Skip to main content

Learning as a Functional State of the Brain: Studies in Wild-Type and Transgenic Animals

  • Chapter
  • First Online:
The Plastic Brain

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1015))

Abstract

Contemporary neuroscientists are paying increasing attention to subcellular, molecular, and electrophysiological mechanisms underlying learning and memory processes. Recent studies have examined the development of transgenic mice affected at different stages of the learning process, or have emulated in animals various human pathological conditions involving cognition and motor learning. However, a parallel effort is needed to develop stimulating and recording techniques suitable for use in behaving mice in order to understand activity-dependent synaptic changes taking place during the very moment of the learning process. The in vivo models should incorporate information collected from different molecular and in vitro approaches. Long-term potentiation (LTP) has been proposed as the neural mechanism underlying synaptic plasticity, and NMDA receptors have been proposed as the molecular substrate of LTP. It now seems necessary to study the relationship of both LTP and NMDA receptors to functional changes in synaptic efficiency taking place during actual learning in selected cerebral cortical structures. Here, we review data collected in our laboratory during the past 10 years on the involvement of different hippocampal synapses in the acquisition of the classically conditioned eyelid responses in behaving mice. Overall the results indicate a specific contribution of each cortical synapse to the acquisition and storage of new motor and cognitive abilities. Available data show that LTP, evoked by high-frequency stimulation of Schaffer collaterals, disturbs both the acquisition of conditioned eyelid responses and the physiological changes that occur at hippocampal synapses during learning. Moreover, the administration of NMDA-receptor antagonists is able not only to prevent LTP induction in vivo, but also to hinder both the formation of conditioned eyelid responses and functional changes in the strength of the CA3-CA1 synapse. Nevertheless, many other neurotransmitter receptors, intracellular mediators, and transcription factors are also involved in learning and memory processes. In summary, it can be proposed that learning and memory in behaving mammals are the result of the activation of complex and distributed functional states involving many different cerebral cortical synapses, with the participation also of various neurotransmitter systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

CGP 39551:

(E)-(±)-2-amino-4-methyl-5-phosphono-3-pentenoic acid ethyl ester

CR:

Conditioned response

CREB:

cAMP response element-binding protein

CS:

Conditioned stimulus

fEPSP:

Field excitatory postsynaptic potentials

HFS:

High-frequency stimulation

LTD:

Long-term depression

LTP:

Long-term potentiation

NBQX:

2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt

NMDA:

N-methyl-aspartate

trkB:

Tropomyosin receptor kinase B

trkC:

Tropomyosin receptor kinase C

US:

Unconditioned stimulus

References

  • Ammann C, Márquez-Ruiz J, Gómez-Climent MA, Delgado-García JM, Gruart A (2016) The motor cortex is involved in the generation of classically conditioned eyelid responses in behaving rabbits. J Neurosci 36:6988–7001

    Article  CAS  PubMed  Google Scholar 

  • Barnes CA, Jung MW, McNaughton BL, Korol DL, Andreasson K, Worley PF (1994) LTP saturation and spatial learning disruption: effects of task variables and saturation levels. J Neurosci 14:5793–5806

    CAS  PubMed  Google Scholar 

  • Berger TW, Rinaldi P, Weisz DJ, Thompson RF (1983) Single-unit analysis of different hippocampal cell types during classical conditioning of rabbit nictitating membrane response. J Neurophysiol 50:1197–1219

    CAS  PubMed  Google Scholar 

  • Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  • Bliss TVP, Gardner-Medwin AR (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path. J Physiol 232:357–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bliss TVP, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caro-Martín CR, Leal-Campanario R, Sánchez-Campusano R, Delgado-García JM, Gruart A (2015) A variable oscillator underlies the measurement of time intervals in the rostral medial prefrontal cortex during classical eyeblink conditioning in rabbits. J Neurosci 35:14809–14821

    Article  PubMed  Google Scholar 

  • Carretero-Guillén A, Pacheco-Calderón R, Delgado-García JM, Gruart A (2015) Involvement of hippocampal inputs and intrinsic circuit in the acquisition of context and cues during classical conditioning in behaving rabbits. Cereb Cortex 25:1278–1289. doi:10.1093/cercor/bht321

  • Clarke JR, Cammarota M, Gruart A, Izquierdo I, Delgado-García JM (2010) Plastic modifications induced by object recognition memory processing. Proc Natl Acad Sci U S A 107:2652–2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collingridge GL, Kehl SJ, McLennan H (1983a) The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurones in vitro. J Physiol 334:19–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collingridge GL, Kehl SJ, McLennan H (1983b) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 334:33–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Hooge R, Raes A, Van de Vijver G, Van Bogaert PP, De Deyn PP (1999) Effects of competitive NMDA receptor antagonists on excitatory amino acid-evoked currents in mouse spinal cord neurones. Fundam Clin Pharmacol 13:67–74

    Article  PubMed  Google Scholar 

  • Delgado-García JM, Gruart A (2002) The role of interpositus nucleus in eyelid conditioned responses. Cerebellum 1:289–308

    Article  PubMed  Google Scholar 

  • Delgado-García JM, Gruart A (2006) Building new motor responses: eyelid conditioning revisited. Trends Neurosci 29:330–338

    Article  PubMed  Google Scholar 

  • Domingo JA, Gruart A, Delgado-García JM (1997) Quantal organization of reflex and conditioned eyelid responses. J Neurophysiol 78:2518–2530

    CAS  PubMed  Google Scholar 

  • Domínguez-del-Toro E, Rodríguez-Moreno A, Porras-García E, Sánchez-Campusano R, Blanchard V, Lavilla M, Böhme GA, Benavides J, Delgado-García JM (2004) An in vitro and in vivo study of early deficits in associative learning in transgenic mice that over-express a mutant form of human APP associated with Alzheimer’s disease. Eur J Neurosci 20:1945–1952

    Article  PubMed  Google Scholar 

  • Dragoi G, Harris KD, Buzsáki G (2003) Place representation within hippocampal networks is modified by long-term potentiation. Neuron 39:843–853

    Article  CAS  PubMed  Google Scholar 

  • Duran J, Saez I, Gruart A, Guinovart J, Delgado-García JM (2013) Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab 33:550–556

    Google Scholar 

  • Gil-Sanz C, Delgado-García JM, Fairén A, Gruart A (2008) Involvement of the mGluR1 receptor in hippocampal synaptic plasticity and associative learning in behaving mice. Cereb Cortex 18:1653–1663

    Article  PubMed  Google Scholar 

  • Gormezano I, Kehoe EJ, Marshall BS (1983) Twenty years of classical conditioning research with the rabbit. Prog Psychobiol Physiol Psychol 10:197–275

    Google Scholar 

  • Gruart A, Delgado-García JM (2007) Activity-dependent changes of the hippocampal CA3-CA1 synapse during the acquisition of associative learning in conscious mice. Genes Brain Behav Suppl 1:24–31

    Article  Google Scholar 

  • Gruart A, Blázquez P, Delgado-García JM (1995) Kinematics of unconditioned and conditioned eyelid movements in the alert cat. J Neurophysiol 74:226–248

    CAS  PubMed  Google Scholar 

  • Gruart A, Pastor AM, Armengol JA, Delgado-García JM (1997) Involvement of cerebellar cortex and nuclei in the genesis and control of unconditioned and conditioned eyelid motor responses. Prog Brain Res 114:511–528

    Article  CAS  PubMed  Google Scholar 

  • Gruart A, Guillazo-Blanch G, Fernández-Mas R, Jiménez-Díaz L, Delgado-García JM (2000a) Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats. J Neurophysiol 84:2680–2690

    CAS  PubMed  Google Scholar 

  • Gruart A, Schreurs BG, Domínguez-del-Toro E, Delgado-García JM (2000b) Kinetic and frequency-domain properties of reflex and conditioned eyelid responses in the rabbit. J Neurophysiol 83:836–852

    CAS  PubMed  Google Scholar 

  • Gruart A, Muñoz MD, Delgado-Garcia JM (2006) Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. J Neurosci 26:1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Gruart A, Sciarreta C, Valenzuela-Harrington M, Delgado-García JM, Minichiello L (2007) Mutation at the TrkB PLCγ-docking site affects hippocampal LTP and associative learning in conscious mice. Learn Mem 14:54–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Gruart A, Benito E, Delgado-García JM, Barco A (2012) Enhanced cAMP response element-binding protein activity increases neuronal excitability, hippocampal long-term potentiation, and classical eyeblink conditioning in alert behaving mice. J Neurosci 32:17431–17441

    Article  CAS  PubMed  Google Scholar 

  • Gruart A, Madroñal N, Jurado-Parras MT, Delgado-García JM (2013) Synaptic plasticity studies and their applicability in mouse models of neurodegenerative diseases. Translat Neurosci 4:134–143

    Article  Google Scholar 

  • Gruart A, Sánchez-Campusano R, Fernández-Guizán A, Delgado-García JM (2014) A differential and timed contribution of identified hippocampal synapses to associative learning in mice. Cereb Cortex 25(9):2542–2555. doi:10.1093/cercor/bhu054

    Article  PubMed  Google Scholar 

  • Harris EW, Ganong AH, Cotman CW (1984) Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Res 323:132–137

    Article  CAS  PubMed  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Hoehler FK, Thompson RF (1980) Effect of the interstimulus (CS-UCS) interval on hippocampal unit activity during classical conditioning of the nictitating membrane response of the rabbit (Oryctolagus cuniculus). J Comp Physiol Psychol 94:201–215

    Article  CAS  PubMed  Google Scholar 

  • Houk JC, Buckingham JT, Barto AG (1996) Models of cerebellum and motor learning. Behav Brain Sci 19:368–383

    Article  Google Scholar 

  • Ito M (1989) Long-term depression. Annu Rev Neurosci 12:85–102

    Article  CAS  PubMed  Google Scholar 

  • Jurado-Parras MT, Sánchez-Campusano R, Castellanos NP, del-Pozo F, Gruart A, Delgado-García JM (2013) Differential contribution of hippocampal circuits to appetitive and consummatory behaviors during operant conditioning of behaving mice. J Neurosci 33:2293–2304

    Article  CAS  PubMed  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto Y, Kawahara S, Mori H, Mishima M, Kirino Y (2001) Long-trace interval eyeblink conditioning is impaired in mutant mice lacking the NMDA receptor subunit ε1. Eur J Neurosci 13:1221–1227

    Article  CAS  PubMed  Google Scholar 

  • Konorski J (1948) Conditioned reflexes and neuron organization. Cambridge University Press, Cambridge, MA

    Google Scholar 

  • Kugelberg E (1952) Facial reflexes. Brain 75:385–396

    Article  CAS  PubMed  Google Scholar 

  • Leung LS, Shen B (2006) Hippocampal CA1 kindling but not long-term potentiation disrupts spatial memory performance. Learn Mem 13:18–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy WB, Steward O (1983) Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8:791–797

    Article  CAS  PubMed  Google Scholar 

  • Lucas D, Delgado-García JM, Escudero B, Albo C, Aza A, Acín-Pérez R, Torres Y, Moreno P, Enríquez JA, Samper E, Blanco L, Fairén A, Bernard A, Gruart A (2013) Increased learning and brain long-term potentiation in aged mice lacking DNA polymerase μ. PLoS One 8(1):e53243. doi:10.1371/journal.pone.0053243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87–136

    Article  CAS  PubMed  Google Scholar 

  • Madroñal N, Delgado-García JM, Gruart A (2007) Differential effects of long-term potentiation evoked at the CA3-CA1 synapse before, during, and after the acquisition of classical eyeblink conditioning in behaving mice. J Neurosci 27:12139–12146

    Article  PubMed  Google Scholar 

  • Madroñal N, Gruart A, Delgado-García JM (2009) Differing presynaptic contributions to LTP and associative learning in behaving mice. Front Behav Neurosci 3:7. doi:10.3389/neuro.08.007.2009

    Article  PubMed  PubMed Central  Google Scholar 

  • Madroñal N, Gruart A, Sacktor TC, Delgado-García JM (2010) PKMζ inhibition reverses learning-induced increases in hippocampal synaptic strength and memory during trace eyeblink conditioning. PLoS One 5(4):e10400. doi:10.1371/journal.pone.0010400

    Article  PubMed  PubMed Central  Google Scholar 

  • Madroñal N, Gruart A, Valverde O, Espadas I, Moratalla R, Delgado-García JM (2012) Involvement of cannabinoid CB1 receptor in associative learning and in hippocampal CA3-CA1 synaptic plasticity. Cereb Cortex 22:550–566

    Article  PubMed  Google Scholar 

  • Malenka R, Nicoll RA (1999) Long-term potentiation – a decade of progress? Science 285:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Maren S, Baudry M, Thompson RF (1992) Effects of the novel NMDA receptor antagonist, CGP 39551, on field potentials and the induction and expression of LTP in the dentate gyrus in vivo. Synapse 11:221–228

    Article  CAS  PubMed  Google Scholar 

  • Marr D (1971) Simple memory: a theory of archicortex. Philos Trans R Soc Lond (Biol) 262:23–81

    Article  CAS  Google Scholar 

  • McEchron MD, Disterhoft JF (1997) Sequence of single neuron changes in CA1 hippocampus of rabbits during acquisition of trace eyeblink conditioned responses. J Neurophysiol 78:1030–1044

    CAS  PubMed  Google Scholar 

  • McEchron MD, Tseng W, Disterhoft JF (2003) Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. J Neurosci 23:1535–1547

    CAS  PubMed  Google Scholar 

  • McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK, Lowell BB, Fanselow MS, Wilson MA, Tonegawa S (2007) Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317:94–99

    Article  CAS  PubMed  Google Scholar 

  • McNaughton BL, Douglas RM, Goddard GV (1978) Synaptic enhancement in fascia dentata: cooperativity among coactive afferents. Brain Res 157:277–293

    Article  CAS  PubMed  Google Scholar 

  • Mokin M, Keifer J (2005) Expression of the immediate-early gene-encoded protein Egr-1 (zif268) during in vitro classical conditioning. Learn Mem 12:144–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain’s spatial representation system. Rev Neurosci 31:69–89

    Article  CAS  Google Scholar 

  • Moyer JR Jr, Deyo RA, Disterhoft JF (1990) Hippocampectomy disrupts trace eye-blink conditioning in rabbits. Behav Neurosci 104:243–252

    Article  PubMed  Google Scholar 

  • Múnera A, Gruart A, Muñoz MD, Fernández-Mas R, Delgado-García JM (2001) Discharge properties of identified CA1 and CA3 hippocampus neurons during unconditioned and conditioned eyelid responses in cats. J Neurophysiol 86:2571–2582

    PubMed  Google Scholar 

  • Namba T, Morimoto K, Sato K, Yamada N, Kuroda S (1994) Antiepileptogenic and anticonvulsant effects of NBQX, a selective AMPA receptor antagonist, in the rat kindling model of epilepsy. Brain Res 638:36–44

    Article  CAS  PubMed  Google Scholar 

  • Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9:65–75

    Article  CAS  PubMed  Google Scholar 

  • Ortiz O, Delgado-García JM, Espadas I, Bahí A, Trullas R, Dreyer JL, Gruart A, Moratalla R (2010) Associative learning and CA3-CA1 synaptic plasticity are impaired in D1R null, Drd1a-/- mice and in hippocampal siRNA silenced Drd1a mice. J Neurosci 30:12288–12300

    Article  CAS  PubMed  Google Scholar 

  • Parada J, Czuczwar SJ, Turski WA (1992) NBQX does not affect learning and memory tasks in mice: a comparison with D-CPPene and ifenprodil. Brain Res Cogn Brain Res 1:67–71

    Article  CAS  PubMed  Google Scholar 

  • Pujadas L, Gruart A, Delgado L, Teixeira CM, Rossi D, de Lecea L, Martínez A, Delgado-García JM, Soriano E (2010) Reelin regulates postnatal neurogenesis and enhances spine hypertrophy and long-term potentiation. J Neurosci 30:4636–4649

    Article  CAS  PubMed  Google Scholar 

  • Ramón y Cajal S (1909-1911) Histologie du Système Nerveux de l’Homme et des Vertébrés. Maloine, Paris

    Google Scholar 

  • Sahún I, Delgado-García JM, Amador-Arjona A, Giralt A, Alberch J, Dierssen M, Gruart A (2007) Dissociation between CA3-CA1 synaptic plasticity and associative learning in TgNTRK3 transgenic mice. J Neurosci 27:2253–2260

    Article  PubMed  Google Scholar 

  • Sánchez-Campusano R, Gruart A, Delgado-García JM (2007) The cerebellar interpositus nucleus and the dynamic control of learned motor responses. J Neurosci 27:6620–6632

    Article  PubMed  Google Scholar 

  • Sanders MJ, Fanselow MS (2003) Pre-training prevents context fear conditioning deficits produced by hippocampal NMDA receptor blockade. Neurobiol Learn Mem 80:123–129

    Article  CAS  PubMed  Google Scholar 

  • Servatius RJ, Shors TJ (1996) Early acquisition, but not retention, of classically conditioned eyeblink responses is N-methyl-D-aspartate (NMDA) receptor dependent. Behav Neurosci 110:1040–1048

    Article  CAS  PubMed  Google Scholar 

  • Takatsuki K, Kawahara S, Kotani S, Fukunaga S, Mori H, Mishina M, Kirino Y (2003) The hippocampus plays an important role in eyeblink conditioning with a short trace interval in glutamate receptor subunit δ2 mutant mice. J Neurosci 23:17–22

    CAS  PubMed  Google Scholar 

  • Thompson RF (1988) The neural basis of basic associative learning of discrete behavioral responses. Trends Neurosci 11:152–155

    Article  CAS  PubMed  Google Scholar 

  • Thompson RF (2005) In search of memory traces. Annu Rev Psychol 56:1–23

    Article  PubMed  Google Scholar 

  • Wang SH, Morris RG (2010) Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annu Rev Psychol 61:49–79

    Article  PubMed  Google Scholar 

  • Weisz DJ, Clark GA, Thompson RF (1984) Increased responsivity of dentate granule cells during nictitating membrane response conditioning in rabbit. Behav Brain Res 12:145–154

    Article  CAS  PubMed  Google Scholar 

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097

    Article  CAS  PubMed  Google Scholar 

  • Woody CD (1986) Understanding the cellular basis of memory and learning. Annu Rev Psychol 37:433–493

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Spanish MINECO (BFU2011-29089 and BFU2011-29286) and Junta de Andalucía (BIO122 and CVI7222) grants to A.G. and J.M. D.-G. We thank Mr. Roger Churchill for his help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Delgado-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Delgado-García, J.M., Gruart, A. (2017). Learning as a Functional State of the Brain: Studies in Wild-Type and Transgenic Animals. In: von Bernhardi, R., Eugenín, J., Muller, K. (eds) The Plastic Brain. Advances in Experimental Medicine and Biology, vol 1015. Springer, Cham. https://doi.org/10.1007/978-3-319-62817-2_5

Download citation

Publish with us

Policies and ethics