Skip to main content

Part of the book series: Studies in Big Data ((SBD,volume 33))

Abstract

In this chapter the principles of quantum computing and communications has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiesner, S.: Conj. Coding. SIGACT News 15(1), 78–88 (1983). doi:10.1145/1008908.1008920

    Article  Google Scholar 

  2. Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973). doi:10.1147/rd.176.0525

    Article  MathSciNet  MATH  Google Scholar 

  3. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 22(5), 563–591 (1980). doi:10.1007/bf01011339

    Article  MathSciNet  Google Scholar 

  4. Benioff, P.: Quantum mechanical models of turing machines that dissipate no energy. Phys. Rev. Lett. 48(23), 1581–1585 (1982). doi:10.1103/physrevlett.48.1581

    Article  MathSciNet  Google Scholar 

  5. Benioff, P.: Quantum mechanical hamiltonian models of turing machines. J. Stat. Phys. 29(3), 515–546 (1982). doi:10.1007/bf01342185

    Article  MathSciNet  MATH  Google Scholar 

  6. Benioff, P.: Quantum mechanical hamiltonian models of discrete processes that erase their own histories: application to turing machines. Int. J. Theor. Phys. 21(3–4), 177–201 (1982). doi:10.1007/bf01857725

    Article  MathSciNet  MATH  Google Scholar 

  7. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6–7), 467–488 (1982). doi:10.1007/bf02650179

    Article  MathSciNet  Google Scholar 

  8. Wootters, W., Zurek, W.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982). doi:10.1038/299802a0

    Article  MATH  Google Scholar 

  9. Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014). doi:10.1016/j.tcs.2014.05.025

    Article  MathSciNet  MATH  Google Scholar 

  10. Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. Royal Soc. A Math. Phys. Eng. Sci. 400(1818), 97–117 (1985). doi:10.1098/rspa.1985.0070

    Article  MathSciNet  MATH  Google Scholar 

  11. Bennett, C., Wiesner, S.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992). doi:10.1103/physrevlett.69.2881

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaye, P., Laflamme, R.: An Introduction to Quantum Computing. Oxford University Press (2007)

    Google Scholar 

  13. Bennett, C., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993). doi:10.1103/physrevlett.70.1895

    Article  MathSciNet  MATH  Google Scholar 

  14. Stinson, D.: Cryptography. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  15. Chakrabarty, I.: Teleportation via a mixture of a two qubit subsystem of a N-qubit W and GHZ state. Eur. Phys. J. D 57(2), 265–269 (2010). doi:10.1140/epjd/e2010-00017-8

    Article  Google Scholar 

  16. Liang, H., Liu, J., Feng, S., Chen, J.: Quantum teleportation with partially entangled states via noisy channels. Quant. Inf. Process. 12(8), 2671–2687 (2013). doi:10.1007/s11128-013-0555-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  18. Zeng, G.H.: Quantum Cryptology: Science Press (2006)

    Google Scholar 

  19. Van Assche, G.: Quantum Cryptography and Secret-key Distillation. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  20. Metwaly, A.F., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of multicast centralized key management scheme using quantum key distribution and classical symmetric encryption. Eur. Phys. J. Special Topics 223(8), 1711–1728 (2014)

    Article  Google Scholar 

  21. Metwaly, A., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of Point to Multipoint QKD Communication Systems (QKDP2MP). In: 8th International Conference on Informatics and Systems (INFOS), Cairo, IEEE pp. NW 25–31. (2012)

    Google Scholar 

  22. Farouk, A., Omara, F., Zakria, M., Megahed, A.: Secured IPsec multicast architecture based on quantum key distribution. In: The International Conference on Electrical and Bio-medical Engineering, Clean Energy and Green Computing. The Society of Digital Information and Wireless Communication, pp. 38–47 (2015)

    Google Scholar 

  23. Farouk, A., Zakaria, M., Megahed, A., Omara, F.A.: A generalized architecture of quantum secure direct communication for N disjointed users with authentication. Sci. Rep. 5, 16080–16080

    Google Scholar 

  24. Wang, M.M., Wang, W., Chen, J.G., Farouk, A.: Secret sharing of a known arbitrary quantum state with noisy environment. Quant. Inf. Process. 14(11), 4211–4224 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Naseri, M., Heidari, S., Batle, J., Baghfalaki, M., Gheibi, R., Farouk, A., Habibi, A.: A new secure quantum watermarking scheme. Optik Int. J. Light Electron Optics 139, 77–86 (2017)

    Article  Google Scholar 

  26. Batle, J., Ciftja, O., Naseri, M., Ghoranneviss, M., Farouk, A., Elhoseny, M.: Equilibrium and uniform charge distribution of a classical two-dimensional system of point charges with hard-wall confinement. Phys. Scr. 92(5), 055801 (2017)

    Article  Google Scholar 

  27. Geurdes, H., Nagata, K., Nakamura, T., Farouk, A.: A note on the possibility of incomplete theory. arXiv preprint (2017) arXiv:1704.00005

  28. Batle, J., Farouk, A., Alkhambashi, M., Abdalla, S.: Multipartite correlation degradation in amplitude-damping quantum channels. J. Korean Phys. Soc. 70(7), 666–672 (2017)

    Article  Google Scholar 

  29. Batle, J., Naseri, M., Ghoranneviss, M., Farouk, A., Alkhambashi, M., Elhoseny, M.: Shareability of correlations in multiqubit states: optimization of nonlocal monogamy inequalities. Phys. Rev. A 95(3), 032123 (2017)

    Article  Google Scholar 

  30. Batle, J., Farouk, A., Alkhambashi, M., Abdalla, S.: Entanglement in the linear-chain Heisenberg antiferromagnet Cu (C4 H4 N2) (NO3) 2. Eur. Phys. J. B 90, 1–5 (2017)

    Article  Google Scholar 

  31. Batle, J., Alkhambashi, M., Farouk, A., Naseri, M., Ghoranneviss, M.: Multipartite non-locality and entanglement signatures of a field-induced quantum phase transition. Eur. Phys. J. B 90(2), 31 (2017)

    Article  Google Scholar 

  32. Nagata, K., Nakamura, T., Batle, J., Abdalla, S., Farouk, A.: Boolean approach to dichotomic quantum measurement theories. J. Korean Phys. Soc. 70(3), 229–235 (2017)

    Article  Google Scholar 

  33. Abdolmaleky, M., Naseri, M., Batle, J., Farouk, A., Gong, L.H.: Red-Green-Blue multi-channel quantum representation of digital images. Optik Int. J. Light Elect. Opt. 128, 121–132 (2017)

    Article  Google Scholar 

  34. Farouk, A., Elhoseny, M., Batle, J., Naseri, M., Hassanien, A.E.: A proposed architecture for key management schema in centralized quantum network. In: Handbook of Research on Machine Learning Innovations and Trends IGI Global, pp. 997–1021

    Google Scholar 

  35. Zhou, N.R., Li, J.F., Yu, Z.B., Gong, L.H., Farouk, A.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quant. Inf. Process. 16(1), 4 (2017)

    Article  Google Scholar 

  36. Batle, J., Abutalib, M., Abdalla, S., Farouk, A.: Persistence of quantum correlations in a XY spin-chain environment. Eur. Phys. J. B 89(11), 247 (2016)

    Article  MATH  Google Scholar 

  37. Batle, J., Abutalib, M., Abdalla, S., Farouk, A.: Revival of bell nonlocality across a quantum spin chain. Int. J. Quant. Inf. 14(07), 1650037 (2016)

    Article  MATH  Google Scholar 

  38. Batle, J., Ooi, C.R., Farouk, A., Abutalib, M., Abdalla, S.: Do multipartite correlations speed up adiabatic quantum computation or quantum annealing? Quant. Inf. Process. 15(8), 3081–3099 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Batle, J., Bagdasaryan, A., Farouk, A., Abutalib, M., Abdalla, S.: Quantum correlations in two coupled superconducting charge qubits. Int. J. Mod. Phys. B 30(19), 1650123 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Batle, J., Ooi, C.R., Abutalib, M., Farouk, A., Abdalla, S.: Quantum information approach to the azurite mineral frustrated quantum magnet. Quant. Inf. Process. 15(7), 2839–2850 (2016)

    Article  MathSciNet  Google Scholar 

  41. Batle, J., Ooi, C.R., Farouk, A., Abdalla, S.: Nonlocality in pure and mixed n-qubit X states. Quant. Inf. Process. 15(4), 1553–1567 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Metwaly, A.F., Mastorakis, N.E.: Architecture of decentralized multicast network using quantum key distribution and hybrid WDM-TDM. In: Advances in Information Science and Computer Engineering, 504–518 (2015)

    Google Scholar 

  43. Metwaly, A.F., Rashad, M.Z., Omara, F.A., Megahed, A.A.: Architecture of Multicast Network Based on Quantum Secret Sharing and Measurement (2015)

    Google Scholar 

  44. Zeng, G.: Quantum Private Communication. Higher Education Press, Beijing (2010)

    Book  MATH  Google Scholar 

  45. Barenco, A., Bennett, C., Cleve, R., DiVincenzo, D., Margolus, N., Shor, P., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995). doi:10.1103/physreva.52.3457

    Article  Google Scholar 

  46. Hirvensalo, M.: Quantum Computing. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  47. Sharbaf, M.S.: Quantum cryptography: a new generation of information technology security system. In: Information Technology: New Generations, 2009. ITNG’09. Sixth International Conference on IEEE pp. 1644–1648 (April, 2009)

    Google Scholar 

  48. Aharonov, D.: A Simple Proof that Toffoli and Hadamard are Quantum Universal. arXiv preprint quant-ph/0301040 (2003)

    Google Scholar 

  49. Williams, C.P., Clearwater, S.H.: Explorations in Quantum Computing, vol. 1. Springer, New York (1998)

    MATH  Google Scholar 

  50. Mohammadi, M., Eshghi, M.: On figures of merit in reversible and quantum logic designs. Quant. Inf. Process. 8(4), 297–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Haghparast, M., Mohammadi, M., Navi, K., Eshghi, M.: Optimized reversible multiplier circuit. J. Circ. Syst. Comp. 18(02), 311–323 (2009)

    Article  MATH  Google Scholar 

  52. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493 (1995)

    Article  Google Scholar 

  53. Martín-López, E., Laing, A., Lawson, T., Alvarez, R., Zhou, X.Q., O’Brien, J.L.: Experimental realization of shor’s quantum factoring algorithm using Qubit recycling. Nat. Photon. 6(11), 773–776 (2012)

    Article  Google Scholar 

  54. Politi, A., Matthews, J.C., O’Brien, J.L.: Shor’s Quantum factoring algorithm on a photonic chip. Science, 325(5945), 1221–1221 (2009)

    Google Scholar 

  55. Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F., Xu, X.F., Pan, J.W.: Experimental Free-space Quantum Teleportation. Nat. Photonics 4(6), 376–381 (2010)

    Article  Google Scholar 

  56. Yin, J., Ren, J.G., Lu, H., Cao, Y., Yong, H.L., Wu, Y.P., Pan, J.W.: Quantum Teleportation and Entanglement Distribution over 100-kilometre Free-space Channels. Nature 488(7410), 185–188 (2012)

    Article  Google Scholar 

  57. Zhang, Q., Goebel, A., Wagenknecht, C., Chen, Y.A., Zhao, B., Yang, T., Pan, J.W.: Experimental Quantum Teleportation of a Two-qubit Composite System. Nat. Phys. 2(10), 678–682 (2006)

    Article  Google Scholar 

  58. Huang, Y.F., Ren, X.F., Zhang, Y.S., Duan, L.M., Guo, G.C.: Experimental Teleportation of a Quantum Controlled-NOT Gate. Phys. Rev. Lett. 93(24), 240501 (2004)

    Article  Google Scholar 

  59. Fang, X., Zhu, X., Feng, M., Mao, X., Du, F.: Experimental implementation of dense coding using nuclear magnetic resonance. Phys. Rev. A, 61(2), (2000) doi:10.1103/physreva.61.022307

  60. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense Coding in Experimental Quantum Communication. Phys. Rev. Lett. 76(25), 4656 (1996)

    Article  Google Scholar 

  61. Bell, J.S.: On the Einstein-Podolsky-Rosen Paradox. Physics 1(3), 195–200 (1964)

    Google Scholar 

  62. Aspect, A., Dalibard, J., Roger, G.: Experimental Test of Bell’s Inequalities using Time-varying Analyzers. Phys. Rev. Lett. 49(25), 1804 (1982)

    Article  MathSciNet  Google Scholar 

  63. Shimizu, K., Imoto, N.: Communication channels secured from eavesdropping via transmission of photonic bell states. Phys. Rev. A, 60(1), 157 (1999)

    Google Scholar 

  64. Einstein, A., Podolsky, B., Rosen, N.: Can Quantum-mechanical Description of Physical Reality be Considered Complete? Phys. Rev. 47(10), 777 (1935)

    Google Scholar 

  65. He, G., Zhu, J., Zeng, G.: Quantum Secure Communication using Continuous Variable Einstein-Podolsky-Rosen Correlations. Phys. Rev. A, 73(1), 012314 (2006)

    Google Scholar 

  66. Greenberger, D.M., Horne, M., Zeilinger, A.: Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, Ed. Kafatos, M. (1989)

    Google Scholar 

  67. Lu, C.Y., Zhou, X.Q., Gühne, O., Gao, W.B., Zhang, J., Yuan, Z.S., Pan, J.W.: Experimental Entanglement of Six Photons in Graph States. Nat. Phys. 3(2), 91–95 (2007)

    Article  Google Scholar 

  68. Poppe, A., Peev, M., Maurhart, O.: Outline of the SECOQC Quantum-key-distribution Network in Vienna. Int. J. Quant. Inf. 6(02), 209–218 (2008)

    Article  Google Scholar 

  69. Peev, M., Pacher, C., Alléaume, R., Barreiro, C., Bouda, J., Boxleitner, W., Tualle-Brouri, R.: The SECOQC Quantum Key Distribution Network in Vienna. New J. Phys. 11(7), 075001 (2009)

    Article  Google Scholar 

  70. Elliott, C.: Building the Quantum Network. New J. Phys. 4(1), 46 (2002)

    Article  Google Scholar 

  71. Elliott, C., Colvin, A., Pearson, D., Pikalo, O., Schlafer, J., Yeh, H.: Current status of the DARPA quantum network. In: Defense and Security. International Society for Optics and Photonics pp. 138–149 (May 2005)

    Google Scholar 

  72. Metwaly, A.F., Mastorakis, N.E.: Architecture of Decentralized Multicast Network Using Quantum Key Distribution and Hybrid WDM-TDM. Proceedings of the 9th International Conference on Computer Engineering and Applications (CEA ‘15). Advances in Information Science And Computer Engineering, 504–518 (2015)

    Google Scholar 

  73. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum Cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  MATH  Google Scholar 

  74. Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with Single-photon two-qubit states. J. Phys. A: Math. Gen. 35(28), L407 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  75. Shannon, C.E.: A Mathematical Theory of Communication. ACM SIGMOBILE Mobile Computing and Communications Review 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  76. Shannon, C.E.: Communication Theory of Secrecy Systems*. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  77. Shields, A., Zhiliang, Y.: Key to the Quantum Industry. Phys. World 20(3), 24–29 (2007)

    Article  Google Scholar 

  78. Kumar, Y., Munjal, R., Sharma, H.: Comparison of Symmetric and Asymmetric Cryptography with Existing Vulnerabilities and Countermeasures. Int. J. Comp. Sci. Manag. Studies, 11(03) (2011)

    Google Scholar 

  79. Ansari, H., Parameswaran, A., Antani, L., Aditya, B., Taly, A., Kumar, L.: Quantum Cryptography and Quantum Computation. IIT, Bombay

    Google Scholar 

  80. Pathak, A.: Elements of Quantum Computation and Quantum Communication. Taylor & Francis (2013)

    Google Scholar 

  81. Forouzan, A.B.: Data Communications & Networking (sie). Tata McGraw-Hill Education (2006)

    Google Scholar 

  82. Friend, G.: Understanding Data Communications. Texas Instruments, Dallas, Tx. (1984)

    Google Scholar 

  83. Hughes, L.: Data communications. McGraw-Hill, New York (1992)

    Google Scholar 

  84. Stallings, W.: Data and Computer Communications. Pearson/Prentice Hall (2007)

    Google Scholar 

  85. Ferguson, N., Schneier, B.: Practical Cryptography. Indianapolis, IN [etc.]: Wiley (2003)

    Google Scholar 

  86. Van Lint, J.H.: Introduction to Coding Theory, vol. 86. Springer Science & Business Media (1999)

    Google Scholar 

  87. Diffie, W., Hellman, M.E.: New Directions in Cryptography. Information Theory, IEEE Transactions on 22(6), 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  88. Bellovin, S.M.: Problem areas for the IP security protocols. In: Proceedings of the 6th conference on USENIX Security Symposium, Focusing on Applications of Cryptography vol. 6, pp. 21–21. USENIX Association (1996)

    Google Scholar 

  89. Paterson, K.G., Yau, A.K.: Cryptography in theory and practice: the case of encryption in IPsec. In: Advances in Cryptology-EUROCRYPT pp. 12–29. Springer, Berlin Heidelberg (2006)

    Google Scholar 

  90. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C. Wiley (2007)

    Google Scholar 

  91. Rafaeli, S., Hutchison, D.: A survey of key management for secure group communication. ACM Comput. Surveys (CSUR) 35(3), 309–329 (2003)

    Article  Google Scholar 

  92. Bandara, H.D., Jayasumana, A.P.: Collaborative applications over peer-to-peer systems-challenges and solutions. Peer Peer Network. Appl. 6(3), 257–276 (2013)

    Article  Google Scholar 

  93. Guo, C.J., Huang, Y.M.: Residency-based distributed collaborative key agreement for dynamic peer groups. Int. J. Innov. Comput. Inform. Control 8(8), 5523–5542 (2012)

    Google Scholar 

  94. Siramdasu, H., Krishna, H.: Communication in vibrant peer groups for cluster key management. Int. J. Eng. Trends Technol. 4(5), 1367–1373 (2013)

    Google Scholar 

  95. SuganyaDevi, D., Padmavathi, G.: Secure Multicast Key Distribution for Mobile Ad Hoc Networks. arXiv preprint (2010)arXiv:1003.1799

  96. Devaraju, S., Ganapathi, P.: Dynamic clustering for QoS based secure multicast key distribution in mobile ad hoc networks. IJCSI Int. J. Comp. Sci. 7(1–2), 30–37 (2010)

    Google Scholar 

  97. Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast security: a taxonomy and some efficient constructions. In: INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE vol. 2, pp. 708–716. IEEE (1999)

    Google Scholar 

  98. Canetti, R., Malkin, T., Nissim, K.: Efficient communication-storage tradeoffs for multicast encryption. In: Advances in Cryptology—EUROCRYPT’99 Springer Berlin Heidelberg, pp. 459–474 (1999)

    Google Scholar 

  99. Caronni, G., Waldvogel, M., Sun, D., Plattner, B.: Efficient Security for large and dynamic multicast groups. In: Enabling Technologies: Infrastructure for Collaborative Enterprises, 1998. (WET ICE’98) Proceedings on Seventh IEEE International Workshops on, pp. 376–383. IEEE (1998)

    Google Scholar 

  100. Wallner, D., Harder, E., Agee, R.: Key Management for Multicast: Issues and Architectures. RFC 2627 (1999)

    Google Scholar 

  101. Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs. Network. IEEE/ACM Trans. 8(1), 16–30 (2000)

    Article  Google Scholar 

  102. Degabriele, J.P., Paterson, K.G.: Attacking the IPsec Standards in Encryption-only Configurations. In: IEEE Symposium on Security and Privacy vol. 161, pp. 335–349 (2007)

    Google Scholar 

  103. Aiello, W., Bellovin, S.M., Blaze, M., Canetti, R., Ioannidis, J., Keromytis, A.D., Reingold, O.: Just fast keying: key agreement in a hostile internet. ACM Trans. Inform. Syst. Secur. (TISSEC) 7(2), 242–273 (2004)

    Article  MATH  Google Scholar 

  104. Kent, S., Atkinson, R.: RFC 2401: Security Architecture for the Internet Protocol (1998)

    Google Scholar 

  105. Kent, S., Seo, K.: RFC 4301: Security Architecture for the Internet Protocol (2005)

    Google Scholar 

  106. Atkinson, R., Header, I.A.: RFC 1826. Naval Research Laboratory (1995)

    Google Scholar 

  107. Kent, S., Header, I.A.: RFC 4302. IETF, December (2005)

    Google Scholar 

  108. Kent, S., Atkinson, R.: RFC 2402: IP Authentication Header (1998)

    Google Scholar 

  109. Atkinson, R.: RFC 1827. IP Encapsulating Security Payload (ESP) (1995)

    Google Scholar 

  110. Errata, K.S.: IP Encapsulating Security Payload. RFC 4303 (2005)

    Google Scholar 

  111. Elhoseny, M., El-Minir,R.A/., Yuan, X.: A secure data routing schema for WSN using elliptic curve cryptography and homomorphic encryption. J. King Saud Univ. Comp. Inform. Sci, 28(3): 262–275 (2016)

    Google Scholar 

  112. Elhoseny, M., Yuan, X., El-Minir, H., Riad, A.: An energy efficient encryption method for secure dynamic WSN. Sec. Commun. Networks, (9):2024–2031 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Farouk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Farouk, A. et al. (2018). Quantum Computing and Cryptography: An Overview. In: Hassanien, A., Elhoseny, M., Kacprzyk, J. (eds) Quantum Computing:An Environment for Intelligent Large Scale Real Application . Studies in Big Data, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-63639-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63639-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63638-2

  • Online ISBN: 978-3-319-63639-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics