Skip to main content

Introduction to Quantum Information

  • Chapter
  • First Online:
Exploring Quantum Foundations with Single Photons

Part of the book series: Springer Theses ((Springer Theses))

  • 825 Accesses

Abstract

Quantum information science views quantum mechanics as a theory that is fundamentally about information and information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Classical probabilistic mixtures in contrast would typically allow for a unique decomposition into pure states.

  2. 2.

    Note that this space is in fact isomorphic to the state-space of a single ququart with basis \(\{ | 0 \rangle , | 1 \rangle , | 2 \rangle , | 3 \rangle \}\), see also Chap. 4. Certain quantum superposition states in the ququart space correspond to entangled states in the bipartite qubit space.

  3. 3.

    Translated from the German term “Verschränkung”, coined by Erwin Schrödinger in 1935 [12].

  4. 4.

    This feature is reminiscent of the observation that quantum mechanics is impartial about how a certain quantum state was prepared (as a mixture of pure states) or how a certain transformation is implemented (as a mixture of unitary transformations), see Sect. 3.3 for more details.

  5. 5.

    Traditionally the strength of a von Neumann measurement is determined by the coupling strength g, the interaction time t, and the initial uncertainty in the meter \(\Delta \). A measurement is then considered “weak” if \(gt\ll \Delta \), see e.g. Ref. [42].

  6. 6.

    If the upgraded BICEP detector finds convincing evidence for polarization of the cosmic microwave background that would suggest a coherence time on the order of billions of years.

  7. 7.

    In fact, the waveplate still imparts a global phase of \(\pi \) or \(\pi {/}2\), which can be relevant if it is part of a multi-path interferometer.

  8. 8.

    In fact, \(\theta _0\) is the angle of either fast or slow axis, and determining which of the two it is requires more complicated methods, such as using Fresnel reflection from a metallic surface [59]. In practice, however, it is almost always sufficient to simply make sure that all axes within an experiment are aligned relative to one another, which merely requires analysing the behaviour of two consecutive waveplates.

  9. 9.

    At first sight it might seem obvious that photons that do not arrive at the same time cannot interfere, but, in fact, the interference can be restored by erasing the information about which photon was first [63].

  10. 10.

    In fact, the same is true for every input state which has a \( | VV \rangle \)-component.

  11. 11.

    A series of these gates can, however, be used in an overlapping ladder structure, as long as no two photons interfere twice [64].

References

  1. Helstrom, C.W.: Quantum detection and estimation theory. J. Stat. Phys. 1, 231–252 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bertlmann, R.A., Krammer, P.: Bloch vectors for qudits. J. Phys. A 41, 235303 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Goyal, S.K., Simon, B.N., Singh, R., Simon, S.: Geometry of the generalized Bloch sphere for qutrits. J. Phys. A 49, 165203 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Wigner, E.: On the quantum correction for thermodynamic equil. Phys. Rev. 40, 749–759 (1932)

    Article  ADS  MATH  Google Scholar 

  6. Moyal, J.E., Bartlett, M.S.: Quantum mechanics as a statistical theory. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 99 (1949)

    Google Scholar 

  7. Hillery, M., O’Connell, R., Scully, M., Wigner, E.: Distribution functions in physics: fundamentals. Phys. Rep. 106, 121–167 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  8. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

    Google Scholar 

  9. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315–2323 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Gilchrist, A., Langford, N.K., Nielsen, M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A 71, 062310 (2005)

    Article  ADS  Google Scholar 

  11. Branciard, C., Brunner, N., Gisin, N., Kurtsiefer, C., Lamas-Linares, A., Ling, A., Scarani, V.: Testing quantum correlations versus single-particle properties within Leggett’s model and beyond. Nat. Phys. 4, 681–685 (2008)

    Article  Google Scholar 

  12. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Die Naturwissenschaften 23, 807–849 (1935)

    Article  ADS  MATH  Google Scholar 

  13. Gurvits, L.: Classical deterministic complexity of Edmonds’ Problem and quantum entanglement. In: Proceedings of the Thirty-Fifth ACM symposium on Theory of Computing—STOC ’03. ACM Press (2003)

    Google Scholar 

  14. Horodecki, R., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Langford, N.K.: Encoding, manipulating and measuring quantum information in optics. Ph.D. The University of Queensland (2007)

    Google Scholar 

  16. Cavalcanti, E.G., Menicucci, N.C., Pienaar, J.L.: The preparation problem in nonlinear extensions of quantum theory. arXiv:1206.2725 (2012)

  17. Ringbauer, M., Broome, M.A., Myers, C.R., White, A.G., Ralph, T.C.: Experimental simulation of closed timelike curves. Nat. Commun. 5, 4145 (2014)

    Google Scholar 

  18. Shahandeh, F., Ringbauer, M., Loredo, J.C., Ralph, T.C.: Ultrafine entanglement witnessing. Phys. Rev. Lett. 118, 110502 (2017)

    Article  ADS  Google Scholar 

  19. Tóth, G., Wieczorek, W., Krischek, R., Kiesel, N., Michelberger, P., Weinfurter, H.: Practical methods for witnessing genuine multi-qubit entanglement in the vicinity of symmetric states. New J. Phys., 083002 (2009)

    Google Scholar 

  20. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  21. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)

    Article  ADS  Google Scholar 

  22. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  MATH  Google Scholar 

  23. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  24. Cao, K., Zhou, Z.-W., Guo, G.-C., He, L.: Efficient numerical method to calculate the three-tangle of mixed states. Phys. Rev. A 81, 034302 (2010)

    Article  ADS  Google Scholar 

  25. Miyake, A.: Classification of multipartite entangled states by multidimensional determinants. Phys. Rev. A 67, 012108 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  26. Wood, C.: Non-completely positive maps: properties and applications. Ph.D. thesis, Macquarie University (2009)

    Google Scholar 

  27. Ringbauer, M., Wood, C.J., Modi, K., Gilchrist, A., White, A.G., Fedrizzi, A.: Characterizing quantum dynamics with initial system-environment correlations. Phys. Rev. Lett. 114, 090402 (2015)

    Article  ADS  Google Scholar 

  28. Wood, C.J., Biamonte, J.D., Cory, D.G.: Tensor networks and graphical calculus for open quantum systems. Quantum Inf. Comput. 15, 0759–0811 (2011)

    MathSciNet  Google Scholar 

  29. Stinespring, W.F.: Positive functions on C*-algebras. Proc. Am. Math. Soc. 6, 211–211 (1955)

    MathSciNet  MATH  Google Scholar 

  30. Schumacher, B.: Sending quantum entanglement through noisy channels. Phys. Rev. A 54, 2614 (1996)

    Article  ADS  Google Scholar 

  31. Choi, M.-D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jamiołkowski, A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275–278 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Wood, C.J.: Initialization and characterization of open quantum systems. Ph.D. thesis, University of Waterloo (2015)

    Google Scholar 

  34. Born, M.: On the quantum mechanics of collisions. Zeitschrift für Physik 38, 803–827 (1926)

    Article  ADS  Google Scholar 

  35. Fuchs, C.A.: QBism, the perimeter of quantum Bayesianism. arXiv:1003.5209 (2010)

  36. Aerts, D.: A possible explanation for the probabilities of quantum mechanics. J. Math. Phys. 27, 202–210 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  37. Gleason, A.: Measures on the closed subspaces of a hilbert space. Indiana Univ. Math. J. 6, 885–893 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  38. Carroll, S.M.: Why probability in quantum mechanics is given by the wave function squared. Sean Carroll’s Blog (2014)

    Google Scholar 

  39. Davies. E.B., Lewis, J.T.: An operational approach to quantum probabillity. Commun. Math. Phys. 17, 239–260 (1970)

    Google Scholar 

  40. Naimark, M.: Spectral functions of a symmetric operator. Izv. Akad. Nauk SSSR Ser. Mat. 4, 277–318 (1940)

    MathSciNet  MATH  Google Scholar 

  41. Kwiat, P.G., Englert, B.-G.: Quantum-erasing the nature of reality, or perhaps, the reality of nature? In: Barrow, J.D., Davies, P.C.W., L., H.C. (eds.) Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity. Cambridge University Press (2004)

    Google Scholar 

  42. Pusey, M.F., Leifer, M.S.: Logical pre- and post-selection paradoxes are proofs of contextuality. Electron. Notes Theor. Comput. Sci. 195, 295–306 (2015)

    Article  Google Scholar 

  43. Kocsis, S., Braverman, B., Ravets, S., Stevens, M.J., Mirin, R.P., Shalm, L.K., Steinberg, A.M.: Observing the average trajectories of single photons in a two-slit interferometer. Science 332, 1170–1173 (2011)

    Article  ADS  MATH  Google Scholar 

  44. Bliokh, K.Y., Bekshaev, A.Y., Kofman, A.G., Nori, F.: Photon trajectories, anomalous velocities and weak measurements: a classical interpretation. New J. Phys. 15, 073022 (2013)

    Article  ADS  Google Scholar 

  45. Dressel, J.: Weak values as interference phenomena. Phys. Rev. A 91, 032116 (2015)

    Article  ADS  Google Scholar 

  46. Dressel, J., Jordan, A.N.: Contextual-value approach to the generalized measurement of observables. Phys. Rev. A 85, 022123 (2012)

    Google Scholar 

  47. Grangier, P., Levenson, J.A., Poizat, J.-P.: Characterization of quantum non-demolition measurements in optics. Nature 396, 537–542 (1998)

    Article  ADS  Google Scholar 

  48. Ralph, T.C., Bartlett, S.D., O’Brien, J.L., Pryde, G.J., Wiseman, H.M.: Quantum nondemolition measurements for quantum information. Phys. Rev. A 73, 012113 (2006)

    Article  ADS  Google Scholar 

  49. Monroe, C.: Demolishing quantum nondemolition. Phys. Today 64, 8 (2011)

    Article  ADS  Google Scholar 

  50. Brune, M., Haroche, S., Raimond, J.M., Davidovich, L., Zagury, N.: Manipulation of photons in a cavity by dispersive atom-field coupling: quantum-nondemolition measurements and generation of "Schrödinger cat" states. Phys. Rev. A 45, 5193–5214 (1992)

    Article  ADS  Google Scholar 

  51. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  MATH  Google Scholar 

  52. Carolan, J., et al.: Universal linear optics. Science 349, 711–716 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Molina-Terriza, G., Torres, J.P., Torner, L.: Twisted photons. Nat. Phys. 3, 305–310 (2007)

    Article  Google Scholar 

  54. Fernandez-Corbaton, I., Molina-Terriza, G.: Role of duality symmetry in transformation optics. Phys. Rev. B 88, 085111 (2013)

    Article  ADS  Google Scholar 

  55. Nagali, E., Sciarrino, F.: Manipulation of photonic orbital angular momentum for quantum information processing. In: Advanced Photonic Sciences (InTech, 2012)

    Google Scholar 

  56. Andersen, M., Ryu, C., Cladé, P., Natarajan, V., Vaziri, A., Helmerson, K., Phillips, W.: Quantized rotation of atoms from photons with orbital angular momentum. Phys. Rev. Lett. 97, 170406 (2006)

    Article  ADS  Google Scholar 

  57. Fickler, R.: Quantum entanglement of complex structures of photons. Ph.D. thesis, University of Vienna (2015)

    Google Scholar 

  58. Hou, Z., Xiang, G., Dong, D., Li, C.-F., Guo, G.-C.: Realization of mutually unbiased bases for a qubit with only one wave plate: theory and experiment. Opt. Express 23, 10018 (2015)

    Article  ADS  Google Scholar 

  59. Logofatu, P.C.: Simple method for determining the fast axis of a wave plate. Opt. Eng. 41, 3316 (2002)

    Article  ADS  Google Scholar 

  60. Volz, J., Scheucher, M., Junge, C., Rauschenbeutel, A.: Nonlinear \(\pi \) phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom. Nat. Phot. 8, 965–970 (2014)

    Article  Google Scholar 

  61. Holbrow, C.H., Galvez, E., Parks, M.E.: Photon quantum mechanics and beam splitters. Am. J. Phys. 70, 260 (2002)

    Article  ADS  Google Scholar 

  62. Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)

    Article  ADS  Google Scholar 

  63. Kim, Y.-H., Grice, W.P.: Quantum interference with distinguishable photons through indistinguishable pathways, vol. 6. arXiv:quant-ph/0304086 (2003)

  64. Ralph, T.: Scaling of multiple postselected quantum gates in optics. Phys. Rev. A 70, 012312 (2004)

    Article  ADS  Google Scholar 

  65. Loredo, J.C.: Enabling multi-photon experiments with solid-state emitters: a farewell to downconversion. Ph.D. thesis, The University of Queensland (2016)

    Google Scholar 

  66. Kok, P., Lovett, B.W.: Optical Quantum Information Processing. Cambridge University Press (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ringbauer .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ringbauer, M. (2017). Introduction to Quantum Information. In: Exploring Quantum Foundations with Single Photons. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-64988-7_1

Download citation

Publish with us

Policies and ethics