Skip to main content

Machine Learning for Pavement Friction Prediction Using Scikit-Learn

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10423))

Included in the following conference series:

Abstract

During the last decades, the advent of Artificial Intelligence (AI) has been taking place in several technical and scientific areas. Despite its success, AI applications to solve real-life problems in pavement engineering are far from reaching its potential. In this paper, a Python machine learning library, scikit-learn, is used to predict asphalt pavement friction. Using data from the Long-Term Pavement Performance (LTPP) database, 113 different sections of asphalt concrete pavement, spread all over the United States, were selected. Two machine learning models were built from these data to predict friction, one based on linear regression and the other on regularized regression with lasso. Both models showed to be feasible and perform similarly. According to the results, initial friction plays an essential role in the way friction evolves over time. The results of this study also showed that scikit-learn can be a versatile tool to solve pavement engineering problems. By applying machine learning methods to predict asphalt pavements friction, this paper emphasizes how theory and practice can be effectively coupled to solve real-life problems in contemporary transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Wallman, C.G., Åström, H.: Friction Measurement Methods and the Correlation Between Road Friction and Traffic Safety. VTI, Sweden (2001)

    Google Scholar 

  2. Hastie, T., Tibshirani, R., Friedman, J.J.H.: The Elements of Statistical Learning. Springer, Heidelberg (2001)

    Book  Google Scholar 

  3. Murphy, K.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  4. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Seabold, S., Perktold, J.: Statsmodels: econometric and statistical modeling with python. In: Proceedings of the 9th Python in Science Conference, vol. 57, Austin (2010)

    Google Scholar 

  6. Van der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011)

    Article  Google Scholar 

  7. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007)

    Article  Google Scholar 

  8. McKinney, W.: Python for Data Analysis. O’Reilly, Springfield (2012)

    Google Scholar 

  9. Kane, M., Scharnigg, K.: D10: report on different parameters influencing skid resistance, rolling resistance and noise emissions. Technical report, TYROSAFE project (2009)

    Google Scholar 

  10. Henry, J.J.: Evaluation of pavement friction characteristics a synthesis of highway practice. In: NCHRP synthesis 291. Transportation Research Board (2000)

    Google Scholar 

  11. Wilson, D.J.: The effect of rainfall and contaminants on road pavement skid resistance. Research report, New Zealand Transport Agency (2013)

    Google Scholar 

  12. Cenek, P.D., Alabaster, D.J., Davies, R.B.: Seasonal and weather normalisation of skid resistance measurements. Research report, Transfund New Zealand (1999)

    Google Scholar 

  13. Chen, X., Dai, S., Guo, Y., Yang, J., Huang, X.: Polishing of asphalt pavements: from macro- to micro-scale. J. Test. Eval. 44(2), 882–894 (2015)

    Google Scholar 

  14. Long-Term Pavement Performance (LTPP) Database. LTPP InfoPave (2017). https://infopave.fhwa.dot.gov. Accessed Feb 2017

  15. Standard, A.S.T.M.: Standard test method for skid resistance of paved surfaces using a full-scale tire. ASTM International, West Conshohocken (2009)

    Google Scholar 

  16. Titus-Glover, L., Tayabji, S.D.: Assessment of LTPP friction data. Technical report, Federal Highway Administration (1999)

    Google Scholar 

  17. Rada, G.: SHRP-LTPP monitoring data: five-year report. Technical report, Strategic Highway Research Program (1994)

    Google Scholar 

  18. Hall, J.W., Smith, K.L., Titus-Glover, L.: Guide for pavement friction. Technical report, Transportation Research Board (2009)

    Google Scholar 

  19. Ahammed, M.A., Tighe, S.L.: Early-Life, long-term, and seasonal variations in skid resistance in flexible and rigid pavements. Trans. Res. Rec. 2094(1), 112–120 (2009)

    Article  Google Scholar 

  20. Saito, K., Henry, J.J.: Mechanistic model for predicting seasonal variations in skid resistance. Trans. Res. Rec. 946, 29–37 (1983)

    Google Scholar 

  21. Fuentes, L., Asce, M., Gunaratne, M., Hess, D.: Evaluation of the effect of pavement roughness on skid resistance. J. Trans. Eng. 136(7), 640–653 (2010)

    Article  Google Scholar 

  22. Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E.: Multivariate Data Analysis. Pearson, London (2014)

    Google Scholar 

  23. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. 36(2), 111–147 (1974)

    MathSciNet  MATH  Google Scholar 

  24. Krstajic, D., Buturovic, L.J., Leahy, D.E., Thomas, S.: Cross-validation pitfalls when selecting and assessing regression and classification models. J. Chem. Inf. 6(10), 1–15 (2014)

    Google Scholar 

  25. Varma, S., Simon, R.: Bias in error estimation when using cross-validation for model selection. BMC Bioinf. 7, 1–8 (2006)

    Article  Google Scholar 

  26. Harrell, F.E.: Regression Modeling Strategies. Springer, Heidelberg (2015)

    Book  Google Scholar 

  27. Flintsch, G., McGhee, K., Izeppi, E.L., Najafi, S.: The Little Book of Tire Pavement Friction. Pavement Surface Properties Consortium (2012)

    Google Scholar 

  28. Song, W., Chen, X., Smith, T., Hedfi, A.: Investigation of hot mix asphalt surfaced pavements skid resistance in Maryland state highway network system. In: TRB 85th Annual Meeting (2006)

    Google Scholar 

  29. Ahammed, M.A., Tighe, S.L.: Effect of short-term and long-term weather on pavement surface friction. Int. J. Pavement Res. Technol. 3(6), 295–302 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Marcelino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Marcelino, P., de Lurdes Antunes, M., Fortunato, E., Gomes, M.C. (2017). Machine Learning for Pavement Friction Prediction Using Scikit-Learn. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds) Progress in Artificial Intelligence. EPIA 2017. Lecture Notes in Computer Science(), vol 10423. Springer, Cham. https://doi.org/10.1007/978-3-319-65340-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65340-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65339-6

  • Online ISBN: 978-3-319-65340-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics