Skip to main content

Silver Nanoparticles for Treatment of Neglected Diseases

  • Chapter
  • First Online:
Metal Nanoparticles in Pharma

Abstract

The study of neglected diseases is an important topic and deeply discussed in the newspapers, publications, and research foundations in the world. However, unfortunately no public or private attention has been paid on this issue. Still old drugs are being used, and very few are new for these diseases. Nanobiotechnology has appeared as a new strategy for the treatment of neglected diseases. The new developments in nanostructured carrier systems appear as promising in the treatment of many diseases with low toxicity, better efficacy and bioavailability, prolonged release of drugs, and reduction in the dosage of administration. This chapter is related to the use of nanobiotechnology in the treatment of neglected diseases by application of metallic nanoparticles on dengue virus, leishmaniosis, malaria, schistosomiasis, and trypanosomiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeyemi OS, Whiteley CG. Interaction of metal nanoparticles with recombinant arginine kinase from Trypanosoma brucei: thermodynamic and spectrofluorimetric evaluation. Biochim Biophys Acta. 2014;1840:701–6.

    Article  CAS  PubMed  Google Scholar 

  • Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR. Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector Borne Zoonotic Dis. 2012;12:262–8.

    Article  PubMed  Google Scholar 

  • Banu AN, Balasubramanian C, Moorthi PV. Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2014;113:311–6.

    Article  PubMed  Google Scholar 

  • Beatty ME, Stone A, Fitzsimons DW, Hanna JN, Lam SK, Vong S, Guzman MG, Mendez-Galvan JF, Halstead SB, Letson GW, Kuritsky J, Mahoney R, Margolis HS. Best practices in dengue surveillance: a report from the Asia-Pacific and Americas Dengue prevention boards. PloS Neglected Trop Dis. 2010;4:e890.

    Article  Google Scholar 

  • Bern, G.. http://www.uptodate.com/contents/chagas-disease-antitrypanosomal-drug-therapy. Accessed on 12 July 2015.

  • Borase HP, Patil D, Salunkhe RB, Narkhede CP, Salunke BK, Patil SV. Phyto-synthesized silver nanoparticles: a potent mosquito biolarvicidal agent. J Nanomed Biother Disc. 2013;3:1.

    Google Scholar 

  • Borase HP, Patil CD, Salunkhe RB, Narkhede CP, Suryawanshi RK, Salunke BK, Patil SV. Mosquito larvicidal and silver nanoparticles synthesis potential of plant latex. J Entomol Acaralological Res. 2014;46:59–65.

    Article  Google Scholar 

  • Castro L, Belázquez ML, Muñoz JA, González FG, Ballester A. Mechanism and applications of metal nanoparticles prepared by bio-mediated process. Rev Adv Sci Eng. 2014;3:1–18.

    Article  Google Scholar 

  • Durán N, Marcato PD, Teixeira Z, Durán M, Costa FTM, Brocchi M. State of art of nanobiotechnology applications in neglected diseases. Curr Nanosci. 2009;5:396–408.

    Article  Google Scholar 

  • Durán N, Marcato PD, De Conti R, Alves OL, Costa FTM, Brocchi M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc. 2010;21:949–59.

    Article  Google Scholar 

  • Durán N, Marcato PD, De Conti R, Alves OL, Costa FTM, Brocchi M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc. 2011a;21:949–59.

    Article  Google Scholar 

  • Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M. Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants. Appl Microbiol Biotechnol. 2011b;90:1609–24.

    Article  PubMed  Google Scholar 

  • Durán N, Islan GA, Durán M, Castro GR. Nanotechnology solutions against Aedes aegypti. J Braz Chem Soc. 2016a;27:1139–49.

    Google Scholar 

  • Durán N, Durán M, de Jesus MB, Fávaro WJ, Nakazato G, Seabra AB. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine: NBM. 2016b;12:789–99.

    Article  Google Scholar 

  • El-Nour KMMA, Eftaiha A, Al-Warthan A, Ammar RAA. Synthesis and applications of silver nanoparticles. Arab J Chem. 2010;3:135–40.

    Article  Google Scholar 

  • Gaikwad SC, Birla SS, Ingle AP, Gade AK, Marcato PD, Rai M, Durán N. Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J Braz Chem Soc. 2013;24:1974–82.

    CAS  Google Scholar 

  • Gharby MA, AL-Qadhi BN, Jaafar SM. Evaluation of silver nanoparticles (Ag NPs) activity against the viability of Leishmania tropica promastigotes and amastigotes in vitro. Iraqi J Sci. 2017;58:13–21.

    Google Scholar 

  • Gnanadesigan M, Anand M, Ravikumar S, Maruthupandy M, Vijayakumar V, Selvam S, Dhineshkumar M, Kumaraguru AK. Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pac J Trop Med. 2011;4:799–803.

