Skip to main content

Embedding of LCK Manifolds with Potential into Hopf Manifolds Using Riesz-Schauder Theorem

  • Chapter
  • First Online:
Complex and Symplectic Geometry

Part of the book series: Springer INdAM Series ((SINDAMS,volume 21))

Abstract

A locally conformally Kähler (LCK) manifold with potential is a complex manifold with a cover which admits a positive automorphic Kähler potential. A compact LCK manifold with potential can be embedded into a Hopf manifold, if its dimension is at least 3. We give a functional-analytic proof of this result based on Riesz-Schauder theorem and Montel theorem. We provide an alternative argument for compact complex surfaces, deducing the embedding theorem from the Spherical Shell Conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Recall that for a ring A with a proper ideal \(\mathfrak{m}\) , the \(\mathfrak{m}\) -adic topology on A is given by the base of open sets formed by \(\mathfrak{m}^{k}\) and their translates.

References

  1. A. Andreotti, Y.T. Siu, Projective embeddings of pseudoconcave spaces. Ann. Sc. Norm. Super. Pisa 24, 231–278 (1970)

    MathSciNet  MATH  Google Scholar 

  2. V. Apostolov, G. Dloussky, On the Lee classes of locally conformally symplectic complex surfaces. arXiv:1611.00074

    Google Scholar 

  3. W. Barth, K. Hulek, C. Peters, A. Van de Ven, Compact Complex Surfaces (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  4. F.A. Belgun, On the metric structure of non-Kähler complex surfaces. Math. Ann. 317, 1–40 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. F.A. Bogomolov, Classification of surfaces of class VII0 with b 2(M) = 0. Math. USSR Izv. 10, 255–269 (1976)

    Article  Google Scholar 

  6. F.A. Bogomolov, Surfaces of class VII0 and affine geometry. Izv. Akad. Nauk SSSR Ser. Mat. 46(4), 710–761, 896 (1982)

    Google Scholar 

  7. J.B. Conway, A Course in Functional Analysis. Graduate Texts in Mathematics, vol. 96 (Springer, New York, 1990)

    Google Scholar 

  8. G. Dloussky, K. Oeljeklaus, M. Toma, Class VII0 surfaces with b 2 curves. Tohoku Math. J. Second Series, 55(2), 283–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Dragomir, L. Ornea, Locally Conformally Kähler Manifolds. Progress in Mathematics, vol. 55 (Birkhäuser, Boston, 1998)

    Google Scholar 

  10. D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics (Springer, Berlin, 2001)

    Google Scholar 

  11. A. Grothendieck, J. Dieudonné, Éléments de géométrie algébrique: II. Étude globale élémentaire de quelques classes de morphismes. Publ. Math. l’IHÉS 8, 5–222 (1961)

    Google Scholar 

  12. J. Jost, Compact Riemann Surfaces (Springer, Berlin, 2002)

    Book  MATH  Google Scholar 

  13. Ma. Kato, Compact complex manifolds containing global spherical shells. Proc. Jpn. Acad. 53(1), 15–16 (1977)

    Google Scholar 

  14. G. Köthe, Topological Vector Spaces, I, II (Springer, Berlin, 1969/1979)

    Google Scholar 

  15. J. Li, S. Yau, Hermitian-Yang-Mills connection on non-Kähler manifolds, in Mathematical Aspects of String Theory, vol. 1 (World Scientific Publishing, Singapore, 1987), pp. 560–573

    Google Scholar 

  16. J. Li, S. Yau, F. Zheng, On projectively flat Hermitian manifolds. Commun. Anal. Geom. 2(1), 103–109 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Ornea, M. Verbitsky, Morse-Novikov cohomology of locally conformally Kähler manifolds. J. Geom. Phys. 59(3), 295–305 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Ornea, M. Verbitsky, Locally conformally Kähler manifolds with potential. Math. Ann. 348, 25–33 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Ornea, M. Verbitsky, LCK rank of locally conformally Kähler manifolds with potential. J. Geom. Phys. 107, 92–98 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Ornea, M. Verbitsky, Locally conformally Kähler metrics obtained from pseudoconvex shells. Proc. Am. Math. Soc. 144, 325–335 (2016)

    Article  MATH  Google Scholar 

  21. A. Otiman, Morse-Novikov cohomology of locally conformally Kähler surfaces. arXiv:1609.07675

    Google Scholar 

  22. H. Rossi, Attaching analytic spaces to an analytic space along a pseudo–convex boundary, in Proceedings of the Conference Complex Manifolds (Minneapolis) (Springer, Berlin, 1965), pp. 242–256

    Google Scholar 

  23. A.D. Teleman, Projectively flat surfaces and Bogomolov’s theorem on class VII0 surfaces. Int. J. Math. 5(2), 253–264 (1994)

    Article  MATH  Google Scholar 

  24. A.D. Teleman, Donaldson theory on non-Kählerian surfaces and class VII surfaces with b 2 = 0. Invent. Math. 162(3), 493–521 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. V. Vuletescu, Blowing-up points on locally conformally Kähler manifolds. Bull. Math. Soc. Sci. Math. Roum. 52(100), 387–390 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Georges Dloussky for his kind advice and for a bibliographical information, and the anonymous referee for very useful remarks. The author “Liviu Ornea” was partially supported by University of Bucharest grant 1/2012. The author “Misha Verbitsky” was partially supported by RSCF grant 14-21-00053 within AG Laboratory NRU-HSE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liviu Ornea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, a part of Springer Nature

About this chapter

Cite this chapter

Ornea, L., Verbitsky, M. (2017). Embedding of LCK Manifolds with Potential into Hopf Manifolds Using Riesz-Schauder Theorem. In: Angella, D., Medori, C., Tomassini, A. (eds) Complex and Symplectic Geometry. Springer INdAM Series, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-62914-8_11

Download citation

Publish with us

Policies and ethics