Skip to main content

Using UAVs to Map Aquatic Bird Colonies

  • Chapter
  • First Online:
The Roles of Remote Sensing in Nature Conservation

Abstract

In this chapter, we present the results of several flight campaigns carried out in 2015 and 2016 using multirotor Unmanned Airborne Vehicles (UAVs) over Slender-billed Gull (Chroicocephalus genei) colonies in the Doñana Nature Space, south west Spain. The images were taken at different times during the breeding season. The requirements for the flight campaigns were to acquire sufficient visible and nadir pictures at 5 cm pixel resolution and to cover the entire nesting colony with maximum overlap. Although we carried out the flights under clear skies, low wind speed was not always possible, causing a few blurred pictures. After georeferencing and mosaicking the set of raw pictures, we adopted photo-interpretation as the first technique to identify and delineate birds, either lying, standing or flying. A nest position was assigned when the clear pattern of a lying birds was recognised. We then selected a set of breeding individuals (nests) to train a supervised classification in semi-automatic nest delineation. We applied two different algorithms and tested their accuracy in identifying gulls with an independent set of manually delineated individuals. We chose the best method according to the accuracy results and applied it to the whole colony. We found major issues for nest identification and delineation for nests under tree and shrub canopies. The different campaigns and flight characteristics were useful to improve bird identification accuracy. As a result, we provided estimates of the number of breeding pairs per year to managers and cross-checked these with estimates from the ground monitoring and colony sampling. As an added value, the spatial coordinates of nests can be used for spatial analysis and investigate nest aggregation, density and distribution in order to reveal spatial relationships with environmental factors such as distance to colony edges, distance to colony centroid, distance to predators, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elrahman, A.: Development of pattern recognition algorithm for automatic bird detection from unmanned aerial vehicle imagery. Surv. Land Inf. Sci. 65, 37–45 (2005)

    Google Scholar 

  • Anderson, K., Gaston, K.J.: Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 11, 138–146 (2013). doi:10.1890/120150

    Article  Google Scholar 

  • Bakó, G., Tolnai, M., Takács, Á.: Introduction and testing of a monitoring and colony-mapping method for waterbird populations that uses high-speed and ultra-detailed aerial remote sensing. Sensors. 14, 12828–12846 (2014). doi:10.3390/s140712828

    Article  PubMed  PubMed Central  Google Scholar 

  • BirdLife International: Species factsheet: Larus genei, http://datazone.birdlife.org/species/factsheet/22694428

  • Camp-Valls, G., Bruzzone, L.: Kernel Methods for Remote Sensing Data Analysis. Wiley, New York (2009)

    Google Scholar 

  • Chabot, D., Craik, S.R., Bird, D.M.: Population census of a large common tern colony with a small unmanned aircraft. Plos One. 10, e0122588 (2015). doi:10.1371/journal.pone.0122588

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, C.H.: Image Processing for Remote Sensing. CRC Press, Boca Raton (2007)

    Google Scholar 

  • Chrétien, L.-P., Théau, J., Ménard, P.: Visible and thermal infrared remote sensing for the detection of white-tailed deer using an unmanned aerial system. Wildl. Soc. Bull. 40, 181–191 (2016). doi:10.1002/wsb.629

    Article  Google Scholar 

  • Del-Hoyo, J., Elliott, A., Sargatal, J.: Handbook of the birds of the world, vol. 3, Lynx Edicions edn. Hoatzin to Auks, Barcelona (1996)

    Google Scholar 

  • Foody, G.M., Mathur, A.: A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 42, 1335–1343 (2004). doi:10.1109/TGRS.2004.827257

    Article  Google Scholar 

  • Frederick, P.C., Towles, T., Sawicki, R.J., Bancroft, G.T.: Comparison of aerial and ground techniques for discovery and census of wading bird (Ciconiiformes) nesting colonies. The Condor. 98, 837–841 (1996). doi:10.2307/1369865

    Article  Google Scholar 

  • Grenzdörffer, G.J.: UAS-based automatic bird count of a common gull colony. ISPRS – Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 1, 169–174 (2013). doi:10.5194/isprsarchives-XL-1-W2-169-2013

    Article  Google Scholar 

  • Hodgson, J.C., Baylis, S.M., Mott, R., Herrod, A., Clarke, R.H.: Precision wildlife monitoring using unmanned aerial vehicles. Sci. Rep. 6, 22574 (2016). doi:10.1038/srep22574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, G.P., Pearlstine, L.G., Percival, H.F.: An assessment of small unmanned aerial vehicles for wildlife research. Wildl. Soc. Bull.. 1973-2006. 34, 750–758 (2006)

    Google Scholar 

  • Madroño, A., González, G.G., Atienza, J.C.: Libro rojo de las aves de España. Organismo Autónomo Parques Nacionales (2004)

    Google Scholar 

  • Mañez, M., Arroyo, J.L., Chico, A., del Valle, J.L., García, L., Garrido, H., Martínez, A., Rodríguez, R.: Seguimiento de Aves Acuáticas. Espacio Natural de Doñana. Reproducción 2016. Estación Biológica de Doñana, CSIC, Sevilla, España (2015)

    Google Scholar 

  • McEvoy, J.F., Hall, G.P., McDonald, P.G.: Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition. Peer J. 4, e1831 (2016). doi:10.7717/peerj.1831

    Article  PubMed  PubMed Central  Google Scholar 

  • Oro, D., Tavecchia, G.: Gaviota picofina. In: Gaviotas cabecinegra, picofina, de Audouin y tridáctila, y gavión atlántico en España. Población en 2007 y método de censo. pp. 21–43. SEO/BirdLife, Madrid, España (2008)

    Google Scholar 

  • Pal, M.: Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26, 217–222 (2005). doi:10.1080/01431160412331269698

    Article  Google Scholar 

  • Prosper, J., Hafner, H.: Breeding aspects of the colonial Ardeidae in the Albufera de Valencia, Spain: population changes, phenology, and reproductive success of the three most abundant species. Colon. Waterbirds. 19, 98–107 (1996). doi:10.2307/1521952

    Article  Google Scholar 

  • Ratcliffe, N., Guihen, D., Robst, J., Crofts, S., Stanworth, A., Enderlein, P.: A protocol for the aerial survey of penguin colonies using UAVs. J. Unmanned Veh. Syst. 3, 95–101 (2015). doi:10.1139/juvs-2015-0006

    Article  Google Scholar 

  • Richards, J.A.: Remote Sensing Digital Image Analysis: An Introduction. Springer Science & Business Media, Berlin, (2013)

    Google Scholar 

  • Sardà-Palomera, F., Bota, G., Viñolo, C., Pallarés, O., Sazatornil, V., Brotons, L., Gomáriz, S., Sardà, F.: Fine-scale bird monitoring from light unmanned aircraft systems. Ibis. 154, 177–183 (2012)

    Article  Google Scholar 

  • Vas, E., Lescroël, A., Duriez, O., Boguszewski, G., Grémillet, D.: Approaching birds with drones: first experiments and ethical guidelines. Biol. Lett. 11, 20140754 (2015). doi:10.1098/rsbl.2014.0754

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

RECUPERA 2020 project partially funded Miguel Ferrer for this study. We are grateful to the Doñana Natural Processes Monitoring Team, especially José Luis Arroyo and Fernando Ibáñez, and also Luis García, Héctor Garrido, José Luis del Valle, Rubén Rodríguez, and Alfredo Chico. The authors want also to thank to Consejería de Medio Ambiente de la Junta de Andalucía for the funding of the Long-Term Monitoring Program of Doñana Natural Space and the annual census of Doñana breeding birds. Thanks to the owners of Veta La Palma for their cooperation and help in accessing the colonies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Díaz-Delgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Díaz-Delgado, R., Mañez, M., Martínez, A., Canal, D., Ferrer, M., Aragonés, D. (2017). Using UAVs to Map Aquatic Bird Colonies. In: Díaz-Delgado, R., Lucas, R., Hurford, C. (eds) The Roles of Remote Sensing in Nature Conservation. Springer, Cham. https://doi.org/10.1007/978-3-319-64332-8_14

Download citation

Publish with us

Policies and ethics