    Article  CAS  PubMed  Google Scholar 

  • Guang XY, Wang JJ, He ZG, Chen GX, Ding L, Dai JJ, Yang XH. Molluscicidal effects of nano-silver biological molluscicide and niclosamide. Chin J Schistosomiasis Control. 2013;25:503–5.

    CAS  Google Scholar 

  • Hajra A, Mondal NK. Silver nanoparticles: an eco-friendly approach for mosquito control. Int J Sci Res Environ Sci. 2015;3:47–61.

    CAS  Google Scholar 

  • Idrees S, Ashfaq UA. RNAi: antiviral therapy against dengue vírus. Asian Pac J Trop Biomed. 2013;3:232–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalimuthu K, Panneerselvam C, Murugan K, Hwang J-S. Green synthesis of silver nanoparticles using Cadaba indica lam leaf extract and its larvicidal and pupicidal activity against Anopheles stephensi and Culex quinquefasciatus. J Entomol Acaralological Res. 2013;45:e11 57–64.

    Google Scholar 

  • Kamaraj C, Balasubramani G, Siva C, Raja M, Balasubramanian V, Raja RK, Tamilselvan S, Benelli G, Perumal P. Ag nanoparticles synthesized using β-caryophyllene isolated from Murraya koenigii: antimalarial (Plasmodium falciparum 3D7) and anticancer activity (A549 and HeLa cell lines). J Clust Sci. 2017, 2017; doi:10.1007/s10876-017-1180-6.

  • Lindoso JAL, Costa JML, Queiroz IT, Goto H. Review of the current treatments for leishmaniases. Res Rep Trop Med. 2012;3:69–77.

    Google Scholar 

  • Marinho DS, Casas CNPR, Pereira CCA, Leite IC. Health economic evaluations of visceral leishmaniasis treatments: a systematic review. PLoS Negl Trop Dis. 2015;9:e0003527.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mashwani Z, Khan T, Khan MA, Nadhman A. Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects. Appl Microbiol Biotechnol. 2015;99:9923–34.

    Article  CAS  PubMed  Google Scholar 

  • Mungrue K. The laboratory diagnosis of dengue virus infection, a review. Adv Lab Med Int. 2014;4:1–8.

    Google Scholar 

  • Nagle AS, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJN, Chennamaneni NK, Pendem N, Buckner FS, Gelb MH, Molten V. Recent developments in drug discovery for leishmaniasis and human African Trypanosomiasis. Chem Rev. 2014;114:11305–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neves BJ, Andrade CH, Cravo PVL. Natural products as leads in schistosome drug discovery. Molecules. 2015;20:1872–903.

    Article  PubMed  Google Scholar 

  • Panneerselvam C, Murugan K, Roni M, Aziz AT, Suresh U, Rajaganesh R, Madhiyazhagan P, Subramaniam J, Dinesh D, Nicoletti M, Higuchi A, Alarfaj AA, Munusamy MA, Kumar S, Desneux N, Benelli G. Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. Parasitol Res. 2016;115:997–1013.

    Article  PubMed  Google Scholar 

  • Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB. Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res. 2012;110:1815–22.

    Article  PubMed  Google Scholar 

  • Pereira PCM, Navarro EC. Challenges and perspectives of Chagas disease: a review. J Venom Anim Toxins Trop Dis. 2013;19:34–5.

    Article  Google Scholar 

  • Poopathi S, De Britto LJ, Praba VL, Mani C, Praveen M. Synthesis of silver nanoparticles from Azadirachta indica-A most effective method for mosquito control. Environ Sci Pollut Res. 2015;22:2956–63.

    Article  CAS  Google Scholar 

  • Prasad TNVKV, Kambala VSR, Naidu R. A critical review on biogenic silver nanoparticles and their antimicrobial activity. Curr Nanosci. 2011;4:531–44.

    Article  Google Scholar 

  • Priyadarshini KA, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang JS, Nicoletti M. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res. 2012;111:997–1006.

    Article  PubMed  Google Scholar 

  • Rai M, Durán N, editors. Metal nanoparticles in microbiology. Germany: Springer; 2011. p. 330.

    Google Scholar 

  • Rai M, Kon K. Silver nanoparticles for the control of vector-borne infections. In: Rai M, Kon K, editors. Nanotechnology in diagnosis, treatment and prophylaxis of infectious diseases. London: Elsevier; 2015. ch. 3.

    Google Scholar 

  • Rai M, Kon K, Ingle A, Durán N, Galdiero S, Galdiero M. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol. 2014a;98:1951–61.

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Birla S, Ingle A, Gupta I, Gade A, Abd-Elsalam K, Marcato PD, Durán N. Nanosilver: an inorganic nanoparticle with myriad potential applications. Nanotechnol Rev. 2014b;3:281–309.

    Article  CAS  Google Scholar 

  • Rodríguez-Morales OR, Monteón-Padilla VN, Carrillo-Sánchez SC, Rios-Castro M, Martínez-Cruz M, Carabarin-Lima A, Arce-Fonseca M. Experimental vaccines against Chagas disease: a journey through history. J Immunol Res. 2015;2015:489758.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi-Bergmann B, Pacienza-Lima W, Marcato PD, De Conti R, Durán N. Therapeutic potential of biogenic silver nanoparticles in murine cutaneous leishmaniasis. J Nano Res. 2012;20:89–97.

    Article  CAS  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK. Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res. 2011;109:823–31.

    Article  PubMed  Google Scholar 

  • Sareen SJ, Pillai RK, Chandramohanakumar N, Balagopalan M. Larvicidal potential of biologically synthesized silver nanoparticles against Aedes albopictus. Res J Recent Sci. 2012;1:52–6.

    CAS  Google Scholar 

  • Siu E, Ploss A. Modeling malaria in humanized mice. Ann N Y Acad Sci. 2015;1342:29–36.

    Article  CAS  PubMed  Google Scholar 

  • Soni N, Prakash S. Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res. 2012a;110:175–84.

    Article  PubMed  Google Scholar 

  • Soni N, Prakash S. Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Rep Parasitol. 2012b;2:1–7.

    Google Scholar 

  • Soni N, Prakash S. Fungal-mediated nano silver: an effective adulticide against mosquito. Parasitol Res. 2012c;111:2091–8.

    Article  PubMed  Google Scholar 

  • Soni N, Prakash S. Entomopathogenic fungus generated nanoparticles for enhancement of efficacy in Culex quinquefasciatus and Anopheles stephensi. Asian Pac J Trop Dis. 2012d;2:S356–61.

    Article  CAS  Google Scholar 

  • Soni N, Prakash S. Possible mosquito control by silver nanoparticles synthesized by soil fungus (Aspergillus niger 2587). Adv Nanopart. 2013;2:125–32.

    Article  Google Scholar 

  • Soni N, Prakash S. Silver nanoparticles: a possibility for malarial and filarial vector control technology. Parasitol Res. 2014a;113:4015–22.

    Article  PubMed  Google Scholar 

  • Soni N, Prakash S. Green nanoparticles for mosquito control. Sci World J. 2014b;2014:Article ID 496362.

    Article  Google Scholar 

  • Suganya A, Murugan K, Kovendan K, Kumar PM, Hwang JS. Green synthesis of silver nanoparticles using Murraya koenigii leaf extract against Anopheles stephensi and Aedes aegypti. Parasitol Res. 2013;112:1385–97.

    Article  PubMed  Google Scholar 

  • Sundaravadivelan C, Padmanabhan MN, Sivaprasath P, Kishmu L. Biosynthesized silver nanoparticles from Pedilanthusti thymaloides leaf extract with anti-developmental activity against larval instars of Aedes aegypti L. (Diptera; Culicidae). Parasitol Res. 2013;12:303–11.

    Article  Google Scholar 

  • Sutherland CS, Yukich J, Goeree R, Tediosi FA. Literature review of economic evaluations for a neglected tropical disease: human African trypanosomiasis (“Sleeping Sickness”). PLoS Negl Trop Dis. 2015;9:e0003397.

    Article  PubMed  PubMed Central  Google Scholar 

  • Veerakumar K, Govindarajan M. Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Parasitol Res. 2014;13:4085–96.

    Article  Google Scholar 

  • Veerakumar K, Govindarajan M, Rajeswary M. Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2013;112:4073–85.

    Article  PubMed  Google Scholar 

  • Veerakumar K, Govindarajan M, Hoti SL. Evaluation of plant-mediated synthesized silver nanoparticles against vector mosquitoes. Parasitol Res. 2014a;113:4567–677.

    Article  PubMed  Google Scholar 

  • Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U. Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2014b;113:1775–85.

    Article  PubMed  Google Scholar 

  • Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaram U. Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus (Diptera:Culicidae). Parasitol Res. 2014c;113:2663–73.

    Google Scholar 

  • Yang XH, Wang JJ, Ge JY, Wang JS, Dong FQ. Controlled synthesis of water soluble silver nanoparticles and the molluscicidal effect. Adv Mater Res. 2011;399–401:527–31.

    Article  Google Scholar 

Download references

Acknowledgments

Support by FAPESP, INOMAT (MCTI/CNPq), NanoBioss (MCTI), Brazilian Network on Nanotoxicology (MCTI/CNPq) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Durán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Durán, M., Fávaro, W.J., Islan, G.A., Castro, G.R., Durán, N. (2017). Silver Nanoparticles for Treatment of Neglected Diseases. In: Rai, Ph.D, M., Shegokar, Ph.D, R. (eds) Metal Nanoparticles in Pharma. Springer, Cham. https://doi.org/10.1007/978-3-319-63790-7_3

Download citation

Publish with us

Policies and ethics