Skip to main content

Cellulose-Enabled Polylactic Acid (PLA) Nanocomposites: Recent Developments and Emerging Trends

  • Chapter
  • First Online:
Functional Biopolymers

Abstract

Environmental consciousness, technology improvement, and stringent regulations have significantly increased the interest of biodegradable polymers in the industry in the past decade and polylactic acid (PLA) represents one of the most promising biopolymers. However, compared to the conventional petroleum-based polymers, owing to its inherent chemistry, PLA has relatively poor mechanical and thermal properties. To broaden its application, it becomes necessary to introduce inorganic/organic fillers into the biopolymer to meet the performance requirements and facilitate the processing. The use of nanoscale fillers is the strategy by exploiting the nature and properties of the nanoparticulates, such as huge surface area per mass, high aspect ratios, and low percolation threshold. Different inorganic particulates (e.g., nanoclay, nanosilica, carbon nanotubes, etc.) have been extensively studied. However, these added nanoparticulates are inorganic and pose considerable health risks from the manufacturing process to their final disposal. In contrast, nanocellulose, produced from renewable resources, has attracted great interest in recent years due to their sustainability and natural abundance. The combination of PLA and nanocelluloses results in a novel class of fully biorenewable resource-based composites. The recent developments and future trends (i.e., processing methods, various properties, and potential applications) of this novel nanocomposite have been discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulkhani A, Hosseinzadeh J, Ashori A, Dadashi S, Takzare Z (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73

    Article  CAS  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276

    Article  CAS  Google Scholar 

  • Alemdar A, Sain M (2008a) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557

    Article  CAS  Google Scholar 

  • Alemdar A, Sain M (2008b) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99:1664

    Article  CAS  Google Scholar 

  • Anglès MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344

    Article  Google Scholar 

  • Araki J, Kuga S (2001) Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17:4493

    Article  CAS  Google Scholar 

  • Auras RA, Harte B, Selke S, Hernandez R (2003) Mechanical, physical, and barrier properties of poly(lactide) films. J Plast Film Sheeting 19:123

    Article  CAS  Google Scholar 

  • Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259

    Article  CAS  Google Scholar 

  • Blaker JJ, Lee KY, Mantalaris A, Bismarck A (2010) Ice-microsphere templating to produce highly porous nanocomposite PLA matrix scaffolds with pores selectively lined by bacterial cellulose nano-whiskers. Compos Sci Technol 70:1879

    Article  CAS  Google Scholar 

  • Boissard CIR, Bourban PE, Plummer CJG, Neagu RC, Månson JAE (2012) Cellular biocomposites from polylactide and microfibrillated cellulose. J Cell Plast 48:445

    Article  CAS  Google Scholar 

  • Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14:617

    Article  CAS  Google Scholar 

  • Braun B, Dorgan JR, Hollingsworth LO (2012) Supra-molecular ecobionanocomposites based on polylactide and cellulosic nanowhiskers: synthesis and properties. Biomacromolecules 13:2013

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102

    Article  CAS  Google Scholar 

  • Charreau H, Foresti ML, Vázquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7:56

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011a) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011b) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y (2011c) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86:453

    Article  CAS  Google Scholar 

  • Cheng S, Panthapulakkal S, Ramezani N, Asiri AM, Sain M (2014a) Aloe vera rind nanofibers: effect of isolation process on the tensile properties of nanofibre films. BioResources 9:7653

    CAS  Google Scholar 

  • Cheng S, Panthapulakkal S, Sain M, Asiri A (2014b) Aloe vera rind cellulose nanofibers-reinforced films. J Appl Polym Sci 131:40592

    Google Scholar 

  • Cho S, Park H, Yun Y, Jin H-J (2013) Influence of cellulose nanofibers on the morphology and physical properties of poly(lactic acid) foaming by supercritical carbon dioxide. Macromol Res 21:529

    Article  CAS  Google Scholar 

  • Clift MJD, Foster EJ, Vanhecke D, Studer D, Wick P, Gehr P, Rothen-Rutishauser B, Weder C (2011) Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture. Biomacromolecules 12:3666

    Article  CAS  Google Scholar 

  • Corobea MC, Muhulet O, Miculescu F, Antoniac IV, Vuluga Z, Florea D et al (2016) Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires. Polym Adv Technol 27(12):1586

    Article  CAS  Google Scholar 

  • Darder M, Aranda P, Ruiz-Hitzky E (2007) Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater 19:1309

    Article  CAS  Google Scholar 

  • De Lima R, Feitosa LO, Maruyama CR, Barga MA, Yamawaki PC, Vieira IJ, Teixeira EM, Corrêa AC, Caparelli Mattoso LH, Fraceto LF (2012) Evaluation of the genotoxicity of cellulose nanofibers. Int J Nanomed 7:3555

    Article  CAS  Google Scholar 

  • Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755

    Article  CAS  Google Scholar 

  • Ding WD, Kuboki T, Zhao N, Malm T, Park CB, Sain M (2012) Mechanical properties of cellulose nanofiber reinforced polylactic acid biocomposites and their foams. CSME International Congress, Winnipeg

    Google Scholar 

  • Ding WD, Kuboki T, Wong A, Park CB, Sain M (2015a) Rheology, thermal properties, and foaming behavior of high d-content polylactic acid/cellulose nanofiber composites. RSC Adv 5:91544

    Article  CAS  Google Scholar 

  • Ding WD, Chu RKM, Mark LH, Park CB, Sain M (2015b) Non-isothermal crystallization behaviors of poly(lactic acid)/cellulose nanofiber composites in the presence of CO2. Eur Polym J 71:231

    Article  CAS  Google Scholar 

  • Dlouhá J, Suryanegara L, Yano H (2012) The role of cellulose nanofibres in supercritical foaming of polylactic acid and their effect on the foam morphology. Soft Matter 8:8704

    Article  CAS  Google Scholar 

  • Dlouhá J, Suryanegara L, Yano H (2014) Cellulose nanofibre–poly(lactic acid) microcellular foams exhibiting high tensile toughness. React Funct Polym 85:201

    Article  CAS  Google Scholar 

  • Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15:2327

    Article  CAS  Google Scholar 

  • Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841

    Article  CAS  Google Scholar 

  • Dusselier M, Van Wouwe P, Dewaele A, Jacobs PA, Sels BF (2015) Shape-selective zeolite catalysis for bioplastics production. Science 349:78

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57

    Article  CAS  Google Scholar 

  • Espino-Pérez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49:3144

    Article  CAS  Google Scholar 

  • Eyholzer C, Tingaut P, Zimmermann T, Oksman K (2012) Dispersion and reinforcing potential of carboxymethylated nanofibrillated cellulose powders modified with 1-hexanol in extruded poly(lactic acid) (PLA) composites. J Polym Environ 20:1052

    Article  CAS  Google Scholar 

  • Faruk O, Bledzki AK, Matuana LM (2007) Microcellular foamed wood-plastic composites by different processes: a review. Macromol Mater Eng 292:113

    Article  CAS  Google Scholar 

  • Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012a) Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stab 97:2027

    Article  CAS  Google Scholar 

  • Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM (2012b) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948

    Article  CAS  Google Scholar 

  • Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym 91:377

    Article  CAS  Google Scholar 

  • Fujisawa S, Saito T, Kimura S, Iwata T, Isogai A (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14:1541

    Article  CAS  Google Scholar 

  • Garcia de Rodriguez NL, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261

    Article  CAS  Google Scholar 

  • Goffin AL, Raquez JM, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456

    Article  CAS  Google Scholar 

  • Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479

    Article  CAS  Google Scholar 

  • Habibi Y, Aouadi S, Raquez JM, Dubois P (2013) Effects of interfacial stereocomplexation in cellulose nanocrystal-filled polylactide nanocomposites. Cellulose 20:2877

    Article  CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434

    Article  CAS  Google Scholar 

  • Herrera N, Mathew AP, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149

    Article  CAS  Google Scholar 

  • Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58:80

    Article  CAS  Google Scholar 

  • Hu F, Lin N, Chang PR, Huang J (2015) Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydr Polym 129:208

    Article  CAS  Google Scholar 

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022

    Article  CAS  Google Scholar 

  • Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103

    Article  CAS  Google Scholar 

  • Jacquel N, Lo C-W, Wei Y-H, Wu H-S, Wang SS (2008) Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochem Eng J 39:15

    Article  CAS  Google Scholar 

  • Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552

    Article  CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742

    Article  CAS  Google Scholar 

  • Jonoobi M, Mathew AP, Abdi MM, Makinejad MD, Oksman K (2012) A Comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20:991

    Article  CAS  Google Scholar 

  • Junior de Menezes A, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552

    Article  CAS  Google Scholar 

  • Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr Polym 123:105

    Article  CAS  Google Scholar 

  • Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13:321

    Article  CAS  Google Scholar 

  • Khoshkava V, Kamal MR (2013) Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites. Biomacromolecules 14:3155

    Article  CAS  Google Scholar 

  • Kose R, Kondo T (2013) Size effects of cellulose nanofibers for enhancing the crystallization of poly(lactic acid). J Appl Polym Sci 128:1200

    Article  CAS  Google Scholar 

  • Kowalczyk M, Piorkowska E, Kulpinski P, Pracella M (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos A 42:1509

    Article  CAS  Google Scholar 

  • Lagerwall JPF, Schütz C, Salajkova M, Noh J, Park JH, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:e80

    Article  CAS  Google Scholar 

  • Landry V, Alemdar A, Blanchet P (2011) Nanocrystalline cellulose: morphological, physical, and mechanical properties. Forest Prod J 61:104

    Article  CAS  Google Scholar 

  • Lee K-Y, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15

    Article  CAS  Google Scholar 

  • Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384

    Article  CAS  Google Scholar 

  • Lin N, Chen G, Huang J, Dufresne A, Chang PR (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113:3417

    Article  CAS  Google Scholar 

  • Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83:1834

    Article  CAS  Google Scholar 

  • Lin N, Chen Y, Hu F, Huang J (2015) Mechanical reinforcement of cellulose nanocrystals on biodegradable microcellular foams with melt-compounding process. Cellulose 22:2629

    Article  CAS  Google Scholar 

  • Liu DY, Yuan XW, Bhattacharyya D, Easteal AJ (2010) Characterisation of solution cast cellulose nanofibre—reinforced poly(lactic acid). Express Polym Lett 4:26

    Article  CAS  Google Scholar 

  • Lizundia E, Vilas JL, León LM (2015) Crystallization, structural relaxation and thermal degradation in poly(l-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym 123:256

    Article  CAS  Google Scholar 

  • Ma Z, Chen F, Zhu YJ, Cui T, Liu XY (2011) Amorphous calcium phosphate/poly(d, l-lactic acid) composite nanofibers: electrospinning preparation and biomineralization. J Colloid Interface Sci 359:371

    Article  CAS  Google Scholar 

  • Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014

    Article  CAS  Google Scholar 

  • Mathew AP, Oksman K, Sain M (2006) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101:300

    Article  CAS  Google Scholar 

  • Matuana LM, Faruk O (2010) Effect of gas saturation conditions on the expansion ratio of microcellular poly (lactic acid)/wood-flour composites. Express Polym Lett 4:621

    Article  CAS  Google Scholar 

  • Michalska-Pożoga I, Tomkowski R, Rydzkowski T, Thakur VK (2016) Towards the usage of image analysis technique to measure particles size and composition in wood-polymer composites. Ind Crops Prod 92:149

    Article  CAS  Google Scholar 

  • Miculescu M, Thakur VK, Miculescu F, Voicu SI (2016) Graphene-based polymer nanocomposite membranes: a review. Polym Adv Technol 27(7):844

    Article  CAS  Google Scholar 

  • Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335

    Article  CAS  Google Scholar 

  • Nair S, Yan N (2015a) Effect of high residual lignin on the thermal stability of nanofibrils and its enhanced mechanical performance in aqueous environments. Cellulose 22:3137

    Article  CAS  Google Scholar 

  • Nair SS, Yan N (2015b) Bark derived submicron-sized and nano-sized cellulose fibers: from industrial waste to high performance materials. Carbohydr Polym 134:258

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A Mater Sci Process 80:155

    Article  CAS  Google Scholar 

  • Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69:1293

    Article  CAS  Google Scholar 

  • Ng H-M, Sin LT, Tee T-T, Bee S-T, Hui D, Low C-Y, Rahmat AR (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos Part B Eng 75:176

    Article  CAS  Google Scholar 

  • Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683

    Article  CAS  Google Scholar 

  • Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241

    Article  CAS  Google Scholar 

  • Oksman K, Mathew AP (2014) Melt compounding process of cellulose nanocomposites. In: Oksman K, Mathew AP, Bismarck A, Rojas O, Sain M (eds) Handbook of green materials, vol 2. World Scientific Publishing, Singapore, pp 53–68

    Chapter  Google Scholar 

  • Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776

    Article  CAS  Google Scholar 

  • Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos A 83:2

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934

    Article  CAS  Google Scholar 

  • Panthapulakkal S, Sain M (2013) Isolation of nano fibres from hemp and flax and their thermoplastic composites. Plast Polym Technol 2:9

    Google Scholar 

  • Pappu A, Saxena M, Thakur VK, Sharma A, Haque R (2016) Facile extraction, processing and characterization of biorenewable sisal fibers for multifunctional applications. J Macromol Sci Part A 53:424

    Article  CAS  Google Scholar 

  • Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—crystallization and mechanical property effects. Compos Sci Technol 70:815

    Article  CAS  Google Scholar 

  • Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191

    Article  CAS  Google Scholar 

  • Pervaiz M, Oakley P, Sain M (2014) Extrusion of thermoplastic starch: effect of “green” and common polyethylene on the hydrophobicity characteristics. Mater Sci Appl 5:845

    CAS  Google Scholar 

  • Petersson L, Oksman K (2006) Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 66:2187

    Article  CAS  Google Scholar 

  • Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535

    Article  CAS  Google Scholar 

  • Pracella M, Haque MM-U, Puglia D (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer 55:3720

    Article  CAS  Google Scholar 

  • Qu P, Zhou Y, Zhang X, Yao S, Zhang L (2012) Surface modification of cellulose nanofibrils for poly(lactic acid) composite application. J Appl Polym Sci 125:3084

    Article  CAS  Google Scholar 

  • Raquez J-M, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504

    Article  CAS  Google Scholar 

  • Rhim J-W, Mohanty AK, Singh SP, Ng PKW (2006) Effect of the processing methods on the performance of polylactide films: thermocompression versus solvent casting. J Appl Polym Sci 101:3736

    Article  CAS  Google Scholar 

  • Robles E, Urruzola I, Labidi J, Serrano L (2015) Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Ind Crops Prod 71:44

    Article  CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671

    Article  CAS  Google Scholar 

  • Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485

    Article  CAS  Google Scholar 

  • Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248

    Article  CAS  Google Scholar 

  • Salajková M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22:19798

    Article  CAS  Google Scholar 

  • Sanchez-Garcia M, Lagaron J (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2008a) Synthesis and characterization of grewia optiva fiber-reinforced pf-based composites. Int J Polym Mater Polym Biomater 57:1059

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2008b) Synthesis and characterization of pine needles reinforced RF matrix based biocomposites. J Chem 5(S1):1055

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2008c) Fabrication and study of lignocellulosic hibiscus sabdariffa fiber reinforced polymer composites. BioResources 3:1173

    Google Scholar 

  • Singha AS, Thakur VK (2009a) Fabrication and characterization of H. sabdariffa fiber-reinforced green polymer composites. Polym Plast Technol Eng 48:482

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2009b) Grewia optiva fiber reinforced novel, low cost polymer composites. J Chem 6:71

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009c) Mechanical, Thermal and morphological properties of grewia optiva fiber/polymer matrix composites. Polym Plast Technol Eng 48:201

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2009d) Study of mechanical properties of urea-formaldehyde thermosets reinforced by pine needle powder. BioResources 4:292

    CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425

    Article  CAS  Google Scholar 

  • Song Y, Tashiro K, Xu D, Liu J, Bin Y (2013) Crystallization behavior of poly(lactic acid)/microfibrillated cellulose composite. Polymer 54:3417

    Article  CAS  Google Scholar 

  • Spinella S, Lo Re G, Liu B, Dorgan J, Habibi Y, Leclère P, Raquez J-M, Dubois P, Gross RA (2015) Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer 65:9

    Article  CAS  Google Scholar 

  • Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2013a) Ecofriendly biocomposites from natural fibers: mechanical and weathering study. Int J Polym Anal Charact 18:64

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2013b) Fabrication and physico-chemical properties of high-performance pine needles/green polymer composites. Int J Polym Mater Polym Biomater 62:226

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2013c) Synthesis of natural cellulose-based graft copolymers using methyl methacrylate as an efficient monomer. Adv Polym Technol 32(S1):E741

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013d) Graft copolymers from natural polymers using free radical polymerization. Int J Polym Anal Charact 18:495

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013e) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 97:18

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013f) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98:820

    Article  CAS  Google Scholar 

  • Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454

    Article  CAS  Google Scholar 

  • Trache D, Hazwan Hussin M, Mohamad Haafiz MK, Kumar Thakur V (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815

    CAS  Google Scholar 

  • Uetani K, Yano H (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12:348

    Article  CAS  Google Scholar 

  • Vazquez A, Foresti ML, Moran J, Cyras V (2015) Extraction and production of cellulose nanofibers. In: Pandey JK, Takagi H, Nakagaito AN, Kim H-J (eds) Handbook of polymer nanocomposites. Processing, performance and application. Springer, Berlin, pp 81–118

    Google Scholar 

  • Vink ETH, Davies S (2015) Life cycle inventory and impact assessment data for 2014 Ingeo® polylactide production. Ind Biotechnol 11:167

    Article  CAS  Google Scholar 

  • Vink ETH, Rábago KR, Glassner DA, Springs B, O’Connor RP, Kolstad J, Gruber PR (2004) The sustainability of Natureworks™ polylactide polymers and Ingeo™ polylactide fibers: an update of the future. Macromol Biosci 4:551

    Article  CAS  Google Scholar 

  • Voicu SI, Condruz RM, Mitran V, Cimpean A, Miculescu F, Andronescu C, Thakur VK (2016) Sericin covalent immobilization onto cellulose acetate membrane for biomedical applications. ACS Sustain Chem Eng 4:1765

    Article  CAS  Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784

    Article  CAS  Google Scholar 

  • Walther A, Timonen JVI, Díez I, Laukkanen A, Ikkala O (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23:2924

    Article  CAS  Google Scholar 

  • Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J Appl Polym Sci 113:1270

    Article  CAS  Google Scholar 

  • Wang T, Drzal LT (2012) Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach. ACS Appl Mater Interfaces 4:5079

    Article  CAS  Google Scholar 

  • Wang B, Sain M (2007a) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521

    Article  CAS  Google Scholar 

  • Wang B, Sain M (2007b) The effect of chemically coated nanofiber reinforcement on biopolymer based nanocomposites. BioResources 2:371

    CAS  Google Scholar 

  • Wang B, Sain M (2007c) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int 56:538

    Article  CAS  Google Scholar 

  • Wang X, Li W, Kumar V (2006) A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications. Biomaterials 27:1924

    Article  CAS  Google Scholar 

  • Wang B, Mireles K, Rock M, Li Y, Thakur VK, Gao D, Kessler MR (2016) Synthesis and preparation of bio-based ROMP thermosets from functionalized renewable isosorbide derivative. Macromol Chem Phys 217:871

    Article  CAS  Google Scholar 

  • Wu JH, Kuo MC, Chen CW, Kuan PH, Wang YJ, Jhang SY (2013) Crystallization behavior of α-cellulose short-fiber reinforced poly(lactic acid) composites. J Appl Polym Sci 129:3007

    Article  CAS  Google Scholar 

  • Xu J, Guo B-H (2010) Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnol J 5:1149

    Article  CAS  Google Scholar 

  • Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999

    Article  CAS  Google Scholar 

  • Xu X, Wang H, Jiang L, Wang X, Payne SA, Zhu JY, Li R (2014) Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly(ethylene oxide) nanofibers and their novel shish-kebab-like crystalline structures. Macromolecules 47:3409

    Article  CAS  Google Scholar 

  • Yanamala N, Farcas MT, Hatfield MK, Kisin ER, Kagan VE, Geraci CL, Shvedova AA (2014) In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: a renewable and sustainable nanomaterial of the future. ACS Sustain Chem Eng 2:1691

    Article  CAS  Google Scholar 

  • Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4:3091

    Article  CAS  Google Scholar 

  • Zhang X, Li W, Ye B, Lin Z, Rong J (2013) Studies on confined crystallization behavior of nanobiocomposites consisting of acetylated bacterial cellulose and poly (lactic acid). J Thermoplast Compos Mater 26:346

    Article  CAS  Google Scholar 

  • Zhao Y, Li J (2014) Excellent chemical and material cellulose from tunicates: diversity in cellulose production yield and chemical and morphological structures from different tunicate species. Cellulose 21:3427

    Article  CAS  Google Scholar 

  • Zhao Y, Zhang Y, Lindström ME, Li J (2015) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr Polym 117:286

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Dan Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Ding, W.D., Pervaiz, M., Sain, M. (2018). Cellulose-Enabled Polylactic Acid (PLA) Nanocomposites: Recent Developments and Emerging Trends. In: Thakur, V., Thakur, M. (eds) Functional Biopolymers. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-66417-0_7

Download citation

Publish with us

Policies and ethics