Skip to main content

Approaches for In Vitro Conservation of Woody Plants Germplasm

  • Chapter
  • First Online:
Biodiversity and Conservation of Woody Plants

Abstract

The conservation of plant genetic diversity aims at preserving as much as possible extant species by using innovative and complementary approaches to guarantee the effectiveness of the safeguarding strategies and to face present problems and future threats. The development and implementation of different in vitro conservation techniques have provided improvements for the international exchange of germplasm, for the storage of different in vitro culture forms and for products generated by biotechnology. These methods are also a valuable alternative to relieve the need of large lands extensions, where reserve collections of trees belonging to many woody species are traditionally kept. This chapter provides information of several study cases, describes some useful protocols, and aims at presenting a brief overview of currently available techniques for in vitro conservation to medium- and long-term of woody plant germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Taleb S, Yates I, Wood BW, Fouad MM (1992) Cryogenics and tissue culture for preserving pecan germplasm. HortScience 27:693

    Google Scholar 

  • Açari DP, Porto VB, Rodrigues ERV, Martins F, Lima RJ, Sawaya ACHF, Ribeiro ML, Carvalho PO (2011) Effect of mate tea (Ilex paraguariensis) supplementation on oxidative stress biomarkers and LDL oxidisability in normo- and hyperlipidaemic humans. J Funct Foods 3(3):190–197

    Google Scholar 

  • Acquaah G (2012) Principles of plant genetics and breeding, 2nd edn. Bowie State Uni-versity, Maryland, p 740

    Book  Google Scholar 

  • Aguilar ME, Engelmann F, Michaux-Ferriere N (1993) Cryopreservation of cell suspensions of Citrus deliciosa Tan. and histological study. Cryo-Letters 14:217–228

    Google Scholar 

  • Ahmad Z, Zaidi N, Shah FH (1990) Micropropagation of Melia azedarach from mature tis-sue. Pak J Bot 22:172–178

    Google Scholar 

  • Akihama T, Omura M, Kozaki I (1978) Further investigation of freeze-drying for deciduous fruit tree pollen. In: Akihama T, Nakajima K (eds) Long-term preservation of favourable germ plasm in arboreal crops. Fruit Tree Research Station, Ministry of Agriculture and Food, Japan, pp 1–7

    Google Scholar 

  • Akihama T, Omura M, Kozaki I (1980) Long term storage of fruit tree pollen and its application in breeding. Farming Japan 14:53–56

    Google Scholar 

  • Al-Ababneh SS, Shibli RA, Karam NS, Shatnawi MA (2003) Cryopreservation of bitter almond (Amygdalus communis L.) shoot tips by encapsulation dehydration and vitrification. Adv Hort Sci 17:15–20

    Google Scholar 

  • Anitei S (2007) Where did citrus fruits originate from? Available from: www.news.softpedia.com/news/Where-Did-Citrus-Fruits-Originate-From-67365.htm. Accessed 2016 October

  • Anjaneyulu ASR, Rao AM, Rao VK, Row LR, Pelter A, Ward RS (1977) Novel hydroxy lignans from the heartwood of Gmelina arborea. Tetrahedron 33:133–143

    Article  CAS  Google Scholar 

  • Aronen T, Krajnakova J, Häggman H, Ryynänen L (1999) Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Sci 142:163–172

    Article  CAS  Google Scholar 

  • Ashmore SE (1997) Status report on the development and application of in vitro techniques for the conservation and use of plant genetic resources. International Plant Genetic Resources Instit., (IPGRI), Rome, Italy, p 57

    Google Scholar 

  • Asolini FC, Tedesco AM, Carpes ST (2006) Antioxidant and antibacterial activities of phenolic compounds from extracts of plants used as tea. Braz J Food Technol 9(3):209–215

    CAS  Google Scholar 

  • Augusseau X, Nikiéma P, Torquebiau E (2006) Tree biodiversity, land dynamics and farmers’ strategies on the agricultural frontier of southwestern Burkina Faso. Biodivers Conserv 15(2):613–630

    Article  Google Scholar 

  • Bagniol S, Engelmann F (1991) Effects of pregrowth and freezing conditions on the resistance of meristems of date (Phoenix dactylifera L. var. Bou Sthammi Noir) to freezing in liquid nitrogen. Cryo-Letters 12:279–286

    Google Scholar 

  • Bai X, Yang L, Tian M, Chen J, Shi J, Yang Y, Hu X (2011) Nitric oxide enhances desiccation tolerance of recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation and carbonylation. PLoS ONE 6(6): e20714; 1–11

    Google Scholar 

  • Bai X, Chen J, Kong X, Todd CD, Yang Y, Hu X, Li D (2012) Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis. Free Radic Biol Med 53:710–720

    Article  CAS  PubMed  Google Scholar 

  • Barik BR, Bhowmik T, Dey AK, Patra A, Chatterjee A, Joy SS (1992) Premnazole an isoxa-zole alkaloid of Premna integrifolia and Gmelina arborea with anti-inflammatory activity. Fitoterapia 63(4):295–299

    CAS  Google Scholar 

  • Barra-Jiménez A, Aronen TS, Alegre J, Toribio M (2015) Cryopreservation of embryogenic tissues from mature holm oak trees. Cryobiology 70:217–225

    Article  PubMed  CAS  Google Scholar 

  • Bastos DHM, Saldanha LA, Catharino RR, Sawaya A, Cunha IB, Carvalho PO, Eberlin MN (2007) Phenolic antioxidants identified by ESI-MS from Yerba maté (Ilex paraguariensis) and green tea (Camelia sinensis) extracts. Molecules 12(3):423–432

    Article  CAS  PubMed  Google Scholar 

  • Benson EE (2000) Do free radicals have a role in plant tissue culture recalcitrance? In Vitro Cell Dev Biol Plant 36(3):163–170

    Article  CAS  Google Scholar 

  • Berjak P, Dumet D (1996) Cryopreservation of seeds and isolated embryonic axes of neem (Azadirachta indica). Cryo-Letters 17:99–104

    Google Scholar 

  • Berjak P, Pammenter NW (2004) Recalcitrant seeds. In: Benech-Arnold RL, Sánchez RA (eds) Handbook of seed physiology: applications to agriculture. Haworth, New York, pp 305–345

    Google Scholar 

  • Berjak P, Pammenter NW (2008) From Avicennia to Zizania: seed recalcitrance in perspective. Ann Bot 101:213–228

    Article  PubMed  Google Scholar 

  • Berjak P, Farrant JM, Mycock DJ, Pammenter NW (1992) Homoiohydrous (recalcitrant) seeds: developmental status, desiccation sensitivity and the state of water in axes of Landolphia kirkii Dyer. Planta 186(2):249–261

    Article  CAS  PubMed  Google Scholar 

  • Berjak P, Walker M, Mycock DJ, Wesley- Smith J, Watt P, Pammenter NW (2000) Cryopreservation of recalcitrant zygotic embryos. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. Proceedings of an international workshop, Tsukuba, Japan, October 1998. International Plant Genetic Resources Institute, Rome, pp 140–155

    Google Scholar 

  • Bernard F, Shaker-Bazarnov H, Kaviani B (2002) Effects of salicylic acid on cold preservation and cryopreservation of encapsulated embryonic axes of Persian lilac (Melia azedarach L.). Euphytica 123(1):85–88

    Article  CAS  Google Scholar 

  • Bertrand-Desbrunais A, Fabre J, Engelmann F, Dereuddre J, Charrier A (1998) Adventitious embryogenesis recovery from coffee (Coffea arabica L.) somatic embryos after freezing in liquid nitrogen. C R Acad Sci Paris 307:795–801

    Google Scholar 

  • Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U (2002) Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci 82(11):1336–1345

    CAS  Google Scholar 

  • Blakesley D, Pask N, Henshaw GG, Fay MF (1996) Biotechnology and the conservation of forest genetic resources: in vitro strategies and cryopreservation. Plant Growth Regul 20(1):11–16

    Article  CAS  Google Scholar 

  • Bonnart R, Shepherd A, Lee R, Krueger R, Volk G (2013) Cryopreservation of Citrus in the USDA-ARS national plant germplasm system collection, meeting abstract. In: 2nd international symposium on plant cryopreservation. Fort Collins, USA, p 62

    Google Scholar 

  • Bracesco N, Sanchez AG, Contreras V, Menini T, Gugliucci A (2011) Recent advances on Ilex paraguariensis research: minireview. J Ethnopharmacol 136(3):378–384

    Article  CAS  PubMed  Google Scholar 

  • Bramlett DL, Matthews FR (1991) Storing loblolly pine pollen. South J Appl For 15(153):157

    Google Scholar 

  • Brearley J, Henshaw GG, Davey C, Taylor NJ, Blakesley D (1995) Cryopreservation of Fraxinus excelsior L. zygotic embryos. Cryo-Letters 16:215–218

    Google Scholar 

  • Brush SB (1995) In Situ conservation of landraces in centers of crop diversity. Crop Sci 35(2):346–354

    Article  Google Scholar 

  • Bunn E, Turner S, Panaia M, Dixon KW (2007) The contribution of in vitro technology and cryogenic storage to conservation of indigenous plants. Aust J Bot 55(3):345–355

    Article  Google Scholar 

  • Burris KP, Harte FM, Davidson MP, Stewart N, Zivanovic S (2012) Composition and bioactive properties of yerba mate (Ilex paraguariensis. St.-Hil.): a review. Chil J Agric Res 72(2):268–274

    Article  Google Scholar 

  • Capuana M, Di Lonardo S (2013) In vitro conservation of chestnut (Castanea sativa) by slow growth. Vitro Cell Dev Biol Plant 49(5):605–610

    Article  CAS  Google Scholar 

  • Carimi F, Tortorici MC, De Pasquale F, Crescimanno FG (1999) Somatic embryogenesis and plant regeneration from pistil thin cell layers of Citrus. Plant Cell Rep 18:935–940

    Article  CAS  Google Scholar 

  • Carl CM Jr (1976) Effect of separation in n-pentane on storability of sugar maple seeds. Res. Note NE-218, USDA Forest Servo Northeast. For. Exp. Sta., Broomhall, PA

    Google Scholar 

  • Castaldelli APA, Vieira LP, Przygodda F, Martins ZN, Padoin MJ (2011) Efeito da erva mate (Ilexparaguariensis A. St. -Hil.) no comportamento e fisiologia de ratos Wistar. Braz J Biosci 9(4):514–519

    Google Scholar 

  • Catalán Bachiller G (1991) Quercus. In: Catalán Bachiller G (ed) Semillas de árboles y arbustos forestales. MAPA-ICONA. Colección Técnica, Madrid, pp 318–324

    Google Scholar 

  • Cavers S, Navarro C, Lowe AJ (2003) Chloroplast DNA phylogeography reveals colonization history of a Neotropical tree, Cedrela odorata L., in Mesoamerica. Mol Ecol 12:1451–1460

    Article  CAS  PubMed  Google Scholar 

  • Chandel KPS, Chaudhury R, Radhamani J, Malik SK (1995) Desiccation and freezing sensitivity in recalcitrant seeds of tea, cocoa and jackfruit. Ann Bot 76:443–450

    Article  Google Scholar 

  • Chang Y, Reed BM (2000) Extended alternating-temperature cold acclimation and culture duration improve pear shoot cryopreservation. Cryobiology 40:311–322

    Article  CAS  PubMed  Google Scholar 

  • Chaudhury R (2000) Cryopreservation of seeds, embryos, embryonic axes and pollen at National Cryobank of NBPGR. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. Proceedings of an international workshop, Tsukuba, Japan, October 1998, International Plant Genetic Resources Institute (IPGRI), Rome, pp 457–459

    Google Scholar 

  • Chaudhury R, Chandel KPS (1991) Cryopreservation of desiccated seeds of neem (Azadirachta indica A. Juss.) for germplasm conservation. Indian J Plant Gen Resour 4:67–72

    Google Scholar 

  • Chaudhury R, Chandel KPS (1995) Cryopreservation of embryonic axes of almond (Prunus amygdalus Batsch.) seeds. Cryo-Letters 16:51–56

    Google Scholar 

  • Chmielarz P (2009) Cryopreservation of dormant orthodox seeds of forest trees: mazzard cherry (Prunus avium L.). Ann Forest Sci 66: 405

    Google Scholar 

  • Chmielarz P, Walters C (2007) Desiccation sensitivity of white and black (red) oak embryonic axes. South Afr J Bot 73:498

    Article  Google Scholar 

  • Chmielarz P, Grenier-de March G, de Boucaud MT (2005) Cryopreservation of Quercus robur L. embryogenic callus. Cryo-Letters 26:349–355

    CAS  PubMed  Google Scholar 

  • Chmielarz P, Michalak M, Pałucka M, Wasilenczyk U (2011) Successful cryopreservation of Quercus robur plumules. Plant Cell Rep 30:1405–1414

    Article  CAS  PubMed  Google Scholar 

  • Cho EG, Hor YL, Kim HH, Rao VR, Engelmann F (2001) Cryopreservation of Citrus madurensis zygotic embryonic axes by vitrification: importance of pregrowth and preculture conditions. Cryo-Letters 22(6):391–396

    CAS  PubMed  Google Scholar 

  • Cho EG, Hor YL, Kim HH, Rao VR, Engelmann F (2002a) Cryopreservation of Citrus madurensis zygotic embryonic axes by vitrification: importance of pregrowth and preculture conditions. Cryo-Letters 23:317–324

    PubMed  Google Scholar 

  • Cho EG, Hor YL, Kim HH, Rao VR, Engelmann F (2002b) Cryopreservation of Citrus madurensis embryonic axes by encapsulation-dehydration. Cryo-Letters 23(5):325–332

    PubMed  Google Scholar 

  • Cho EG, Noor NM, Kim HH, Rao VR, Engelmann F (2002c) Cryopreservation of Citrus aurantifolia seeds and embryonic axes using a desiccation protocol. Cryo-Letters 23(5):309–316

    PubMed  Google Scholar 

  • Cho EG, Hor YL, Kim HH, Gwag JG, Rao VR, Engelmann F (2003) Cryopreservation of Citrus madurensis zygotic embryos by encapsulation-dehydration. Korean J Breed 35:148–153

    Google Scholar 

  • CITES, Convention on International Trade in Endangered Species of Wild Fauna and Flora (2003) Second meeting of working group on mahogany (Swietenia macrophylla) http://www.cites.org/common/prog/mwg/MWG2/S-MWG2-09-02-MX.pdf

  • Corredoira E, San-José MC, Ballester A, Vieitez AM (2004) Cryopreservation of zygotic embryo axes and somatic embryos of European chestnut. Cryo-Letters 25:33–42

    PubMed  Google Scholar 

  • Corredoira E, San-José MC, Vieitez AM, Ballester A (2007) Improving genetic transformation of European chestnut and cryopreservation of transgenic lines. Plant Cell Tiss Org Cult 91:281–288

    Article  CAS  Google Scholar 

  • Cruz-Cruz CA, González-Arnao MT, Engelmann F (2013) Biotechnology and conservation of plant biodiversity. Resources 2(2):73–95

    Article  Google Scholar 

  • Cuénoud P, Del Pero Martínez MA, Loizeau PA, Spichiger R, Andrews S, Manen JF (2000) Molecular phylogeny and biogeography of the genus Ilex L. (Aquifoliaceae). Ann Bot 85(1):111–122

    Article  CAS  Google Scholar 

  • Cyr DR, Lazaroff WR, Grimes SMA, Quan G, Bethune TD, Dunstan DJ, Roberts DR (1994) Cryopreservation of interior spruce (Picea glauca engelmanni complex) embryogenic cultures. Plant Cell Rep 13:574–577

    Article  CAS  PubMed  Google Scholar 

  • De Boucaud MT, Helliot B, Brison M (1996) Desiccation and cryopreservation of embryonic axes of peach. Cryo-Letters 17:379–390

    Google Scholar 

  • De Carlo A, Benelli C, Lambardi M (2000) Development of a shoot-tip vitrification protocol and comparison with encapsulation-based procedures for plum (Prunus domestica L.) cryopreservation. Cryo-Letters 21:215–222

    PubMed  Google Scholar 

  • Devi J, Ray BK, Chetia S, Deka PC (1998) Regeneration of low temperature stored encapsulated protocorms of orchids. J Orchid Soc India 12:39–41

    Google Scholar 

  • De-Zhu Li, Pritchard HW (2009) The science and economics of ex situ plant conservation. Trends Plant Sci 14(11):614–621

    Article  CAS  Google Scholar 

  • Dickie JB, Smith RD (1995) Observations on the survival of seeds of Agathis spp. stored at low moisture contents and temperatures. Seed Sci Res 5:5–14

    Article  Google Scholar 

  • Dolce NR, Gonzalo GA, Rey HY (2007) Embriología de Ilex dumosa e I. brevicuspis (Aquifoliaceae). Boletín de la Sociedad Argentina de Botánica 42(supl):40–41

    Google Scholar 

  • Dolce NR, Mroginski LA, Rey HY (2010) Endosperm and endocarp effects on the Ilex paraguariensis St. Hil. (Aquifoliaceae) seed germination. Seed Sci Technol 38:441–448

    Article  Google Scholar 

  • Dolce NR, Mroginski LA, Rey HY (2011) Enhanced seed germination of Ilex dumosa R. (Aquifoliaceae) through in vitro culture of cut pyrenes. HortScience 46(2):278–281

    Google Scholar 

  • Dolce NR, Medina RD, Mroginski LA, Rey HY (2015) Sowing pyrenes under aseptic conditions enhances seed germination of Ilex brasiliensis, I. pseudoboxus and I. theezans (Aquifoliaceae). Seed Sci Technol 43(2):1–5

    Article  Google Scholar 

  • Domecq CM (1988) Cultivo in vitro de yemas axilares de paraíso gigante (Melia azedarach L. var. gigantea). Phyton 48:33–42

    CAS  Google Scholar 

  • Dumet D, Engelmann F, Chabrillange N, Dussert S, Duval Y (2000) Cryopreservation of oil palm polyembryonic cultures. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. Current research, progress and applications. IPGRI, International Plant Genomic Resources Institute, Rome, pp 172–177

    Google Scholar 

  • Duran-Vila N (1995) Cryoconservation of germplasm of Citrus. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, cryopreservation of plant germplasm I, vol 32. Springer, Berlin, pp 70–86

    Chapter  Google Scholar 

  • Dussert S, Chabrillange N, Engelmann F, Anthony F, Hamon S (1998) Cryopreservation of seeds of four coffee species (Coffea arabica, C. costatifructa, C. racemosa and C. sessiliflora): importance of seed water content and of freezing rate. Seed Sci Res 8:9–15

    Article  Google Scholar 

  • Dussert S, Chabrillange N, Engelmann F, Hamon S (1999) Quantitative estimation of seeddesiccation sensitivity using a quantal response model: application to nine species of the genus Coffea. Seed Sci Res 9:135–144

    Google Scholar 

  • Engelmann F (1997) In vitro conservation methods. In: Callow JA, Ford-Lloyd BV, Newbury HJ (eds) Biotechnology and plant genetic resources. CAB International, Oxford, UK, pp 119–161

    Google Scholar 

  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. Vitro Cell Dev Biol Plant 47:5–16

    Article  Google Scholar 

  • Engelmann F (2012) Germplasm collection, storage and conservation. In: Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture: prospects for the 21st Century. Academic Press, Oxford, pp 255–268

    Chapter  Google Scholar 

  • Engelmann F (2014) Cryopreservation of clonal crops: a review of key parameters. Acta Hort 1039:31–39

    Article  Google Scholar 

  • Engelmann F, Etienne H (2000) Cryopreservation of embryogenic callus of Hevea brasiliensis. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 6. Kluwer Academic Publishers, The Netherlands, pp 729–745

    Google Scholar 

  • Engelmann F, Takagi H (2000) Cryopreservation of tropical plant germplasm. Current research progress and application. IPGRI, JIRCAS International Agriculture Series Nº 8, Rome, p 465

    Google Scholar 

  • Engelmann F, Dambier D, Ollitrault P (1994) Cryopreservation of cell suspensions and embryogenic calluses of Citrus using a simplified freezing process. Cryo-Letters 15:53–58

    Google Scholar 

  • Engelmann F, Gonzalez-Arnao MT, Wu Y, Escobar R (2008) Development of encapsulation dehydration. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 59–75

    Chapter  Google Scholar 

  • Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21(4):407–426

    Article  CAS  PubMed  Google Scholar 

  • Faiza H, Darakhshanda S (1998) The inhibition of platelet aggregation and related physiological responses with crude drug extract of Gmelina arborea. In: Sixth international symposium on new trends in natural products chemistry, pp 279–286

    Google Scholar 

  • Fang JY, Sacandé M, Pritchard H, Wetten A (2009) Influence of freezable/non-freezable water and sucrose on the viability of Theobroma cacao somatic embryos following desiccation and freezing. Plant Cell Rep 28:883–889

    Article  CAS  PubMed  Google Scholar 

  • FAO (2009) State of the world’s forests. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2014) Genebank standards for plant genetic resources for food and agriculture. Rome

    Google Scholar 

  • Fernandes P, Rodriguez E, Pinto G, Roldan-Ruiz I, Loose M, de Santos C (2008) Cryopreservation of Quercus suber somatic embryos by encapsulation-dehydration and evaluation of genetic stability. Tree Physiol 28:1841–1850

    Article  CAS  PubMed  Google Scholar 

  • Figueroa CJC (1994) An assessment of the distribution and status of big-leaf mahogany (Swietenia macrophylla King). Puerto Rico Conservation Foundation and International Institute of Tropical Forestry, 25 pp, 5 maps and appendix

    Google Scholar 

  • Filip R, Ferraro GE (2003) Researching on new species of “Mate”: Ilex brevicuspis phytochemical and pharmacology study. Eur J Nutr 42(1):50–54

    Article  CAS  PubMed  Google Scholar 

  • Filip R, López PG, Ferraro GE (1999) Phytochemical study of Ilex dumosa. Acta Hort 501:333–336

    Article  Google Scholar 

  • Filip R, López P, Giberti G, Coussio J, Ferraro G (2001) Phenolic compounds in seven South American Ilex species. Fitoterapia 72(7):774–778

    Article  CAS  PubMed  Google Scholar 

  • Find JI, Kristensen MMH, Nørgaard JV, Krogstrup P (1998) Effect of culture period and cell density on regrowth following cryopreservation of embryogenic suspension cultures of Norway spruce and Sitka spruce. Plant Cell Tiss Org Cult 53:27–33

    Article  Google Scholar 

  • Ford CS, Jones NB, Van Staden J (2000a) Cryopreservation and plant regeneration from somatic embryos of Pinus patula. Plant Cell Rep 19:610–615

    Article  CAS  Google Scholar 

  • Ford CS, Jones NB, Van Staden J (2000b) Optimization of a working cryopreservation protocol for Pinus patula embryogenic tissue. In Vitro Cell Dev Biol Plant 36:366–369

    Article  Google Scholar 

  • Fu JR, Zhang BZ, Wang XP, Qiao YZ, Huang XL (1990) Physiological studies on desiccation, wet storage and cryopreservation of recalcitrant seeds of three fruit tree species and their excised embryonic axis. Seed Sci Technol 18:743–754

    Google Scholar 

  • Gale S, John A, Harding K, Benson EE (2008) Developing cryopreservation for Picea sitchensis (Sitka spruce) somatic embryos: a comparison of vitrification protocols. Cryo-Letters 29:135–144

    PubMed  Google Scholar 

  • Galle FC (1997) Hollies: the genus Ilex. Timber Press, Portland, p 537

    Google Scholar 

  • Ganeshan S, Alexander MP (1991) Cryogenic preservation of lemon (Citrus limonia Burm) pollen. Gartenbauwissenschaft 56:228–230

    Google Scholar 

  • Gaspar T, Franck T, Bisbis B, Kevers C, Jouve L, Hausman JF, Dommes J (2002) Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul 37(3):263–285

    Article  CAS  Google Scholar 

  • Gazeau C, Elleuch H, David A, Morisset C (1998) Cryopreservation of transformed Papaver somniferum cells. Cryo-Letters 19:147–158

    Google Scholar 

  • Geilfus F (1994) Agricultural involution in the Dominican Republic: the dynamics of peasant farm systems in a confined environment. Ph.D. thesis, Department of Geography, Louvain University, Belgium

    Google Scholar 

  • George EF (1996) Plant propagation by tissue culture. Part 2—in practice, 2nd edn. Exegetics, Edington

    Google Scholar 

  • Giberti GC (1999) Recursos fitogenéticos relacionados con el cultivo y explotación de la yerba mate (Ilex paraguariensis St. Hil., Aquifoliáceas) en el Cono Sur de América. Acta Hort 500:137–144

    Article  Google Scholar 

  • Gmitter FG, Hu X (1990) The possible role of Yunnan, China, in the origin of contemporary citrus species (rutaceae). Econ Bot 44(2):267–277

    Article  Google Scholar 

  • Gómez TJ, Jasso-Mata JJ, Vargas-Hernández JJ, Hernández MRS (2006) Deterioro de semilla de dos procedencias de Swietenia macrophylla King., bajo distintos métodos de almacenamiento. Ra Ximhai 2(1):223–239

    Google Scholar 

  • Gonzalez-Arnao MT, Engelmann F (2006) Cryopreservation of plant germplasm using the encapsulation-dehydration technique: review and case study on sugarcane. Cryo-Letters 27(3):155–168

    CAS  PubMed  Google Scholar 

  • Gonzalez-Arnao MT, Engelmann F (2013) Consideraciones teóricas y prácticas para la crioconservación de germoplasma vegetal. In: Gonzalez-Arnao MT, Engelmann F (eds) Crioconservación de plantas en América Latina y el Caribe. IICA, San José, Costa Rica, pp 37–51

    Google Scholar 

  • Gonzalez-Arnao MT, Cárdenas-Lara A, Urra C (1997) Crioconservación de callos embriogénicos de Citrus sinensis var. Pineapple. BIOTAM 8(2–3):25–32

    Google Scholar 

  • Gonzalez-Arnao MT, Engelmann F, Urra C, Morenza M, Rios A (1998) Cryopreservation of citrus apices using the encapsulation-dehydration technique. Cryo-Letters 19(3):177–182

    Google Scholar 

  • Gonzalez-Arnao MT, Engelmann F, Urra C, Morenza M, Rios (2000) Cryopreservation of citrus apices using the encapsulation-dehydration technique. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm-current research progress and applications. JIRCAS, Tsukuba. IPGRI, Rome, pp 217–221

    Google Scholar 

  • Gonzalez-Arnao MT, Panta A, Roca WM, Escobar RH, Engelmann F (2008) Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell Tissue Organ Cult 92(1):1–13

    Article  Google Scholar 

  • Gonzalez-Arnao MT, Martinez-Montero M, Cruz-Cruz CA, Engelmann F (2014) Advances in cryogenic techniques for the long-term preservation of plant biodiversity. In: Ahuja MR, Ramawat KG (eds), Biotechnology and biodiversity. sustainable development and biodiversity, vol 4. Springer International Publishing, Berlin, pp 129–170

    Google Scholar 

  • González-Arnao MT, Juárez J, Ortega C, Navarro L, Duran-Vila N (2003) Cryopreservation of ovules and somatic embryos of citrus using the encapsulation-dehydration technique. Cryo-Letters 24(2):85–94

    PubMed  Google Scholar 

  • Gonzalez-Benito ME, Perez-Ruiz C (1992) Cryopreservation of Quercus faginea embryonic axes. Cryobiology 29:685–690

    Article  Google Scholar 

  • Gonzalez-Benito ME, Prieto RM, Herradon E, Martin C (2002) Cryopreservation of Quercus suber and Quercus ilex embryonic axes: in vitro culture, desiccation and cooling factor. Cryo-Letters 23:283–290

    PubMed  Google Scholar 

  • Gonzalez-Rio F, Gurriaran MJ, Gonzalez-Benito E, Revilla MA (1994) Desiccation and cryopreservation of olive (Olea europaea L.) embryos. Cryo-Letters 15:337–342

    Google Scholar 

  • Gottlieb AM, Giberti GC, Poggio L (2005) Molecular analyses of the genus Ilex (Aquifoliaceae) in southern South America, evidence from AFLP and ITS sequence data. Am J Bot 92(2):352–369

    Article  CAS  PubMed  Google Scholar 

  • Grenier-de March G, de Boucaud M-T, Chmielarz P (2005) Cryopreservation of Prunus avium L. embryogenic tissues. Cryo-Letters 26:341–348

    CAS  PubMed  Google Scholar 

  • Grzeskowiak H, Miara B, Suszka B (1983) Long term storage of seeds of Rosaceae species used as rootstock for cherry, plum, apple, and pear cultivars [Prunus avium; Prunus mahaleb; Prunus cerasifera; Malus domestica]. Arbor Kornickie 28:283–320

    Google Scholar 

  • Gugliucci A, Bastos DH (2009) Chlorogenic acid protects paraoxonase 1 activity in high-density lipoprotein from inactivation caused by physiological concentrations of hypochlorite. Fitoterapia 80:138–142

    Article  CAS  PubMed  Google Scholar 

  • Gugliucci A, Bastos DH, Schulze J, Souza MF (2009) Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins. Fitoterapia 80:339–344

    Article  CAS  PubMed  Google Scholar 

  • Häggman H, Rusanen M, Jokipii S (2008) Cryopreservation of in vitro tissues of deciduous trees. In: Reed B (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 365–386

    Chapter  Google Scholar 

  • Halmagyi A, Vălimăreanu S, Coste A, Deliu C, Isac V (2010) Cryopreservation of Malus shoot tips and subsequent plant regeneration. Rom Biotechnol Lett 15(1):79–85

    CAS  Google Scholar 

  • Hao YJ, Cheng YJ, Deng XX (2003) GUS gene remains stable in transgenic Citrus callus recovered from cryopreservation. Cryo-Letters 24:375–380

    CAS  PubMed  Google Scholar 

  • Hargreaves CL, Grace LJ, Holden DG (2002) Nurse culture for efficient recovery of cryopreserved Pinus radiata D. Don embryogenic cell lines. Plant Cell Rep 21:40–45

    Article  CAS  Google Scholar 

  • Hargreaves CL, Grace LJ, van der Maas SA, Menzies MI, Kumar S, Holden DG, Foggo MN, Low CB, Dibley MJ (2005) Comparative in vitro and early nursery performance of adventitious shoots from cryopreserved cotyledons and axillary shoots from epicotyls of the same zygotic embryo of control-pollinated Pinus radiata. Can J Forest Res 35:2629–2641

    Article  Google Scholar 

  • Hatanaka T, Yasuda T, Yamaguchi T, Sakai A (1994) Direct regrowth of encapsulated somatic embryos of coffee (Coffea canephora) after cooling in liquid nitrogen. Cryo-Letters 15:47–52

    Google Scholar 

  • Haunold A, Stanwood PC (1985) Long term preservation of hop Humulus lupulus pollen in liquid nitrogen. Crop Sci 25:194–196

    Article  Google Scholar 

  • Heywood VH, Iriondo JM (2003) Plant conservation: old problems, new perspectives. Biol Cons 113(3):321–335

    Article  Google Scholar 

  • Hor YL, Stanwood PC, Chin HF (1990) Effects of dehydration on freezing characteristics and survival in liquid nitrogen of three recalcitrant seeds. Pertanika 13(2):309–314

    Google Scholar 

  • Hor YL, Kim YJ, Ugap A et al (2005) Optimal hydration status for cryopreservation of intermediate oily seeds: Citrus as a case study. Ann Bot 95:1153–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornung R, Domas R, Lynch PT (2001) Cryopreservation of plumular explants of coconut (Cocos nucifera L.) to support programmes for mass clonal propagation through somatic embryogenesis. Cryo-Letters 22:211–220

    CAS  PubMed  Google Scholar 

  • Hosny M, Rosazza PN (1998) Gmelinosides, twelve acylated iridoid glycosides from Gmelina arborea. J Nat Prod 61:734–742

    Article  CAS  PubMed  Google Scholar 

  • Hu CY (1975) In vitro culture of rudimentary embryos of eleven Ilex species. J Am Soc Hortic Sci 100:221–225

    Google Scholar 

  • Hu CY (1989) Holly (Ilex spp.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 5. Springer, Berlin, pp 412–427

    Google Scholar 

  • Hu CY, Rogalski F, Ward C (1979) Factors maintaining Ilex rudimentary embryos in the quiescent state and the ultrastructural changes during in vitro activation. Bot Gaz 140:272–279

    Article  Google Scholar 

  • Hummer KE (1999) Biotechnology in plant germplasm acquisition. In: Benson EE (ed) Plant conservation biotechnology. Taylor & Francis, London, Philadelphia, pp 25–40

    Google Scholar 

  • Hummer KE, Reed BM (2000) Establishment and operation of a temperate clonal field genebank. In: Engelmann F (ed) Management of field and in vitro germplasm collections. Proceedings of a consultation meeting, CIAT, Cali, Colombia, 15–20 January, 1996. International Plant Genetic Resources Institute, Rome, pp 29–31

    Google Scholar 

  • Ives SA (1923) Maturation and germination of seeds of Ilex opaca. Bot Gaz 76:60–77

    Article  Google Scholar 

  • Janeiro LV, Vieitez AM, Ballester A (1995) Cold storage of in vitro cultures of wild cherry, chestnut and oak. Ann For Sci 52:287–293

    Article  Google Scholar 

  • Johnson D, Hodgkinson MC, Joyce D (2002) Potential effects of petroleum-derived spray oils on abscission, senescence and stress physiology of citrus. In: Beattie GAC, Watson DM, Steven ML, Rae DJ, Spooner-Hart RN (eds) Spray oils beyond 2000. University of Western Sydney, pp 185–192

    Google Scholar 

  • Jokipii SM, Ryynänen LA, Kallio PT, Aronen TS, Hägman H (2004) A cryopreservation method maintaining the genetic fidelity of a model forest tree Populus tremula L. x P. tremuliodes Michx. Plant Sci 166:799–806

    Article  CAS  Google Scholar 

  • Jones L (1967) Effect of storage at various moisture contents and temperatures on seed germination of silk oak, Australian pine, and Eucalyptus spp. USDA For. Serv., Southeast. For. Exp. Sta., Asheville, NC. Res. Note SE-83

    Google Scholar 

  • Karp A, Kresovich S, Bhat KV, Ayad WG, Hodgkin T (1997) Molecular tools in plant genetic resources conservation: a guide to the technologies. IPGRI Tech Bull 2(2):1–47

    Google Scholar 

  • Kartha KK, Leung L, Pahl K (1980) Cryopreservation of strawberry meristems and mass propagation of plantlets. J Am Soc Hortic Sci 105(4):481–484

    CAS  Google Scholar 

  • Kartha KK, Leung NL, Mroginski LA (1982) In vitro growth responses and plant regeneration from cryopreserved meristems of cassava (Manihot esculenta Crantz). Zeitschrift Für Pflanzenphysiologie 107(2):133–140

    Article  Google Scholar 

  • Katende AB, Birnie A, Tegnas B (1995) Useful trees and shrubs for Uganda. Identification, propagation and management for agricultural and pastoral communities. Regional Soil Conservation Unit (RSCU). Technical handbook Nº 10. Nairobi, RSCU, 710 pp

    Google Scholar 

  • Kaviani B, Hashemabadi D, Mohammadi Torkashvand A, Sedaghathoor S (2009) Cryopreservation of seeds of lily [Lilium edebourii (Baker) Bioss.]: use of sucrose and dehydration. Afr J Biotech 8:3809–3810

    CAS  Google Scholar 

  • Kaya D, Pillhofer JA (2013) Potential adoption of IFRS by the United States: a critical view. Acc Horiz 27(2):271–299

    Article  Google Scholar 

  • Keay RWJ (1996) The future of the genus Swietenia in its native forest. Bot J Linn Soc 122:3–7

    Google Scholar 

  • Kim HH, Cha YS, Baek HJ, Cho EG, Chae YA, Engelmann F (2002) Cryopreservation of tea (camellia sinensis L.) seeds and embryonic axes. Cryo Lett 23(4):209–216

    Google Scholar 

  • King MW, Soetisna U, Roberts EH (1981) The dry storage of citrus seeds. Ann Bot 48:865–872

    Article  Google Scholar 

  • Kobayashi S, Ikeda SI, Nakatani M (1978) Long-term storage of citrus pollen. In: Akihama T, Nakajima K (eds) Long term preservation of favourable germplasm in arboreal crop. Ministry of Agriculture and Forestry, Tsukuba-gun, Ibaraki ken, pp 8–12

    Google Scholar 

  • Kojima M, Yamamoto H, Marsoem SN, Okuyama T, Yoshida M, Nakai T, Yamashita S, Saegusa K, Matsune K, Nakamura K, Inoue Y, Arizono T (2009) Effects of the lateral growth rate on wood quality of Gmelina arborea from 3.5-, 7- and 12-year-old plantations. Ann For Sci 66(5):507

    Article  Google Scholar 

  • Kozaki I (1975a) Storage of fruit tree scions. In: Matsuo T (ed) JIBP synthesis, gene conservation exploration, collection, preservation and utilization. University of Tokyo Press, Tokyo, pp 84–85

    Google Scholar 

  • Kozaki I (1975b) Storage method of pollen. In: Matsuo T (ed) JIBP synthesis, gene conservation exploration, collection, preservation and utilization. University of Tokyo Press, Tokyo, pp 89–94

    Google Scholar 

  • Kumar S, Sharma S (2005) Somatic embryogenesis and cryopreservation of walnut (Juglans regia L.) and pecan (Carya illinoensis Koch). Acta Hortic 696:143–147

    Article  CAS  Google Scholar 

  • Kumar R, Singh R, Meera RS, Kalidhar SB (2003) Chemical components and insecticidal properties of bakyain (Melia azedarach L.). Agric Rev 24:101–115

    Google Scholar 

  • Kunkel G (1978) Melia azedarach Linné - Persian lilac. In: Junk W (ed) Flowering trees in subtropical gardens. Dr. W. Junk B.V. Publishers, The Hague, pp 260–261

    Chapter  Google Scholar 

  • Lamb AFA (1966) Impressions of tropical pines and hardwoods in some eastern countries. Commonwealth Forestry Institute, Oxford (Stencil.)

    Google Scholar 

  • Lambardi M (2002) Cryopreservation of germplasm of populus (poplar) species. In: Towill L, Bajaj YPS (eds) Cryopreservation of plant germplasm II. Biotechnology in Agriculture and Forestry, vol 50. Springer, Berlin Heidelberg, pp 269–286

    Google Scholar 

  • Lambardi M, De Carlo A (2003) Application of tissue culture to the germplasm conservation of temperate broad-leaf trees. In: Jain SM, Ishii K (eds) Micropropagation of woody trees and fruits. Kluwer Academic Publishers, Dordrecht, pp 815–840

    Chapter  Google Scholar 

  • Lambardi M, Fabbri A, Caccavale A (2000) Cryopreservation of white poplar (Populus alba L.) by vitrification of in vitro grown shoot tips. Plant Cell Rep 19:213–218

    Article  CAS  Google Scholar 

  • Lambardi M, Lynch PT, Benelli C, Mehra A, Siddika A (2002) Towards the cryopreservation of olive germplasm. Adv Hortic Sci 16:165–174

    Google Scholar 

  • Lambardi M, De Carlo A, Biricolti S, Puglia AM, Lombardo G, Siragusa M, De Pasquale F (2004) Zygotic and nucellar embryo survival following dehydration/cryopreservation of citrus intact seeds. Cryo-Letters 25(2):81–90

    CAS  PubMed  Google Scholar 

  • Lambardi M, De Carlo A, Capuana M (2005) Cryopreservation of embryogenic callus of Aesculus hippocastanum L. by vitrification/one-step freezing. Cryo-Letters 26:185–192

    PubMed  Google Scholar 

  • Lambardi M, Halmagyi A, Benelli C, Carlo A, de Vettori C (2007) Seed cryopreservation for conservation of ancient citrus germplasm. Adv Hortic Sci 21:198–202

    Google Scholar 

  • Lawrence GH (1951) Taxonomy of vascular plants. The Macmillan Company, Nueva York, p 576

    Google Scholar 

  • Lee CW, Thomas JC, Buchmann SL (1985) Factors affecting in vitro germination and storage of Jojoba Simmondsia-chinensis pollen. J Am Soc Hortic Sci 110:671–676

    CAS  Google Scholar 

  • Leonardis RFJ, Mangieri HR, Tinto JC, Alonzo A, Reuter HR (2000) In: Celulosa Argentina SA (ed) El nuevo libro del árbol. Especies exóticas de uso ornamental, tomo 3. El Ateneo, Buenos Aires, Argentina, pp 88–89

    Google Scholar 

  • Li DZ, Pritchard HW (2009) The science and economics of ex situ plant conservation. Trends Plant Sci 14(11):614–621

    Article  CAS  PubMed  Google Scholar 

  • Linington SH, Pritchard HW (2001) Genebanks. In: Levin S (ed) Encyclopedia of Biodiversity, vol 3. Academic Press, San Diego CA, pp 165–181

    Chapter  Google Scholar 

  • Lloyd G, McCown B (1981) Commercially-fesible micropropagation of mountain laurel, Kalmia latifolia, by the use of shoot-tip culture. Comb Proc Int Plant Prop Soc 30:421–427

    Google Scholar 

  • Loesener T (1942) Aquifoliaceae. In: Harms H, Mattfeld J (eds) Die Natürlichen Pflanzenfamilien, 2nd edn. Wilhelm Engelmann, Leipzig, pp 36–86

    Google Scholar 

  • Loizeau PA, Spichiger R (2004) Aquifoliaceae. In: Smith N, Mori SA, Henderson A, Stevenson DW, Heald SV (eds) Flowering plants of the Neotropics. Princeton University Press, Princeton, NJ, pp 26–28

    Google Scholar 

  • Luna C, Sansberro P, Mroginski L, Tarragó J (2003) Micropropagation of Ilex dumosa (Aquifoliaceae) from nodal segments in a tissue culture system. Biocell 27(2):205–212

    CAS  PubMed  Google Scholar 

  • Lyhr KP (1992) Mahogany. Silviculture and use of American Mahogany (Swietenia spp.). The Royal Veterinary and Agricultural University, 89 pp

    Google Scholar 

  • Lynch P (1999) Tissue culture techniques in in vitro plant conservation. In: Benson EE (ed) Plant conservation biotechnology. Taylor & Francis, London, Philadelphia, pp 42–61

    Google Scholar 

  • Mabberley DJ (1987) The plant book. Cambridge University Press, Cambridge

    Google Scholar 

  • Mabberley DJ, Pannell CM, Sing AM (1995) Meliaceae. Flora Malesiana Series I 12:1–407

    Google Scholar 

  • Malik SK, Chaudhury R (2006) The cryopreservation of embryonic axes of two wild and endangered citrus species. Plant Genet Res Charact Utiliz 4:204–209

    Article  Google Scholar 

  • Mangieri HR, Tinto JC (1977) In: Celulosa Argentina SA (ed) Libro del árbol. Esencias fo-restales no autóctonas cultivadas en la Argentina de aplicación ornamental y/o industrial, tomo 3. Impresiones Ramos Mejía S.A., Buenos Aires, Argentina, pp 61–62

    Google Scholar 

  • Mari S, Engelmann F, Chabrillange N, Huet C, Michaux-Ferrière N (1995) Histocytological study of coffee (Coffea racemosa and C. sessiliflora) apices of in vitro plantlets during their cryopreservation using the encapsulation-dehydration technique. Cryo-Letters 16:289–298

    Google Scholar 

  • Marin ML, Duran-Vila N (1988) Survival of somatic embryos and recovery of plants of sweet orange (Citrus sinensis L. Osb.) after immersion in liquid nitrogen. Plant Cell Tissue Organ Cult 14(1):51–57

    Article  Google Scholar 

  • Marín, ML, Duran-Vila, N (1988) Plant Cell Tissue Organ Culture 14: 51–57. 10. Mumford PM, Grout BWW (1979) Seed Sci Tech 7: 407–410

    Google Scholar 

  • Marin ML, Gogorcena Y, Ortiz J, DuranVila N (1993) Recovery of whole plants of sweet orange from somatic embryos subjected to freezing thawing treatments. Plant Cell Tiss Org Cult 34:27–33

    Article  Google Scholar 

  • Martin AC (1946) The comparative internal morphology of seeds. Am Midl Nat 36(3):513–660

    Article  Google Scholar 

  • Martinez M, Gonzalez-Arnao MT, Urra C, Rojas R, Cuba M, Garcia D (1996) Preliminary studies on the cryopreservation of zygotic embryos of Coffea arabica variety 972. Cultivos Tropicales 17:79–81

    Google Scholar 

  • Martinez MT, Ballester A, Vieitez AM (2003) Cryopreservation of embryogenic cultures of Quercus robur using desiccation and vitrification procedures. Cryobiology 46:182–189

    Article  CAS  PubMed  Google Scholar 

  • Martínez CRC, Gutiérrez EJC, Arrazate CHA (2013a) Protocolo de multiplicación y conservación in vitro de cuatro especies forestales tropicales de semillas recalcitrantes CASO: Caoba (Swietenia macrophylla). INIFAP-SEMARNAT-CONAFOR, México, pp 19–34

    Google Scholar 

  • Martínez CRC, Gutiérrez EJC, Arrazate CHA (2013b) Protocolo de multiplicación y conservación in vitro de cuatro especies forestales tropicales de semillas recalcitrantes CASO: Cedro Rojo (Cedrela odorata L.). INIFAP-SEMARNAT-CONAFOR, México, pp 2–18

    Google Scholar 

  • Marum L, Estêvão C, Oliveira MM, Amâncio S, Rodriguez L, Miguel C (2004) Recovery of cryopreserved embryogenic cultures of maritime pine: effect of cryoprotectant and suspension density. Cryo-Letters 25:363–374

    CAS  PubMed  Google Scholar 

  • Marzalina M, Krishnapillay B (1999) Recalcitrant seed biotechnology application to rain forest conservation. In: Benson EE (ed) Plant conservation biotechnology. Taylor & Francis, London, Philadelphia, pp 265–276

    Google Scholar 

  • Marzalina M, Nashatul ZNA (2000) Cryopreservation of some Malaysian tropical urban forestry species. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. Proceedings of an International Workshop, Tsukuba, Japan, October 1998. International Plant Genetic Resources Institute (IPGRI), Rome, pp 465–467

    Google Scholar 

  • Marzalina M, Normah M (2002) Cryopreservation techniques for the long-term storage of mahogany (Swietenia macrophylla) seeds. J Trop For Sci 14(4):525–535

    Google Scholar 

  • Mathur G, Alkutkar VA, Nadgauda RS (2003) Cryopreservation of embryogenic culture of Pinus roxburghii. Biol Plant 46:205–210

    Article  Google Scholar 

  • Matsumoto T, Sakai A (2003) Cryopreservation of axillary shoot tips of in vitro-grown grape (Vitis) by a two-step vitrification protocol. Euphytica 131:299–304

    Article  CAS  Google Scholar 

  • Matsumoto T, Mochida K, Itamura H, Sakai A (2001) Cryopreservation of persimmon (Diopsyros kaki Thunb) by vitrification of dormant shoot tips. Plant Cell Rep 20:398–402

    Article  CAS  Google Scholar 

  • Matsumoto T, Niino T, Shirata K, Kurahashi T, Matsumoto S, Maki S, Itamura H (2004) Long-term conservation of Diospyros germplasm using dormant buds by a prefreezing method. Plant Biotechnol 21:229–232

    Article  Google Scholar 

  • Matsumoto T, Yamamoto S, Fukui K, Rafique T, Engelmann F, Niino T (2015) Cryopreservation of Persimmon shoot tips from dormant buds using the D cryo-plate technique. Hortic J 84(2):106–110

    Article  CAS  Google Scholar 

  • Mebrat W, Gashaw T (2013) Eur J Bot Plant Sci Phytol 1(3):10–17

    Google Scholar 

  • Mejía EG, Song YS, Heck CI, Ramírez-Mares MV (2010) Yerba mate tea (Ilex paraguariensis): phenolics, antioxidant capacity and in vitro inhibition of colon cancer cell proliferation. J Funct Foods 2(1):23–34

    Article  CAS  Google Scholar 

  • Melo EA, Guerra NB (2002) Antioxidant phenolic compounds occurring naturally in foods. Bol SBCTA 36(1):1–11

    Google Scholar 

  • Mishra AP, Saklani S, Chandra S, Mathur A, Milella L, Tiwari P (2014) Aphanamixis polystachya (wall.) Parker, phytochemistry, pharmacological properties and medicinal uses: an overview. World J Pharm Pharm Sci 3(6):2242–2252

    Google Scholar 

  • Misson JP, Druart P, Panis B, Watillon B (2006) Contribution to the study of the maintenance of somatic embryos of Abies nordmanniana LK: culture media and cryopreservation method. Propag Ornamental Plants 6:17–23

    Google Scholar 

  • Montiel-Castelán P, Castillo-Martínez CR, Gómez-Reyes LA, Valle-Arizaga M, Jasso-Mata J (2016) Conservación in vitro por crecimiento mínimo de Swietenia macrophylla King. y Tectona grandis L. Agroproductividad 9(2): 20–25

    Google Scholar 

  • Moriguchi T, Kozaki I, Yamaki S, Sanada T (1990) Low temperature storage of pear shoots in vitro. Bull Fruit Tree Res Stn 17:11–18

    Google Scholar 

  • Mosele SH (2002) Governance in the agribusiness chain of yerba mate in the Alto Uruguai Riograndense. Master Dissertation. Universidade Federal do Rio Grande do Sul, Porto Alegre, 211 pp

    Google Scholar 

  • Mroginski LA, Roca WM, Kartha KK (1991) Crioconservación de germoplasma. In: Roca WM, Mroginski LA (eds) Cultivo de tejidos en la agricultura: fundamentos y aplicaciones. CIAT, Cali, Colombia, pp 715–730

    Google Scholar 

  • Mroginski LA, Sansberro PA, Scocchi AM, Luna CV, Rey HY (2006) Effect of fruit cryo-preservation on in vitro germination of zygotic embryos of several species of Ilex. Acta Hort 725:417–419

    Article  CAS  Google Scholar 

  • Mroginski LA, Sansberro PA, Scocchi AM, Luna CV, Rey HY (2008) A cryopreservation protocol for immature zygotic embryos of species of Ilex (Aquifoliaceae). Biocell 32(1):33–39

    PubMed  Google Scholar 

  • Mroginski L, Dolce N, Sansberro P, Luna C, Gonzalez A, Rey H (2011) Techniques and protocol on the cryopreservation of Ilex immature zygotic embryo. In: Thorpe TA, Yeung ECT (eds) Plant embryo culture: methods and protocols. Human Press, New York, EEUU, pp 215–225

    Chapter  Google Scholar 

  • Munmford PM, Grout WW (1979) Desiccation and low temperature (-196°C) tolerance of Citrus limon seed. Seed Sci Techno 7:407–410

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagy S, Attaway JA (1980) Citrus nutrition and quality: based on a symposium sponsored by the Division of Agricultural and Food Chemistry at the 179th meeting of the American Chemical Society, Houston, Texas, March 26, ACS Symposium Series (USA)

    Google Scholar 

  • Naidoo C, Benson E, Berjak P, Goveia M, Pammenter NW (2011) Exploring the use of DMSO and ascorbic acid to promote shoot development by excised embryonic axes of recalcitrant seeds. CryoLett 32:166–174

    CAS  Google Scholar 

  • Nair AGR, Subramanian SS (1975) Quercetagetin and other flavones from Gmelina arborea and G. asiatica. Phytochemistry 14:1135–1136

    Article  CAS  Google Scholar 

  • Nardo EAB, Costa AS, Lourencao AL (1997) Melia azedarach extract as an antifeedant to Bemisia tabaci (Homoptera: Aleyrodidae). Florida Entomol 80(1):92–94

    Article  Google Scholar 

  • Navarro C, Ward S, Hernandez M (2002) The tree Cedrela odorata (Meliaceae): a morphologically subdivided species in Costa Rica. Revista Biologia Tropical 50:21–29

    Google Scholar 

  • Newton AC, Barker P, Ramnarine S, Mesen JF, Leakey RRB (1993) The mahogany shoot borer: prospects for control. For Ecol Manage 57:301–328

    Article  Google Scholar 

  • Newton AC, Cornelius JP, Mesen JF, Leakey RRB (1995) Genetic variation in apical dominance of Cedrela odorata seedlings in response to decapitation. Silvae Genetica 44:146–150

    Google Scholar 

  • Newton AC, Allnutt TR, Gillies ACM, Lowe AJ, Ennos RA (1999) Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Evol Ecol 14:140–145

    Article  CAS  Google Scholar 

  • Niino T, Sakai A (1992) Cryopreservation of alginated coated in vitro grown shoot-tips of apple, pear and mulberry. Plant Sci 87:199–206

    Article  CAS  Google Scholar 

  • Niino T, Sakai A, Yakuwa H, Nojiri K (1992) Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification. Plant Cell Tiss Org Cult 28:261–266

    Article  Google Scholar 

  • Niino T, Koyama A, Shirata K, Ohuchi S, Suzuki M, Sakai A (1993) Long-term storage of mulberry winter buds by cryopreservation. J Serie Sci Jpn 62:431–434

    Google Scholar 

  • Niino T, Tashiro K, Suzuki M, Ohuchi S, Magoshi J, Akihama T (1997) Cryopreservation of in vitro—grow shoot tips of cherry and sweet cherry by one- step vitrification. Scientia Hortic 70:155–163

    Article  Google Scholar 

  • Niino T, Watanabe KN, Nohara T, Rafique S, Yamamoto K, Fukui MV, Arizaga CRC, Martinez T, Matsumoto, Engelmann F (2014) Practical cryopreservation of mat rush basal stem buds by air dehydration using aluminum cryo-plate. Plant Biotechnol 31:281–287

    Article  CAS  Google Scholar 

  • Niklas CO (1987) Estudios embriológicos y citológicos en la yerba mate Ilex paraguariensis (Aquifoliaceae). Bonplandia 6:45–56

    Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by the vitrification method. Plant Sci 91(1):67–73

    Article  CAS  Google Scholar 

  • Niu Y, Luo Z, Zhang Y, Zhang Q (2012) Cryopreservation of in vitro grown shoot tips of Diospyros kaki Thunb. using different methods. CryoLett 33:69–74

    CAS  Google Scholar 

  • Normah MN, Seti Dewi Serimala MN (1995) Cryopreservation of seeds and embryonic axes of several citrus species. In: Ellis RH, Black M, Murdoch AJ, Hong TD (eds) Basic and applied aspects of seed biology. Kluwer Academic Publishers, Dordrecht, pp 817–823

    Google Scholar 

  • Normah MN, Siti Dewi Serimala SD (1997) Cryopreservation of seeds and embryonic axes of several Citrus species. In: Ellis RH, Black M, Murdoch AJ, Hong TD (eds) Basic and applied aspects of seed biology. Kluwer, Dordrecht, pp 817–823

    Chapter  Google Scholar 

  • Normah MN, Vengadasalam M (1992) Effect of moisture content on cryopreservation of Coffea and Vigna seeds and embryos. Cryo-Letters 13:199–208

    Google Scholar 

  • Normah MN, Reed BM, Yu X (1994) Seed storage and cryoexposure behavior in hazelnut (Corylus avellana L. cv. Barcelona). Cryo-Letters 15:315–322

    Google Scholar 

  • Normah MN, Mainah G, Saraswathy R (2000) Cryopreservation of zygotic embryos of tropical fruit trees, a study on Lansium domesticum and Baccaurea species. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm: current research progress and application. Proceedings of an International Workshop, Tsukuba, Japan, October 1998. International Plant Genetic Resources Institute, Rome, pp 156–160

    Google Scholar 

  • Nunes ED, Benson EE, Oltramari AC, Araujo PS, Moser JR, Viana AM (2003) In vitro conservation of Cedrela fissilis Vellozo (Meliaceae), a native tree of the Brazilian Atlantic Forest. Biodiv Conserv 12: 837–848

    Google Scholar 

  • O’Neill GA, Dawson I, Sotelo-Montes C, Guarino L, Guari-Guata M, Current D, Weber JC (2001) Strategies for genetic conservation of trees in the Peruvian Amazon. Biodivers Conserv 10:837–850

    Article  Google Scholar 

  • Oh SD (1997) The effect of prefreezing treatment and cryoprotectants on the survival of cryopreserved somatic embryos and plant regeneration in Korean native citrus species. Acta Hortic 447:499–505

    Article  Google Scholar 

  • Okas S, Niino T (1989) Long term-storage of pear shoots cultured in vitro by minimum growth method. Abtr Jpn See Hortic Sci Spring Meet 58(Suppl 1):120–121 (In Japanese)

    Google Scholar 

  • Olivares-Fuster O, Asins MJ, Duran-Vila N, Navarro L (2000) Cryopreserved callus, a source of protoplasts for citrus improvement. J Hort Sci Biotech 75:635–640

    Article  Google Scholar 

  • Omura M, Akihama T, Kozaki L (1978a) Long term preservation of fruit tree scions. In: Akihama T, Nakajima K (eds) Long-term preservation of favourable germ plasm in arboreal crops. Friut Tree Research Station Minist Agric For Jpn, pp 26–30

    Google Scholar 

  • Omura M, Sato Y, Seike K (1978b) Long term preservation of Japanese pear seeds under extra-low temperatures. In: Akihama T, Nikajima K (eds) Long term preservation of favourable germ plasm in arboreal crops, Fruit Tree Res Stn Minist Agric For Jpn, pp 26–30

    Google Scholar 

  • Orlikowska T (1992) Effect of in vitro storage at 4 °C on survival and proliferation of two apple rootstocks. Plant Cell Tiss Organ Cult 31:1–7

    Google Scholar 

  • Ozden-Tokatli Y, Ozudogru EA, Gumuse F, Lambardi M (2007) Cryopreservation of Pistacia spp. seeds by dehydration and one-step freezing. Cryo-Letters 28:83–94

    CAS  PubMed  Google Scholar 

  • Pammenter NW, Berjak P (1999) A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms. Seed Sci Res 9:13–37

    Article  Google Scholar 

  • Pammenter NW, Berjak P (2014) Physiology of desiccation-sensitive (recalcitrant) seeds and the implications for cryopreservation. Int J Plant Sci 175:21–28

    Article  Google Scholar 

  • Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168(1):45–55

    Article  CAS  Google Scholar 

  • Páques M, Monod V, Poissonnier M, Dereudre J (2002) Cryopreservation of eucalyptus sp. shoot tips by the encapsulation-dehydration procedure. In: Towill LE, Bajaj YPS (eds) Biotechnology in agriculture and forestry, vol 50. Springer, Berlin, pp 234–245

    Google Scholar 

  • Park YS, Bmett JD, Bonga JM (1998) Application of somatic embyogenesis in high-value clonal forestry: deployment, genetic control, and stability of cryopreserved clones. In Vitro Cell Dev Biol Plant 34:231–239

    Article  Google Scholar 

  • Paul H, Daigny G, Sangwan-Noreel BS (2000) Cryopreservation of apple (Malus x domestica Borkh.) shoot tips following encapsulation or encapsulation-vitrification. Plant Cell Rep 19:768–774

    Article  CAS  Google Scholar 

  • Paulet F, Glaszmann JC (1994) Biotechnological support for varietal extension of sugarcane. CIRAD-CA Agriculture-et-Development, Special issue, pp 47–53

    Google Scholar 

  • Pausujja R, Granhof J, Willan RL (1986) Pinus merkusii Jungh. & de Vriese (including Pinus merkusiana Cooling & Gaussen). Danida Forest Seed Centre, Humleback, Denmark, Seed Leafl, p 7

    Google Scholar 

  • Pence VC (1990) Cryostorage of embryo axes of several large-seeded temperate tree species. Cryobiology 27(2):212–218

    Article  Google Scholar 

  • Pence VC (1991) Cryopreservation of immature embryos of Theobroma cacao. Plant Cell Rep 10:144–147

    Article  CAS  PubMed  Google Scholar 

  • Pence VC (1992) Desiccation and the survival of Aesculus, Castanea, and Quercus embryo axes through cryopreservation. Cryobiology 29:391–399

    Article  Google Scholar 

  • Pence VC (1996) Germination, desiccation and cryopreservation of seeds of Populus deltoides Bartr. Seed Sci Technol 24:151–157

    Google Scholar 

  • Pennington TD (1981) A monograph of the neotropical Meliaceae. Flora Neotropica. The New York Botanical Gardens, New York, pp 360–390

    Google Scholar 

  • Pennington TD, Muellner AN (2010) A monograph of Cedrela (Meliaceae). DH Books. The Manse. Chapel Lane, Milborne Port-England, 112 pp

    Google Scholar 

  • Pennington TD, Sarukhán KJ (1968) Manual para la identificación de campo de los principales árboles tropicales de México. INIF-FAO-SAG, México, p 413

    Google Scholar 

  • Pennington TD, Styles BT (1975) A generic monograph of the Meliaceae. Blumea 22(3):419–540

    Google Scholar 

  • Percy REL, Livingston NJ, Moran JA, von Aderkas P (2001) Desiccation, cryopreservation and water relations parameters of white spruce (Picea glauca) and interior spruce (Picea glauca x engelmannii complex) somatic embryos. Tree Physiol 21:1303–1310

    Article  CAS  PubMed  Google Scholar 

  • Perez RM, Navarro L, Duran-Vila N (1997) Cryopreservation and storage of embryogenic callus cultures of several Citrus species and cultivars. Plant Cell Rep 17:44–49

    Article  CAS  Google Scholar 

  • Perez RM, Mas O, Navarro L, Duran-Vila N (1999) Production and cryoconservation of embryogenic cultures of mandarin and mandarin hybrids. Plant Cell Tiss Org Cult 55:71–74

    Article  Google Scholar 

  • Pérez-Flores J, Eigenbrode SD, Hilje-Quiroz L (2012) Alkaloids, limonoids and phenols from meliaceae species decrease survival and performance of Hypsipyla grandella Larvae. Am J Plant Sci 2(1):988–994

    Article  CAS  Google Scholar 

  • Pijut PM, Lawson SS, Michler CH (2011) Biotechnological efforts for preserving and enhancing temperate hardwood tree biodiversity, health, and productivity. In Vitro Cell Dev Biol Plant 47:123–147

    Article  Google Scholar 

  • Pita JM, Sanz V, Escudero A (1998) Seed cryopreservation of seven Spanish native pine species. Silvae Genetica 47:220–223

    Google Scholar 

  • Prakash R (1991) Gmelina arborea. Propagation practices of important indian trees. International Book Distributors, Dehradun, India, pp 234–236

    Google Scholar 

  • Preci D, Cichoski AJ, Valduga AT, de Oliveira D, Valduga E, Treichel H, Toniazzo G, Cansian RL (2011) Desenvolvimento de iogurte light com extrato de erva-mate (Ilex paraguariensis St. Hil) e adição de probióticos. Alimentos e Nutrição 22(1):27–38

    Google Scholar 

  • Pritchard HW (2007) Cryopreservation of desiccation-tolerant seeds. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols, 2nd edn. Humana Press Inc, Totowa, New Jersey, pp 185–201

    Chapter  Google Scholar 

  • Pukacki PM, Jarzabech M, Pukacka M (2009) Characterization of cryoprotective activity of proteins in Acer, Fagus and Quercus embryonic axes. In: First international symposium “Cryopreservation in Horticultural Species”. Leuven, Belgium, 5–8 April 2009, p 117 (abstract)

    Google Scholar 

  • Radhamani J, Chandel KPS (1992) Cryopreservation of embryonic axes of trifoliate orange (Poncirus trifoliata L., RAF.). Plant Cell Rep 11(7):372–374

    Article  CAS  PubMed  Google Scholar 

  • Ramana KVR, Govindarajan VS, Ranganna S (1981) Citrus fruits varieties, chemistry, technology, and quality evaluation. Part I: varieties, production, handling, and storage. Crit Rev Food Sci Nutr 15:353–431

    Article  CAS  PubMed  Google Scholar 

  • Rao NK (2004) Plant genetic resources: advancing conservation and use through biotechnology. Afr J Biotech 3:136–145

    Google Scholar 

  • Reed BM (2002) Implementing cryopreservation for long-term germplasm preservation in vegetatively propagated plants. In: Towill LE, Bajaj YPS (eds) Cryopreservation of plant germplasm II. Biotechnology in agriculture and forestry, vol 50. Springer, Heidelberg, pp 22–33

    Google Scholar 

  • Rehman HU, Gill MIS (2015) Micrografting of fruit crops—a review. J Hortic 2:151

    Google Scholar 

  • Ril FT, Loch CR, Valduga AT, Macedo SMD, Cichoski AJ (2011) Biochemical profile of rats fed yogurt containing extract of yerba mate (Ilex paraguariensis St. Hil). Braz J Food Technol 14(4):332–337

    Article  CAS  Google Scholar 

  • Roberts EH (1973) Predicting the storage life of seeds. Seed Sci Technol 1:499–514

    Google Scholar 

  • Roberts EH, King MW (1980) Storage of recalcitrant seeds. In: Withers LA, Williams JT (eds) Crop genetic resources. The conservation of difficult material. International Union of Biological Sciences, Series B42, pp 39–48

    Google Scholar 

  • Ryynanen L (1996) Survival and regeneration of dormant silver birch buds stored at superlow temperatures. Can J For Res 26:617–623

    Article  Google Scholar 

  • Ryynänen L, Sillanpää M, Kontunen-Soppela S, Tiimonen H, Kangasjärvi J, Vapaavuori E et al (2002) Preservation of transgenic silver birch (Betula pendula Roth) lines by means of cryopreservation. Mol Breed 10:143–152

    Article  Google Scholar 

  • Sajini KK, Karun A, Kumaran PM (2006) Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos after pre-growth desiccation. J Plantation Crops 34:576–581

    Google Scholar 

  • Sakai A (1956) Survival of plant tissue at super-low temperature. Low Temp Sci Ser B 14:17–23

    Google Scholar 

  • Sakai A, Engelmann F (2007) Vitrification, encapsulation-vitrification and droplet-vitrification: a review. Cryo-Letters 28(3):151–172

    CAS  PubMed  Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Obs. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9(1):30–33

    Article  CAS  PubMed  Google Scholar 

  • Salas EJB (1993) Árboles de Nicaragua. Instituto Nicaragüense de Recursos Naturales y del Ambiente (IRENA), Managua, Nicaragua, p 390

    Google Scholar 

  • Salgotra RK, Gupta BB (2015) Plant genetic resources and traditional/indigenous knowledges: potential and challenges In: Salgotra RK, Gupta BB (eds) Plant genetic resources and traditional knowledge for food security. Springer Science+Business Media, Singapore, pp 1–21

    Google Scholar 

  • Salomão AN (2002) Tropical seed species responses to liquid nitrogen exposure. Braz J Plant Physiol 14(2):133–138

    Article  Google Scholar 

  • Sampayo-Maldonado S, Castillo-Martínez CR, Jasso-Mata J, Jiménez-Casas M, López-Upton J, Sánchez-Monsalvo V (2016) Efecto del medio de cultivo en la propagación in vitro de genotipos de Cedrela odorata L. Agroproductividad 9(2):62–69

    Google Scholar 

  • Sánchez C, Martínez MT, Vidal N, San-José MC, Valladares S, Vieitez AM (2008) Preservation of Quercus robur germplasm by cryostorage of embryogenic cultures derived from mature trees and RAPD analysis of genetic stability. CryoLetters 29:493–504

    PubMed  Google Scholar 

  • San-José MC, Jorquera L, Vidal N, Corredoira E, Sánchez C (2005) Cryopreservation of european chestnut germplasm. Acta Hortic 693:225–232

    Article  Google Scholar 

  • Sansberro PA, Rey HY, Mroginski LA, Collavino MM (1998) In vitro culture of rudimentary embryos of Ilex paraguariensis: responses to exogenous cytokinins. J Plant Growth Regul 17(2):101–105

    Article  CAS  Google Scholar 

  • Sansberro PA, Rey HY, Mroginski LM, Collavino MM (1999) In vitro plant regeneration of Ilex paraguariensis (Aquifoliaceae). In Vitro Cell Dev Biol Plant 35(5):401–402

    Article  Google Scholar 

  • Sansberro PA, Rey HY, Mroginski LA (2001) In vitro culture of zygotic embryos of Ilex species. HortScience 36(2):351–352

    CAS  Google Scholar 

  • Santos IRI, Stushnoff C (2003) Desiccation and freezing tolerance of embryonic axes from Citrus sinensis (L.) Osb. pretreated with sucrose. Cryo-Letters 24:281–292

    PubMed  Google Scholar 

  • Santos IRI, Stushnoff C (2014) Cryopreservation of embryonic axes of Citrus species by encapsulation-dehydration. Publi dans le 131:36–41

    Google Scholar 

  • Santos IRI, Nassif Salomȃo A, Peixoto Vargas D, Da Silva PC, Ferreira Nogueira G, Carvalho M, Paiva R (2013) Situación actual y perspectivas de la investigación en crioconservación de recursos fitogenéticos en Brasil. In: Gonzalez-Arnao MT, Engelmann F (eds) Crioconservación de plantas en América Latina y el Caribe. IICA, San José, Costa Rica, pp 76–92

    Google Scholar 

  • Schinella G, Fantinelli JC, Mosca SM (2005) Cardioprotective effect of Ilex paraguariensis extract: evidence for a nitric oxide-dependent mechanism. Clin Nutr 24(3):360–366

    Article  PubMed  Google Scholar 

  • Scocchi A, Faloci M, Medina R, Olmos S, Mroginski L (2004) Plant recovery of cryopreserved apical meristem-tips of Melia azedarach L. using encapsulation-dehydration and assessment of their genetic stability. Euphytica 135(1):29–38

    Article  CAS  Google Scholar 

  • Scocchi A, Vila S, Mroginski L, Engelmann F (2007) Cryopreservation of somatic embryos of paradise tree (Melia azedarach L.). CryoLetters 28(4):281–290

    PubMed  Google Scholar 

  • Shackleton SE, Shackleton CM, Netshiluvhi TR, Geach BS, Ballance A, Fairbanks DHK (2002) Use patterns and value of savanna resources in three rural villages in South Africa. Econ Bot 56(2):130–146

    Article  Google Scholar 

  • Shands H (1991) Complementarity of in situ and ex situ germplasm conservation from the standpoint for the future user. Israeli J Bot 40:521–528

    Google Scholar 

  • Sharma PC, Yelne MB, Dennis TJ (2001) Database on medicinal plants used in ayurveda, vol 3. Central Council for Research in Ayurveda and Siddha, Department of ISM and H Ministry of Health and Family Welfare Government of India, pp 217–228

    Google Scholar 

  • Sharma N, Satsangi R, Pandey R, Singh R, Kaushik N, Tyagi RK (2012) In vitro conservation of Bacopa monnieri (L.) using mineral oil. Plant Cell Tissue Organ Cult 111(3):291–301

    Article  CAS  Google Scholar 

  • Shatnawi MA, Engelmann F, Frattarelli A, Damiano C (1999) Cryopreservation of apices of in vitro plantlets of almond (Prunus dulcis Mill). Cryo-Letters 20:13–20

    Google Scholar 

  • Shea GM, Armstrong PA (1978) The effect of post-harvest environmental factors on the longevity of Hoop pine seed. Queensland Dep For Res, Note, p 24

    Google Scholar 

  • Sherlock G, Block W, Benson EE (2005) Thermal analysis of the plant encapsulation-dehydration cryopreservation protocol using silica gel as the desiccant. CryoLetters 26:45–54

    PubMed  Google Scholar 

  • Shibli RA, Al-Juboory KH (2000) Cryopreservation of ‘Nabali’ olive (Olea europea L.) somatic embryos by encapsulation-dehydration and encapsulation-vitrification. Cryo-Letters 21:357–366

    CAS  PubMed  Google Scholar 

  • Shibli RA, Shatnowi AM, Subaih SW, Ajlouni MM (2006) In vitro conservation and cryopreservation of plant genetic resources: a review. World J Agric Sci 2(4):372–382

    Google Scholar 

  • Shirwaikar A, Ghosh S, Rao PGM (2003) Effect of Gmelina arborea Roxb. leaves on wound healing in rats. J Nat Remedies 3(1):45–48

    Google Scholar 

  • Silva LC, Paiva R, Swennen R, Andre E, Panis B (2013) Shoot-tip cryopreservation by droplet vitrification of Byrsonima intermedia A. Juss.: a woody tropical and medicinal plant species from Brazilian cerrado. CryoLetters 34(4):338–348

    CAS  PubMed  Google Scholar 

  • Snook LK (1993) Stand dynamics of Mahogany (Swietenia macrophylla King.) and associated specie after fire and hurricane in the tropical forest of the Yucatan Peninsula, Mexico. Thesis of Forestry Ph.D. New Haven, Connecticut, Yale University, 173 pp

    Google Scholar 

  • Soliman HIA (2013) Cryopreservation of in vitro-grown shoot tips of apricot (Prunus armeniaca L.) using encapsulation-dehydration. Afr J Biotech 12(12):1419–1430

    CAS  Google Scholar 

  • Solovieva MA (1966) Long-term storage of fruit seed. In: Proceedings of the 17th International Horticulture Congress, Maryland, USA

    Google Scholar 

  • Standley P (1946) Flora of Guatemala. Chicago Natural History Museum, Chicago, vol 24, part 5, pp. 458–459

    Google Scholar 

  • Styles BT (1972) The flower biology of the Meliaceae and its bearing on tree breeding. Silvae Genet 21:175–182

    Google Scholar 

  • Sukartiningsih SY, Ide Y (2012) Encapsulation of axillary buds of Gmelina arborea Roxb. and Peronema canescens Jack. Bull Univ Tokyo For 127:57–65

    Google Scholar 

  • Suszka B (1975) Cold storage of already after-ripened beech (Fagus silvatica L.) seeds. Arbor Kornickie 20:299–315

    Google Scholar 

  • Swaminathan MS (1997) Implementing the benefit sharing provisions on the convention of biological diversity: challenges and opportunities. FAO/IBPGR Plant Genetic Newsletter 112:19–27

    Google Scholar 

  • Taji AM, Williams RR (1996) Tissue culture of Australian plants. University of New England Press, Armidale, NSW 2351, Australia

    Google Scholar 

  • Tauer CG (1979) Seed tree, vacuum, and temperature effects on eastern cottonwood seed viability during extended storage. For Sci 25:112–114

    Google Scholar 

  • Tewari DNA (1995) Monograph on Gamari (Gmelina arborea Roxb.). International Book Distributors, Dehradun, India, pp 1–84

    Google Scholar 

  • Thakur R, Rao PS, Bapat VA (1998) In vitro plant regeneration in Melia azedarach L. Plant Cell Rep 18(1):127–131

    Article  CAS  Google Scholar 

  • Touchell DH, Dixon KW (1994) Cryopreservation for seed banking of Australian species. Ann Bot 74:541–546

    Article  Google Scholar 

  • Touchell DH, Chiang VL, Tsai CJ (2002) Cryopreservation of embryogenic cultures of Picea mariana (black spruce) using vitrification. Plant Cell Rep 21:118–124

    Article  CAS  Google Scholar 

  • Towill LE (1984) Survival of ultra-low temperatures of shoot-tips from Solanum tuberosum groups andigena, phureja, stenotomum and other tuber-bearing Solanum species. Cryo-Letters 5:319–326

    Google Scholar 

  • Tsang ACW, Corlett RT (2005) Reproductive biology of the Ilex species (Aquifoliaceae) in Hong Kong, China. Can J Bot 83:1645–1654

    Article  Google Scholar 

  • UNDP (2007) Human development. In: United Nations Development Programme, Uganda Human Development Report—Rediscovering Agriculture for Human Development, p 38

    Google Scholar 

  • United Nations Conference on Trade and Development (UNCTAD) (2004) Market information in the commodities area: information on citrus fruit. Available from: https://r0.unctad.org/infocomm/anglais/orange/sitemap.htm. Accessed 2016 October

  • Valladares S, Toribio M, Celestino C, Vieitez AM (2004) Cryopreservation of embryogenic cultures from mature Quercus suber trees using vitrification. CryoLetters 25:177–186

    PubMed  Google Scholar 

  • Verissimo A, Junior CS, Stone S, Uhl C (1998) Zoning of timber extraction in the Brazilian Amazon. Conserv Biol 12:128–136

    Article  Google Scholar 

  • Vertucci C, Farrant J (1995) Acquisition and loss of desiccation tolerance. In: Kigel J, Galilli G (eds) Seed development and germination. Marcel Dekker Inc, New York, pp 237–271

    Google Scholar 

  • Vidal N, Vieitez AM, Fernández MR, Cuenca B, Ballester A (2010) Establishment of cryo-preserved gene banks of European chestnut and cork oak. Eur J Forest Res 129:635–643

    Article  CAS  Google Scholar 

  • Vila S, Scocchi A, Mroginski L (2002) Plant regeneration from shoot apical meristems of Melia azedarach L. (Meliaceae). Acta Physiol Plant 24(2):195–199

    Article  CAS  Google Scholar 

  • Vila S, Gonzalez A, Rey H, Mroginski L (2003) Somatic embryogenesis and plant regeneration from immature zygotic embryos of Melia azedarach (Meliaceae). In Vitro Cell Dev Biol Plant 39(3):283–289

    Article  CAS  Google Scholar 

  • Villa AL, Jimenez PE, Valbuena RI, Bastidas S, Nunez VM (2007) Preliminary study of the establishment of cryoconservation protocol for oil palm (Elaeis guineensis Jacq.). Agronomia Colombiana 25:215–223

    Google Scholar 

  • Volk GM, Bonnart R, Krueger R, Lee R (2012) Cryopreservation of citrus shoot tips using micrografting for recovery. CryoLetters 33(6):418–426

    CAS  PubMed  Google Scholar 

  • Walden RF, Wright RD (1995) Supraoptimal root-zone temperature influences the medium solution and growth of “Helleri” holly. HortScience 30(5):1020–1025

    Google Scholar 

  • Walters C, Farrant JM, Pammenter NW, Berjak P (2002) Desiccation and damage. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CAB International, London, pp 263–291

    Chapter  Google Scholar 

  • Walters C, Wheeler L, Stanwood PC (2004) Longevity of cryogenically stored seeds. Cryobiology 48:229–244

    Article  PubMed  Google Scholar 

  • Wanas WH, Callow JA, Withers LA (1986) Growth limitation for the conservation of pear genotypes. In: Withers LA, Anderson PG (eds) Plant tissue culture and its agricultural application. Butterworthd, London, pp 285–290

    Chapter  Google Scholar 

  • Wang ZC, Deng XX (2004) Cryopreservation of shoot-tips of citrus using vitrification: effect of reduced form of glutathione. Cryo-Letters 25:43–50

    PubMed  Google Scholar 

  • Wen B, Song SQ (2007) Acquisition and loss of cryotolerance in Livistonia chinensis embryos during seed development. Cryo-Letters 28:291–302

    PubMed  Google Scholar 

  • Williams N (1998) Study finds 10% of tree species under threat. Science 281:1426

    Article  CAS  Google Scholar 

  • Withers LA (1995) Collecting in vitro for genetic resources conservation. In: Guarino L, Rao R, Reid R (eds) Collecting plant genetic diversity. CAB International, Wallingford, pp 511–515

    Google Scholar 

  • Woessner RA, McNabb KL (1979) Large scale production of Gmelina arborea Rokb. Seed—a case study. Commonwealth For Rev 58:117–121

    Google Scholar 

  • Wu YJ, Huang XL, Xiao JN, Li J, Zhou MD, Engelmann F (2003) Cryopreservation of mango (Mangifera indica L.) embryogenic cultures. Cryo-Letters 24:303–314

    PubMed  Google Scholar 

  • Xia K, Hill LM, Li D-Z, Walters C (2014) Factors affecting stress tolerance in recalcitrant embryonic axes from seeds of four Quercus (Fagaceae) species native to the USA or China. Ann Bot 114:1747–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto SI, Rafique T, Priyantha WS, Fukui K, Matsumoto T, Niino T (2011) Development of a cryopreservation procedure using aluminium cryo-plates. Cryo-Letters 32(3):256–265

    CAS  PubMed  Google Scholar 

  • Yamamoto SI, Rafique T, Fukui K, Sekizawa K, Niino T (2012) V-cryo-plate procedure as an effective protocol for cryobanks: case study of mint cryopreservation. Cryo-Letters 33(1):12–23

    CAS  PubMed  Google Scholar 

  • Yap SK, Wang SM (1983) Seed biology of Acacia mangium, Albizia falcataria, Eucalyptus spp. Gmelina arborea, Maesopsis eminii, Pinus caribaea, and Tectona grandls. Malays Forester 46:26–45

    Google Scholar 

  • Zhang N, Wen B, Ji M, Yan Q (2014) Low-temperature storage and cryopreservation of grapefruit (Citrus paradisi Macfad.) seeds. CryoLetters 35(5):418–426

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research works on cryopreservation of citrus germplasm were funded by IPGRI projects (96/098 and 99/18), INIA project (RF98/033), and a postdoctoral fellowship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Teresa González-Arnao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González-Arnao, M.T., Dolce, N., González-Benito, M.E., Castillo Martínez, C.R., Cruz-Cruz, C.A. (2017). Approaches for In Vitro Conservation of Woody Plants Germplasm. In: Ahuja, M., Jain, S. (eds) Biodiversity and Conservation of Woody Plants. Sustainable Development and Biodiversity, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-66426-2_13

Download citation

Publish with us

Policies and ethics