Skip to main content

Reachability in Parametric Interval Markov Chains Using Constraints

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10503))

Included in the following conference series:

Abstract

Parametric Interval Markov Chains (pIMCs) are a specification formalism that extend Markov Chains (MCs) and Interval Markov Chains (IMCs) by taking into account imprecision in the transition probability values: transitions in pIMCs are labeled with parametric intervals of probabilities. In this work, we study the difference between pIMCs and other Markov Chain abstractions models and investigate the two usual semantics for IMCs: once-and-for-all and at-every-step. In particular, we prove that both semantics agree on the maximal/minimal reachability probabilities of a given IMC. We then investigate solutions to several parameter synthesis problems in the context of pIMCs – consistency, qualitative reachability and quantitative reachability – that rely on constraint encodings. Finally, we propose a prototype implementation of our constraint encodings with promising results.

This work is partially supported by the ANR national research programs PACS (ANR-14-CE28-0002) and Coverif (ANR-15-CE25-0002), and the regional programme Atlanstic2020 funded by the French Region Pays de la Loire and the European Regional Development Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Indeed, when \(0 \le v(f_1) \le v(f_2) \le 1\) is not respected, the interval is inconsistent and therefore empty.

  2. 2.

    \(|\mathcal {L}_1|\) and \(|\mathcal {L}_2|\) are the sizes of \(\mathcal {L}_1\) and \(\mathcal {L}_2\), respectively.

  3. 3.

    All resources, benchmarks, and source code are available online as a Python library at https://github.com/anicet-bart/pimc_pylib.

  4. 4.

    Available online at http://www.prismmodelchecker.com.

References

  1. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC, pp. 592–601. ACM (1993)

    Google Scholar 

  2. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind Series). The MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  3. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB) (2016). www.SMT-LIB.org

  4. Bart, A., Delahaye, B., Lime, D., Monfroy, E., Truchet, C.: Reachability in Parametric Interval Markov Chains using Constraints (2017). https://hal.archives-ouvertes.fr/hal-01529681 (long version)

  5. Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval Markov chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 32–46. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7_3

    Chapter  Google Scholar 

  6. Cantor, G.: Über unendliche, lineare punktmannigfaltigkeiten v (on infinite, linear point-manifolds). Math. Ann. 21, 545–591 (1883)

    Article  MathSciNet  MATH  Google Scholar 

  7. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  9. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen, J.-P., Ábrahám, E.: PROPhESY: A PRObabilistic ParamEter SYnthesis Tool. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer, Cham (2015). doi:10.1007/978-3-319-21690-4_13

    Chapter  Google Scholar 

  10. Delahaye, B.: Consistency for parametric interval Markov chains. In: SynCoP, pp. 17–32 (2015)

    Google Scholar 

  11. Delahaye, B., Lime, D., Petrucci, L.: Parameter synthesis for parametric interval Markov chains. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 372–390. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49122-5_18

    Chapter  Google Scholar 

  12. Chakraborty, S., Katoen, J.-P.: Model checking of open Interval Markov chains. In: Gribaudo, M., Manini, D., Remke, A. (eds.) ASMTA 2015. LNCS, vol. 9081, pp. 30–42. Springer, Cham (2015). doi:10.1007/978-3-319-18579-8_3

    Chapter  Google Scholar 

  13. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker for parametric Markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6_56

    Chapter  Google Scholar 

  14. Husmeier, D., Dybowski, R., Roberts, S.: Probabilistic Modeling in Bioinformatics and Medical Informatics. Springer Publishing Company, Incorporated, London (2010)

    MATH  Google Scholar 

  15. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS, pp. 266–277 (1991)

    Google Scholar 

  16. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  17. Norman, G., Parker, D., Kwiatkowska, M., Shukla, S.: Evaluating the reliability of NAND multiplexing with PRISM. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 24(10), 1629–1637 (2005)

    Article  Google Scholar 

  18. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_35

    Chapter  Google Scholar 

  19. Rossi, F., Beek, P.V., Walsh, T.: Handbook of Constraint Programming (Foundations of Artificial Intelligence). Elsevier Science Inc., Amsterdam (2006)

    MATH  Google Scholar 

  20. Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, R.M.: Tulip: a software toolbox for receding horizon temporal logic planning (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anicet Bart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bart, A., Delahaye, B., Lime, D., Monfroy, É., Truchet, C. (2017). Reachability in Parametric Interval Markov Chains Using Constraints. In: Bertrand, N., Bortolussi, L. (eds) Quantitative Evaluation of Systems. QEST 2017. Lecture Notes in Computer Science(), vol 10503. Springer, Cham. https://doi.org/10.1007/978-3-319-66335-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66335-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66334-0

  • Online ISBN: 978-3-319-66335-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics