Skip to main content

Epidemiology and Etiology of Chronic Myeloid Leukemia

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood

Abstract

Although some epidemiological information on Philadelphia (Ph)/BCR-ABL-positive chronic myeloid leukemia (CML) is available, etiological data are still sparse. CML incidence rates vary from 0.6 to 2.8 cases per 100,000 inhabitants with an obvious increase in age, and men are more often affected than women. Geographic and/or ethnic variations and diagnostic accurateness might contribute to the seen variability. CML can be induced by acute high-dose ionizing radiation exposure or exposure to benzene and some other chemicals. Prevalence rates have increased from 3.9 (1985) to 11.9 (2012) per 100,000 inhabitants mainly due to the widespread use of tyrosine kinase inhibitors (TKIs). Recently, an 8-year overall survival (OS) of 89% was published. This outstanding therapeutic achievement asks for further research on the occurrence of secondary malignancies, other therapy-related risks, treatment of elderly patients, economic impact on healthcare systems by the expensive long-term treatment, and chances to stop treatment with TKIs in patients with complete remission without risking relapse of CML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Virchow R. Weisses Blut. Frorieps Notizen. 1845;36:151–6.

    Google Scholar 

  2. Bennett JH. Case of hypertrophy of the spleen and liver, in which death took place from suppuration of the blood. Edinburgh Med Surg J. 1845;64:413–23.

    Google Scholar 

  3. Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–3.

    Article  CAS  PubMed  Google Scholar 

  4. Gambacorti-Passerini C, Antolini L, Mahon FX, et al. Multicenter independent assessment of outcomes in chronic myeloid leukemia patients treated with imatinib. J Natl Cancer Inst. 2011;103:553–61.

    Article  CAS  PubMed  Google Scholar 

  5. Hoglund M, Sandin F, Hellstrom K, et al. Tyrosine kinase inhibitor usage, treatment outcome, and prognostic scores in CML: report from the population-based Swedish CML registry. Blood. 2013;122(7):1284–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Apperley JF. Chronic myeloid leukaemia. Lancet. 2015;385:1447–59.

    Article  PubMed  Google Scholar 

  7. Lichtman MA. Is there an entity of chemically induced BCR-ABL-positive chronic myelogenous leukemia? Oncologist. 2008;13(6):645–54.

    Article  PubMed  Google Scholar 

  8. Segel GB, Lichtman MA. Familial (inherited) leukemia, lymphoma, and myeloma: an overview. Blood Cells Mol Dis. 2004;32:246–61.

    Article  PubMed  Google Scholar 

  9. Hemminki K, Jiang Y. Familial myeloid leukemias from the Swedish Family-Cancer Database. Leuk Res. 2002;26:611–3.

    Article  PubMed  Google Scholar 

  10. Wiernik P. Familial leukemias. Curr Treat Options Oncol. 2015;16:2–11.

    Article  Google Scholar 

  11. Björkholm M, Kristinsson SY, Landgren O, et al. No familial aggregation in chronic myeloid leukemia. Blood. 2013;122:460–1.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lillicrap DA, Sterndale H. Familial chronic myeloid leukaemia. Lancet. 1984;2(8404):699.

    Article  CAS  PubMed  Google Scholar 

  13. Kasim K, Levallois P, Abdous B, et al. Lifestyle factors and the risk of adult leukemia in Canada. Cancer Causes Control. 2005;16(5):489–500.

    Article  PubMed  Google Scholar 

  14. Strom SS, Yamamura Y, Kantarjian HM, et al. Obesity, weight gain, and risk of chronic myeloid leukemia. Cancer Epidemiol Biomarkers Prev. 2009;18(5):1501–6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kabat GC, Wu JW, Moore S, et al. Cancer Epidemiol Biomarkers Prev. 2013;22(5):848–54.

    Article  CAS  PubMed  Google Scholar 

  16. Musselman J, Blair C, Cerhan JR, et al. Risk of adult acute and chronic myeloid leukemia with cigarette smoking and cessation. Cancer Epidemiol. 2013;37(4):1–15.

    Article  Google Scholar 

  17. Mehlman MA. Dangerous and cancer-causing properties of products and chemicals in the oil refining and petrochemical industries. Part XXX: causal relationship between chronic myelogenous leukemia and benzene-containing solvents. Ann N Y Acad Sci. 2006;1076:110–9.

    Article  CAS  PubMed  Google Scholar 

  18. Lamm SH, Engel A, Joshi KP, Byrd DM 3rd, Chen R. Chronic myelogenous leukemia and benzene exposure: a systematic review and meta-analysis of the case-control literature. Chem Biol Interact. 2009;182(2-3):93–7.

    Article  CAS  PubMed  Google Scholar 

  19. Björk J, Albin M, Welinder H, et al. Are occupational, hobby, or lifestyle exposures associated with Philadelphia chromosome positive chronic myeloid leukaemia? Occup Environ Med. 2001;58(11):722–7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brandt L. Environmental factors and leukaemia. Med Oncol Tumor Pharmacother. 1985;2(1):7–10.

    CAS  PubMed  Google Scholar 

  21. Schnatter AR, Rosamilia K, et al. Review of the literature on benzene exposure and leukemia subtypes. Chem Biol Interact. 2005;153–154:9–21.

    Article  PubMed  CAS  Google Scholar 

  22. Smith MT. The mechanism of benzene-induced leukemia: a hypothesis and speculations on the cause of leukemia. Environ Health Perspect. 2007;104(Suppl 6):1219–25.

    Article  Google Scholar 

  23. Whysner J, Reddy MV, Ross PM, et al. Genotoxicity of benzene and its metabolites. Mutat Res. 2004;566:99–130.

    Article  CAS  PubMed  Google Scholar 

  24. Escobar PA, Smith MT, Vasishta A, et al. Leukaemia-specific chromosome damage detected by comet with fluorescence in situ hybridization (comet-FISH). Mutagenesis. 2007;22:321–7.

    Article  CAS  PubMed  Google Scholar 

  25. Lindsey RH Jr, Bender RP, Osheroff N. Effects of benzene metabolites on DNA cleavage mediated by human topoisomerase II alpha: 1,4-hydroquinone is a topoisomerase II poison. Chem Res Toxicol. 2005;18:761–70.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L, Yang W, Hubbard AE, et al. Nonrandom aneuploidy of chromosomes 1, 5, 6, 7, 8, 9, 11, 12, and 21 induced by the benzene metabolites hydroquinone and benzenetriol. Environ Mol Mutagen. 2005;45:388–96.

    Article  CAS  PubMed  Google Scholar 

  27. Mamuris Z, Prieur M, Dutrillaux B, et al. The chemotherapeutic drug melphalan induces breakage of chromosomes regions rearranged in secondary leukemia. Cancer Genet Cytogenet. 1989;37:65–77.

    Article  CAS  PubMed  Google Scholar 

  28. Beranek DT. Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res. 1990;231:11–30.

    Article  CAS  PubMed  Google Scholar 

  29. Albertini R, Vacek P, Walker VE, et al. 1,3-Butadiene, CML and the t(9:22) translocation: a reality check. Chem Biol Interact. 2015;241:32–9.

    Article  CAS  PubMed  Google Scholar 

  30. Preston DL, Kusumi S, Tomonaga M, et al. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res. 1994;137(Suppl 2):S68–97.

    Article  CAS  PubMed  Google Scholar 

  31. Finch SC. Radiation-induced leukemia: lessons from history. Best Pract Res Clin Haematol. 2007;20:109–18.

    Article  PubMed  Google Scholar 

  32. Ichimaru M, Tomonaga M, Amenomori T, et al. Atomic bomb and leukemia. J Radiat Res (Tokyo). 1991;32(Suppl 2):14–9.

    Article  Google Scholar 

  33. Hsu WL, Preston DL, Soda M, et al. The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001. Radiat Res. 2013 Mar;179(3):361–82.

    Article  CAS  PubMed  Google Scholar 

  34. Hoglund M, Sandin F, Simonsson B. Epidemiology of chronic myeloid leukaemia: an update. Ann Hematol. 2015;94(Suppl 2):S241–7.

    Article  PubMed  Google Scholar 

  35. Gluzman D, Imamura N, Sklyarenko L, et al. Patterns of hematological malignancies in Chernobyl clean-up workers (1996–2005). Exp Oncol. 2006;28(1):60–3.

    CAS  PubMed  Google Scholar 

  36. Ito T, Seyama T, Mizuno T, et al. Induction of BCR-ABL fusion genes by in vitro X-irradiation. Jpn J Cancer Res. 1993;84:105–9.

    Article  CAS  PubMed  Google Scholar 

  37. Deininger MW, Bose S, Gora-Tybor J, et al. Selective induction of leukemia-associated fusion genes by high-dose ionizing radiation. Cancer Res. 1998;58:421–5.

    CAS  PubMed  Google Scholar 

  38. Rohrbacher M, Hasford J. Epidemiology of chronic myeloid leukaemia (CML). Best Pract Res Clin Haematol. 2009;22(3):295–302.

    Article  PubMed  Google Scholar 

  39. Parkin DM. The evolution of the population-based cancer registry. Nat Rev Cancer. 2006;6:603–12.

    Article  CAS  PubMed  Google Scholar 

  40. Swedish Cancer Registry, 1998–2008, Annual report publications of the Centre of Epidemiology at the National Board of Health and Welfare. http://www.socialstyrelsen.se/Statistik/statistik_amne/Cancer. Accessed May 2010.

  41. Swedish Cancer Registry, 2009–2014, Annual report publications of the Centre of Epidemiology at the National Board of Health and Welfare. http://www.socialstyrelsen.se/statistics/statisticaldatabase/cancer. Accessed March 2016.

  42. Krebsregister Saarland, 1998–2007, Germany. http://www.krebsregister.saarland.de. Accessed May 2010.

  43. Krebsregister Saarland, 2008–2012, Germany. http://www.krebsregister.saarland.de/datenbank/datenbank.html. Accessed March 2016.

  44. Altekruse SF, Kosary CL, Krapcho M, et al. SEER cancer statistics review, 1975–2007. Bethesda: National Cancer Institute. http://seer.cancer.gov/csr/1975_2007/. Accessed May 2010.

  45. Howlader N, Noone AM, Krapcho M, et al. Cancer statistics review, 1975–2012, Bethesda: National Cancer Institute http://seer.cancer.gov/csr/2009_2012/. Accessed April 2016.

  46. Hoffmann VS, Baccarani M, Hasford J, et al. The EUTOS population-based registry: incidence and clinical characteristics of 2904 CML patients in 20 European Countries. Leukemia. 2015;29(6):1336–43.

    Article  CAS  PubMed  Google Scholar 

  47. Phekoo KJ, Richards MA, Moller H, Schey SA. The incidence and outcome of myeloid malignancies in 2,112 adult patients in south East-England. Haematologica. 2006;91:1400–4.

    PubMed  Google Scholar 

  48. Harrison SJ, Johnson PRE, Holyoake TL. The Scotland Leukaemia Registry audit of incidence, diagnosis and clinical management of new patients with chronic myeloid leukaemia in 1999 and 2000. Scott Med J. 2004;49:87–90.

    Article  CAS  PubMed  Google Scholar 

  49. McNally RJ, Rowland D, Roman E, Cartwright RA. Age and sex distributions of hematological malignancies in the U.K. Hematol Oncol. 1997;15:173–89.

    Article  CAS  PubMed  Google Scholar 

  50. Hasford J, Tauscher M, Hochhaus A. Incidence, comorbidity and treatment survey of chronic myeloid leukemia in Germany. Blood (ASH Annual Meeting Abstracts). 2007;110:Abstract 2964

    Google Scholar 

  51. Corm S, Micol J, Leroyer A, et al. Kinetic of chronic myeloid leukaemia (CML) prevalence in Northern France since the introduction of imatinib. J Clin Oncol. 2008;26(Suppl.):Abstract 7088

    Google Scholar 

  52. Penot A, Preux PM, Le Guyader S, et al. Incidence of chronic myeloid leukemia and patient survival: results of five French population-based cancer registries 1980–2009. Leuk Lymphoma. 2015;56(6):1771–7.

    Article  PubMed  Google Scholar 

  53. Lee J, Birnstein E, Masiello D, Yang D, et al. Gender and ethnic differences in chronic myelogenous leukemia prognosis and treatment response: a single-institution retrospective study. J Hematol Oncol. 2009;2:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rohrbacher M, Berger U, Hochhaus A, et al. Clinical trials underestimate age of chronic myeloid leukemia (CML) patients. incidence and median age of Ph/BCR-ABL positive CML and other chronic myeloproliferative disorders in a representative area in Germany. Leukemia. 2008;23:602–4.

    Article  PubMed  Google Scholar 

  55. Mendizabal A, Younes N, Levine PH. Geographic and income variations in age at diagnosis and incidence of chronic myeloid leukemia. Int J Hematol. 2016;103(1):70–8.

    Article  PubMed  Google Scholar 

  56. Ahmad O, Boschi-Pinto C, Lopez A, et al. Age standardization of rates: a new WHO standard. GPE Discussion paper Series: No. 31. http://www.who.int/infobase/help. Accessed May 2010.

  57. Ridell B, Carneskog J, Wedel H, et al. Incidence of chronic myeloproliferative disorders in the city of Göteborg, Sweden 1983–1992. Eur J Haematol. 2000;65:267–71.

    Article  CAS  PubMed  Google Scholar 

  58. Hasford J, Baccarani M, Hehlmann R, et al. Interferon-a and hydroxyurea in early chronic myeloid leukemia: a comparative analysis of the Italian and German chronic myeloid leukemia trials with interferon-a. Blood. 1996;88:5384–91.

    Google Scholar 

  59. Allan NC, Richards SM, Shepherd PC. UK Medical Research Council randomised, multicentre trial of interferon-alpha n1 for chronic myeloid leukaemia: improved survival irrespective of cytogenetic response. The UK medical research council’s working parties for therapeutic trials in adult leukaemia. Lancet. 1995;345:1392–7.

    Article  CAS  PubMed  Google Scholar 

  60. Onida F, Ball G, Kantarjian HM, et al. Characteristics and outcome of patients with Philadelphia chromosome negative, bcr/abl negative chronic myelogenous leukemia. Cancer. 2002;95(8):1673–84.

    Article  PubMed  Google Scholar 

  61. Micheli A, Mugno E, Krogh V, et al. Cancer prevalence in European registry areas. Ann Oncol. 2002;13:840–65.

    Article  CAS  PubMed  Google Scholar 

  62. Gunnarsson N, Sjalander A, Sandin F, et al. Population-based assessment of chronic myeloid leukemia in Sweden: striking increase in survival and prevalence. Eur J Haematol. 2016;97(4):387–92.

    Google Scholar 

  63. Huang X, Cortes J, Kantarjian H. Estimations of the increasing prevalence and plateau prevalence of chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy. Cancer. 2012;118(12):3123–7.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pfirrmann M, Hoffmann VS, Hasford J, et al. Prognosis of long-term survival considering disease-specific death in patients with chronic myeloid leukemia. Leukemia. 2016;30(1):48–56.

    Article  CAS  PubMed  Google Scholar 

  65. Brunner AM, Campigotto F, Sadrzadeh H, et al. Trends in all-cause mortality among patients with chronic myeloid leukemia: a Surveillance, Epidemiology, and End Results database analysis. Cancer. 2013;119(14):2620–9.

    Article  PubMed  Google Scholar 

  66. Mandal R, Bolt DM, Shah B. Disparities in chronic myeloid leukemia survival by age, gender, and ethnicity in pre- and post-imatinib eras in the US. Acta Oncol. 2013;52(4):837–41.

    Article  PubMed  Google Scholar 

  67. Lauseker M, Gerlach R, Tauscher M, Hasford J. Improved survival boosts the prevalence of chronic myeloid leukemia: predictions from a population-based study. J Cancer Res Clin Oncol. 2016;142(7):1441–7.

    Article  PubMed  Google Scholar 

  68. Gunnarsson N, Wallvik J, Sjalander A, et al. Second malignancies following treatment of chronic myeloid leukaemia in the tyrosine kinase inhibitor era. Br J Haematol. 2015;169(5):683–8.

    Article  CAS  PubMed  Google Scholar 

  69. Shah BK, Ghimire KB. Second primary malignancies in chronic myeloid leukemia. Indian J Hematol Blood Transfus. 2014;30(4):236–40.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tardieu S, Brun-Strang C, Berthaud P, et al. Management of chronic myeloid leukemia in France: a multicentered cross-sectional study on 538 patients. Pharmacoepidemiol Drug Saf. 2005;14:545–53.

    Article  PubMed  Google Scholar 

  71. Verdecchia A, Baili P, Quaglia A, et al. Patient survival for all cancers combined as indicator of cancer control in Europe. Eur J Public Health. 2008;18:527–32.

    Article  PubMed  Google Scholar 

  72. Menzin J, Lang K, Earle CC, et al. Treatment patterns, outcomes and costs among elderly patients with chronic myeloid leukaemia: a population-based analysis. Drugs Aging. 2004;21(11):737–46.

    Article  PubMed  Google Scholar 

  73. Darkow T, Henk HJ, Thomas SK, et al. Treatment interruptions and non-adherence with imatinib and associated healthcare costs: a retrospective analysis among managed care patients with chronic myelogenous leukaemia. Pharmacoeconomics. 2007;25(6):481–96.

    Article  CAS  PubMed  Google Scholar 

  74. Dalziel K, Round A, Stein K, et al. Effectiveness and cost-effectiveness of imatinib for first-line treatment of chronic myeloid leukaemia in chronic phase: a systematic review and economic analysis. Health Technol Assess. 2004;8(28):iii. 1–120

    Article  CAS  PubMed  Google Scholar 

  75. Micheli A, Capocaccia R, Martinez C, et al. Cancer control in Europe: a proposed set of European cancer health indicators. Eur J Public Health. 2003;13:116–8.

    Article  PubMed  Google Scholar 

  76. Conti RM, Padula WV, Larson RA. Changing the cost of care for chronic myeloid leukemia: the availability of generic imatinib in the USA and the EU. Ann Hematol. 2015;94(Suppl 2):S249–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Experts in Chronic Myeloid Leukemia. The price of drugs for chronic myeloid leukemia (CML) is a reflection of the unsustainable prices of cancer drugs: from the perspective of a large group of CML experts. Blood. 2013;121(22):4439–42.

    Article  PubMed Central  CAS  Google Scholar 

  78. Baccarani M, Saglio G, Goldman J, et al. Evolving concepts in the management of chronic myeloid leukemia. Recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2006;108:1809–20.

    Article  CAS  PubMed  Google Scholar 

  79. Baccarani M, Cortes J, Pane F, et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol. 2009;27(35):6041–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Breccia M, Luigiana L, Latagliata R, et al. Age influences initial dose and compliance to imatinib in chronic myeloid leukemia elderly patients but concomitant comorbidities appear to influence overall and event-free survival. Leuk Res. 2014;38(10):1173–6.

    Article  CAS  PubMed  Google Scholar 

  81. Gugliotta G, Castagnetti F, Apolinari M, et al. First-line treatment of newly diagnosed elderly patients with chronic myeloid leukemia: current and emerging strategies. Drugs. 2014;74(6):627–43.

    Article  CAS  PubMed  Google Scholar 

  82. Seiter K. Considerations in the management of elderly patients with chronic myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2012;12(1):12–9.

    Article  PubMed  Google Scholar 

  83. Russo D, Malagola M, Skert C, et al. Treatment of chronic myeloid leukemia elderly patients in the tyrosine kinase inhibitor era. Curr Cancer Drug Targets. 2013;13(7):755–67.

    Article  CAS  PubMed  Google Scholar 

  84. Wiggins C, Harlan L, Nelson H, et al. Age disparity in the dissemination of imatinib for treating chronic myeloid leukemia. Am J Med. 2010;123(8):764.e1–9.

    Article  CAS  Google Scholar 

  85. Hasford J, Baccarani M, Hoffmann V, et al. Predicting complete cytogenetic response and subsequent progression-free survival in 2060 patients with CML on imatinib treatment: the EUTOS score. Blood. 2011;118:686–92.

    Article  CAS  PubMed  Google Scholar 

  86. Hoffmann VS, Baccarani M, Lindoerfer D, et al. The EUTOS prognostic score: review and validation in 1288 patients with CML treated frontline with imatinib. Leukemia. 2013;27:2016–22.

    Article  CAS  PubMed  Google Scholar 

  87. Beinortas T, Tavorienė I, Tadas Žvirblis T, et al. Chronic myeloid leukemia incidence, survival and accessibility of tyrosine kinase inhibitors: a report from population-based Lithuanian haematological disease registry 2000–2013. BMC Cancer. 2016;16:198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Hehlmann R, Berger U, Pfirrmann M, et al. Randomized comparison of interferon a and hydroxyurea with hydroxyurea monotherapy in chronic myeloid leukemia (CML-Study II): prolongation of survival by the combination of interferon a and hydroxyurea. Leukemia. 2003;17:1529–37.

    Article  CAS  PubMed  Google Scholar 

  89. Hehlmann R, Berger U, Pfirrmann M, et al. Drug treatment is superior to allografting as first line therapy in chronic myeloid leukemia. Blood. 2007;109:4686–92.

    Article  CAS  PubMed  Google Scholar 

  90. The Italian Cooperative Study Group on Chronic Myeloid Leukemia. Interferon alfa-2a as compared with conventional chemotherapy for the treatment of chronic myeloid leukemia. N Engl J Med. 1994;330:820–5.

    Article  Google Scholar 

  91. The Benelux CML Study Group. Randomized study on hydroxyurea alone versus hydroxyurea combined with low-dose interferon-a2b for chronic myeloid leukemia. Blood. 1998;91:2713–21.

    Google Scholar 

  92. Kluin-Nelemans HC, Buck G, Le Cessie S, et al. Randomized comparison of low-dose versus high-dose interferon-alfa in chronic myeloid leukemia: prospective collaboration of 3 joint trials by the MRC and HOVON groups. Blood. 2004;103:4408–15.

    Article  CAS  PubMed  Google Scholar 

  93. Kantarjian HM, Talpaz M, O’Brien S, et al. Survival benefit with imatinib mesylate versus interferon alpha-based regimens in newly diagnosed chronic phase chronic myelogenous leukemia. Blood. 2006;108:1835–40.

    Article  CAS  PubMed  Google Scholar 

  94. Jabbour E, Daniel Jones D, Kantarjian HM, et al. Long-term outcome of patients with chronic myeloid leukemia treated with second-generation tyrosine kinase inhibitors after imatinib failure is predicted by the in vitro sensitivity of BCR-ABL kinase domain mutations. Blood. 2009;114:2037–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Saussele S, Lauseker M, Gratwohl A, et al. Allogeneic hematopoietic stem cell transplantation (allo SCT) for chronic myeloid leukemia in the imatinib era: evaluation of its impact within a subgroup of the randomized German CML Study IV. Blood. 2010;115(10):1880–5.

    Article  CAS  PubMed  Google Scholar 

  96. Palandri F, Castagnetti F, Iacobucci I, et al. The response to imatinib and interferon-{alpha} is more rapid than the response to imatinib alone: a retrospective analysis of 495 Philadelphia-positive chronic myeloid leukemia patients in early chronic phase. Haematologica. 2010;95(8):1415–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Efficace F, Baccarani M, Breccia M. Health-related quality of life in chronic myeloid leukemia patients receiving long-term therapy with imatinib compared with the general population. Blood. 2011;118:4554–60.

    Article  CAS  PubMed  Google Scholar 

  98. Hanfstein B, Müller MC, Hehlmann R, the SAKK, the German CML Study Group, et al. Early molecular and cytogenetic response is predictive for long-term progression-free and overall survival in chronic myeloid leukemia (CML). Leukemia. 2012;26:2096–102.

    Article  CAS  PubMed  Google Scholar 

  99. Marin D, Ibrahim AR, Lucas C, et al. Assessment of BCR-ABL1 transcript levels at 3 months is the only requirement for predicting outcome for patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. J Clin Oncol. 2012;30:232–8.

    Article  CAS  PubMed  Google Scholar 

  100. Cortes JE, Kim DW, Kantarjian HM, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: results from the BELA trial. J Clin Oncol. 2012;30:3486–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jabbour E, le Coutre PD, Cortes J, et al. Prediction of outcomes in patients with Ph+ chronic myeloid leukemia in chronic phase treated with nilotinib after imatinib resistance/intolerance. Leukemia. 2013;27:907–13.

    Article  CAS  PubMed  Google Scholar 

  102. Castagnetti F, Gugliotta G, de Vivo A. Differences among young adults, adults and elderly chronic myeloid leukemia patients. Ann Oncol. 2015;26:185–92.

    Article  CAS  PubMed  Google Scholar 

  103. Saussele S, Krauss MP, Hehlmann R, et al. Impact of comorbidities on overall survival in patients with chronic myeloid leukemia: results of the randomized CML study IV. Blood. 2015;126(1):42–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hehlmann R, Heimpel H, Hasford J, et al. Randomized comparison of interferon-alpha with busulfan and hydroxyurea in chronic myelogenous leukemia. Blood. 1994;84:4064–77.

    CAS  PubMed  Google Scholar 

  105. Baccarani M, Rosti G, De Vivo A, et al. A randomized study of interferon-alpha versus interferon-alpha and low-dose arabinosyl cytosine in chronic myeloid leukemia. Blood. 2002;99:1527–35.

    Article  CAS  PubMed  Google Scholar 

  106. Bonifazi F, De Vivo A, Rosti G, et al. Chronic myeloid leukemia and interferon-alpha: a study of complete cytogenetic responders. Blood. 2001;98:3074–81.

    Article  CAS  PubMed  Google Scholar 

  107. Druker BJ, Guilhot F, O’Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–17.

    Article  CAS  PubMed  Google Scholar 

  108. Guilhot F, Chastang C, Michallet M, et al. Interferon alpha2b (IFN) combined with cytarabine versus interferon alone in chronic myelogenous leukemia. N Engl J Med. 1997;337:223–9.

    Article  CAS  PubMed  Google Scholar 

  109. Hasford J, Pfirrmann M, Hehlmann R, et al. A new prognostic score for the survival of patients with chronic myeloid leukemia treated with interferon alfa. J Natl Cancer Inst. 1998;90:850–8.

    Article  CAS  PubMed  Google Scholar 

  110. Faber E, Koza V, Jarosova M, et al. Treatment of consecutive patients with chronic myeloid leukaemia in the cooperating centres from the Czech Republic and the whole of Slovakia after 2000—a report from the population-based CAMELIA Registry. Eur J Haematol. 2011;87(2):157–68.

    Article  PubMed  Google Scholar 

  111. Schmidt S, Wolf D, Gastl G, et al. Wien Klin Wochenschr. 2010;122(19–20):558–66.

    Article  PubMed  Google Scholar 

  112. Xie Y, Davies SM, Xiang Y, Robison LL, Ross JA. Trends in leukemia incidence and survival in the United States (1973–1998). Cancer. 2003;97:2229–35.

    Article  PubMed  Google Scholar 

  113. Goldberg SL, Chen L, Guerin A, et al. Association between molecular monitoring and long-term outcomes in chronic myelogenous leukemia patients treated with first line imatinib. Curr Med Res Opin. 2013;29:1075–82.

    Article  CAS  PubMed  Google Scholar 

  114. Lauseker M, Hasford J, Pfirrmann M, Hehlmann R, German CML Study Group, et al. The impact of health care settings on survival time of patients with chronic myeloid leukemia. Blood. 2014;123:2494–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Hasford M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Rohrbacher, M., Hasford, J. (2018). Epidemiology and Etiology of Chronic Myeloid Leukemia. In: Wiernik, P., Dutcher, J., Gertz, M. (eds) Neoplastic Diseases of the Blood. Springer, Cham. https://doi.org/10.1007/978-3-319-64263-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64263-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64262-8

  • Online ISBN: 978-3-319-64263-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics