010.08.016.

    Article  CAS  Google Scholar 

  45. Kittelson DB, Watts WF, Johnson JP. Nanoparticle emissions on Minnesota highways. Atmos Environ. 2004;38:9–19. https://doi.org/10.1016/j.atmosenv.2003.09.037.

    Article  CAS  Google Scholar 

  46. Buonanno G, Morawska L, Stabile L, Wang L, Giovinco G. A comparison of submicrometer particle dose between Australian and Italian people. Environ Pollut. 2012;169:183–9. https://doi.org/10.1016/j.envpol.2012.03.002.

    Article  CAS  PubMed  Google Scholar 

  47. Kumar P, Morawska L, Birmili W, Paasonen P, Hu M, Kulmala M, Harrison RM, Norford L, Britter R. Ultrafine particles in cities. Environ Int. 2014;66:1–10. https://doi.org/10.1016/j.envint.2014.01.013.

    Article  CAS  PubMed  Google Scholar 

  48. Kumar P, de Fatima AM, Ynoue RY, Fornaro A, de Freitas ED, Martins J, Martins LD, Albuquerque T, Zhang Y, Morawska L. New directions: from biofuels to wood stoves: the modern and ancient air quality challenges in the megacity of São Paulo. Atmos Environ. 2016b;140:364–9. https://doi.org/10.1016/j.atmosenv.2016.05.059.

    Article  CAS  Google Scholar 

  49. Kumar P, Goel A. Concentration dynamics of coarse and fine particulate matter at and around the signalised traffic intersections. Environ Sci. 2016;18:1220–35. https://doi.org/10.1039/C1036EM00215C.

    CAS  Google Scholar 

  50. WHO. Ambient (outdoor) air quality and health. http://www.who.int/mediacentre/factsheets/fs313/en; 2016. Accessed 30 Dec 2016.

  51. Hajra B. A review of some recent studies on buoyancy driven flows in an urban environment. Int J Atmos Sci. 2014;2014:362182. https://doi.org/10.1155/2014/362182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Di Sabatino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Di Sabatino, S., Buccolieri, R., Kumar, P. (2018). Spatial Distribution of Air Pollutants in Cities. In: Capello, F., Gaddi, A. (eds) Clinical Handbook of Air Pollution-Related Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-62731-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62731-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62730-4

  • Online ISBN: 978-3-319-62731-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics