Skip to main content

CoverSize: A Global Constraint for Frequency-Based Itemset Mining

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2017)

Abstract

Constraint Programming is becoming competitive for solving certain data-mining problems largely due to the development of global constraints. We introduce the CoverSize constraint for itemset mining problems, a global constraint for counting and constraining the number of transactions covered by the itemset decision variables. We show the relation of this constraint to the well-known table constraint, and our filtering algorithm internally uses the reversible sparse bitset data structure recently proposed for filtering table. Furthermore, we expose the size of the cover as a variable, which opens up new modelling perspectives compared to an existing global constraint for (closed) frequent itemset mining. For example, one can constrain minimum frequency or compare the frequency of an itemset in different datasets as is done in discriminative itemset mining. We demonstrate experimentally on the frequent, closed and discriminative itemset mining problems that the CoverSize constraint with reversible sparse bitsets allows to outperform other CP approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is similar to the update of currTable in [14] for filtering table constraints.

  2. 2.

    As for many NP-hard global constraints like bin-packing, cumulative, circuit, etc.

  3. 3.

    A related generic technique in CP is shaving [26].

  4. 4.

    http://fimi.ua.ac.be/data/.

  5. 5.

    https://dtai.cs.kuleuven.be/CP4IM/datasets/.

  6. 6.

    http://research.nii.ac.jp/~uno/codes.htm (v3 is fastest of all versions in our experiments).

  7. 7.

    https://sites.uclouvain.be/cp4dm/fim/.

References

  1. Aggarwal, C.C.: An introduction to frequent pattern mining. In: Aggarwal, C.C., Han, J. (eds.) Frequent Pattern Mining, pp. 1–17. Springer, Cham (2014). doi:10.1007/978-3-319-07821-2_1

    Google Scholar 

  2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. Int. Conf. Manag. Data (SIGMOD) 22(2), 207–216 (1993)

    Google Scholar 

  3. Aoga, J.O.R., Guns, T., Schaus, P.: An efficient algorithm for mining frequent sequence with constraint programming. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS, vol. 9852, pp. 315–330. Springer, Cham (2016). doi:10.1007/978-3-319-46227-1_20

    Chapter  Google Scholar 

  4. Aoga, J.O., Guns, T., Schaus, P.: Mining time-constrained sequential patterns with constraint programming. Constraints 22, 1–23 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bessiere, C., Régin, J.C.: Arc consistency for general constraint networks: preliminary results. In: International Joint Conference on Artificial Intelligence (IJCAI) (1997)

    Google Scholar 

  6. Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In: Fourth IEEE International Conference on Data Mining, ICDM 2004, pp. 35–42, November 2004

    Google Scholar 

  7. Borgelt, C.: Efficient implementations of Apriori and Eclat. In: FIMI: Workshop on Frequent Itemset Mining Implementations (2003)

    Google Scholar 

  8. Borgelt, C.: Frequent item set mining. Wiley Interdisc. Rev.: Data Min. Knowl. Discov. 2(6), 437–456 (2012)

    Google Scholar 

  9. Bringmann, B., Zimmermann, A.: Tree 2 – decision trees for tree structured data. In: Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS, vol. 3721, pp. 46–58. Springer, Heidelberg (2005). doi:10.1007/11564126_10

    Chapter  Google Scholar 

  10. Bringmann, B., Zimmermann, A., Raedt, L., Nijssen, S.: Don’t be afraid of simpler patterns. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS, vol. 4213, pp. 55–66. Springer, Heidelberg (2006). doi:10.1007/11871637_10

    Chapter  Google Scholar 

  11. Cheng, H., Yan, X., Han, J., Philip, S.Y.: Direct discriminative pattern mining for effective classification. In: IEEE 24th International Conference on Data Engineering, ICDE 2008, pp. 169–178. IEEE (2008)

    Google Scholar 

  12. Cheng, K.C., Yap, R.H.: An MDD-based generalized arc consistency algorithm for positive and negative table constraints and some global constraints. Constraints 15(2), 265–304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 204–212 (2008)

    Google Scholar 

  14. Demeulenaere, J., Hartert, R., Lecoutre, C., Perez, G., Perron, L., Régin, J.-C., Schaus, P.: Compact-table: efficiently filtering table constraints with reversible sparse bit-sets. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 207–223. Springer, Cham (2016). doi:10.1007/978-3-319-44953-1_14

    Chapter  Google Scholar 

  15. Deshpande, M., Kuramochi, M., Wale, N., Karypis, G.: Frequent substructure-based approaches for classifying chemical compounds. IEEE Trans. Knowl. Data Eng. 17(8), 1036–1050 (2005)

    Article  Google Scholar 

  16. Fan, W., Zhang, K., Cheng, H., Gao, J., Yan, X., Han, J., Yu, P., Verscheure, O.: Direct mining of discriminative and essential frequent patterns via model-based search tree. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 230–238. ACM (2008)

    Google Scholar 

  17. Gecode Team: Gecode: generic constraint development environment (2006). http://www.gecode.org

  18. Google: Google optimization tools (2015). https://developers.google.com/optimization/

  19. Guns, T., Nijssen, S., De Raedt, L.: Itemset mining: a constraint programming perspective. Artif. Intell. 175(12–13), 1951–1983 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jabbour, S., Sais, L., Salhi, Y.: The top-k frequent closed itemset mining using top-k SAT problem. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS, vol. 8190, pp. 403–418. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40994-3_26

    Chapter  Google Scholar 

  21. Jabbour, S., Sais, L., Salhi, Y.: Mining top-k motifs with a sat-based framework. Artif. Intell. 244, 30–47 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kemmar, A., Loudni, S., Lebbah, Y., Boizumault, P., Charnois, T.: PREFIX-PROJECTION global constraint for sequential pattern mining. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 226–243. Springer, Cham (2015). doi:10.1007/978-3-319-23219-5_17

    Google Scholar 

  23. Knuth, D.: The Art of Computer Programming: Combinatorial Algorithms, vol. 4. Addison-Wesley, Upper Saddle River (2015)

    Google Scholar 

  24. Lazaar, N., Lebbah, Y., Loudni, S., Maamar, M., Lemière, V., Bessiere, C., Boizumault, P.: A global constraint for closed frequent pattern mining. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 333–349. Springer, Cham (2016). doi:10.1007/978-3-319-44953-1_22

    Chapter  Google Scholar 

  25. Lecoutre, C.: STR2: optimized simple tabular reduction for table constraints. Constraints 16(4), 341–371 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lhomme, O.: Quick shaving. In: Proceedings of the 20th National Conference on Artificial Intelligence, vol. 1. pp. 411–415. AAAI Press (2005)

    Google Scholar 

  27. Morishita, S., Sese, J.: Traversing itemset lattice with statistical metric pruning. In: Vianu, V., Gottlob, G. (eds.) Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, 15–17 May 2000, Dallas, Texas, USA, pp. 226–236. ACM (2000)

    Google Scholar 

  28. Negrevergne, B., Dries, A., Guns, T., Nijssen, S.: Dominance programming for itemset mining. In: 2013 IEEE 13th International Conference on Data Mining Data Mining (ICDM), pp. 557–566. IEEE (2013)

    Google Scholar 

  29. Negrevergne, B., Guns, T.: Constraint-based sequence mining using constraint programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 288–305. Springer, Cham (2015). doi:10.1007/978-3-319-18008-3_20

    Google Scholar 

  30. Nijssen, S., Guns, T.: Integrating constraint programming and itemset mining. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6322, pp. 467–482. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15883-4_30

    Chapter  Google Scholar 

  31. Nijssen, S., Guns, T., De Raedt, L.: Correlated itemset mining in ROC space: a constraint programming approach. In: International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 647–656. ACM (2009)

    Google Scholar 

  32. Nijssen, S., Zimmermann, A.: Constraint-based pattern mining. In: Aggarwal, C.C., Han, J. (eds.) Frequent Pattern Mining, pp. 147–163. Springer, Cham (2014). doi:10.1007/978-3-319-07821-2_7

    Google Scholar 

  33. OscaR Team: OscaR: Scala in OR (2012). https://bitbucket.org/oscarlib/oscar

  34. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1999). doi:10.1007/3-540-49257-7_25

    Chapter  Google Scholar 

  35. Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 606–621. Springer, Cham (2014). doi:10.1007/978-3-319-10428-7_44

    Google Scholar 

  36. Rácz, B.: nonordfp: an FP-growth variation without rebuilding the FP-tree. In: FIMI: Workshop on Frequent Itemset Mining Implementations (2004)

    Google Scholar 

  37. de Saint-Marcq, V.l.C., Schaus, P., Solnon, C., Lecoutre, C.: Sparse-sets for domain implementation. In: CP workshop on - Techniques foR Implementing Constraint programming Systems (TRICS), pp. 1–10 (2013)

    Google Scholar 

  38. Stuckey, P.J., Becket, R., Fischer, J.: Philosophy of the minizinc challenge. Constraints 15(3), 307–316 (2010)

    Article  MATH  Google Scholar 

  39. Uno, T., Kiyomi, M., Arimura, H.: LCM Ver. 3: collaboration of array, bitmap and prefix tree for frequent itemset mining. In: Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations (OSDM 2005), pp. 77–86. ACM (2005)

    Google Scholar 

Download references

Acknowledgments

The research is supported by the FRIA-FNRS (Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture, Belgium) and FWO (Research Foundation – Flanders). We also thank Willard Zhan for his help with the reduction proof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Schaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Schaus, P., Aoga, J.O.R., Guns, T. (2017). CoverSize: A Global Constraint for Frequency-Based Itemset Mining. In: Beck, J. (eds) Principles and Practice of Constraint Programming. CP 2017. Lecture Notes in Computer Science(), vol 10416. Springer, Cham. https://doi.org/10.1007/978-3-319-66158-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66158-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66157-5

  • Online ISBN: 978-3-319-66158-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics