Skip to main content

A Reference Framework for Empowering the Creation of Projects with Arduino in the Ecuadorian Universities

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 749))

Abstract

There has been a shift in the Higher Education model, especially at the university level, where distance education and remote laboratories for teaching and training have been incorporated. On the other hand, popular interest in robotics, as well as research around this technology, have increased in the last years. In this sense, Arduino is a platform that helps teachers and students to develop robotics-based solutions without a great investment, since its use does not require special robotics labs. Considering these facts, in this work, we present a reference framework that allows the fast development of robotic projects based on Arduino. This framework was used for developing several projects that solve multidisciplinary and real-life problems. Furthermore, this framework was used regardless the students’ expertise level in robotics. Considering the students’ opinions about the use of the framework, we noted that it helped students to provide solutions for a wide range of problems based on a critical thinking approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Minchinton, P.R., Gould, S., Mitchell, R.J.: The cyber challenge – a robotics project to enthuse. IFAC Proc. 46, 168–173 (2013)

    Article  Google Scholar 

  2. Fernández-March, A., Bolonia, T.: Metodologías activas para la formación de competencias. Universidad de Murcia (2005)

    Google Scholar 

  3. Pantofaru, C., Chitta, S., Gerkey, B., Rusu, R., Smart, W.D., Vaughan, R.: Special issue on open source software-supported robotics research. Auton. Robots. 34, 129–131 (2013)

    Article  Google Scholar 

  4. Gargava, P., Sindwani, K., Soman, S.: Controlling an arduino robot using brain computer interface. In: Proceedings of 3rd International Conference on Reliability, Infocom Technologies and Optimization, pp. 1–5. IEEE (2014)

    Google Scholar 

  5. Barcia-Quimi, A., Aguirre-Munizaga, M.E., León-Munizaga, N., Hernández, L., Vergara, V.: Automation of a distillation column of packed bed for an alcohol solution using arduino. Rev. Int. Investig. y Docencia. 2, 1 (2017)

    Google Scholar 

  6. Aswath, S., Ajithkumar, N., Tilak, C.K., Saboo, N., Suresh, A., Kamalapuram, R., Mattathil, A., Anirudh, H., Krishnan, Arjun B., Udupa, G.: An Intelligent Rover Design Integrated with Humanoid Robot for Alien Planet Exploration. In: Kim, J.-H., Yang, W., Jo, J., Sincak, P., Myung, H. (eds.) Robot Intelligence Technology and Applications 3. AISC, vol. 345, pp. 441–457. Springer, Cham (2015). doi:10.1007/978-3-319-16841-8_41

    Google Scholar 

  7. Ishikawa, M., Maruta, I.: Rapid prototyping for control education using arduino and open-source technologies. IFAC Proc. 42, 317–321 (2010)

    Article  Google Scholar 

  8. Palacio, L.G.: Modelo de requisitos para sistemas embebidos (2008)

    Google Scholar 

  9. McRoberts, M.: Temperature sensors. In: Beginning Arduino, pp. 279–291. Apress, Berkeley (2010)

    Google Scholar 

  10. Tutorial IV: Nios II processor hardware design. In: Rapid Prototyping of Digital Systems, pp. 323–343. Springer, New York (2006)

    Google Scholar 

  11. López-Rodríguez, F.M., Cuesta, F.: Andruino-A1: low-cost educational mobile robot based on android and arduino. J. Intell. Robot. Syst. 81, 63–76 (2016)

    Article  Google Scholar 

  12. Díaz Sánchez, J.: Open Hardware y Software, Herramientas para el desarrollo de competencias educativas (2015). http://www.pag.org.mx/index.php/PAG/article/view/504

  13. Viseur, R.: From Open Source Software to Open Source Hardware. In: Hammouda, I., Lundell, B., Mikkonen, T., Scacchi, W. (eds.) OSS 2012. IAICT, vol. 378, pp. 286–291. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33442-9_23

    Chapter  Google Scholar 

  14. Drymonitis, A.: Introduction to arduino. In: Digital Electronics for Musicians, pp. 51–96. Apress, Berkeley (2015)

    Google Scholar 

  15. Dautenhahn, K.: Roles of Robots in Human Society: Challenges and Case Studies. In: Jacquart, R. (ed.) Building the Information Society. IIFIP, vol. 156, p. 745. Springer, Boston, MA (2004). doi:10.1007/978-1-4020-8157-6_78

    Chapter  Google Scholar 

  16. Pearce, J.M.: The case for open source appropriate technology. Environ. Dev. Sustain. 14, 425–431 (2012)

    Article  Google Scholar 

  17. Caicedo Bravo, E., Bacca Cortés, E.B., Andrés Calvache, B., Evelio Cardona, J., Buitrago, J.A.: Laboratorio distribuido con acceso remoto para la enseñanza de la robótica. Rev. Educ. en Ing. 4, 51–61 (2009)

    Google Scholar 

  18. Lowe, D., Newcombe, P., Stumpers, B.: Evaluation of the use of remote laboratories for secondary school science education. Res. Sci. Educ. 43, 1197–1219 (2013)

    Article  Google Scholar 

  19. Vergara, V., Lagos-Ortiz, K., Aguirre-Munizaga, M., Aviles, M., Medina-Moreira, J., Hidalgo, J., Muñoz-García, A.: Knowledge-Based Model for Curricular Design in Ecuadorian Universities. In: Valencia-García, R., Lagos-Ortiz, K., Alcaraz-Mármol, G., del Cioppo, J., Vera-Lucio, N. (eds.) CITI 2016. CCIS, vol. 658, pp. 14–25. Springer, Cham (2016). doi:10.1007/978-3-319-48024-4_2

    Chapter  Google Scholar 

  20. Rubio, M.Á., Mañoso, C., Romero Zaliz, R., Ángel, P. de M.: Uso de las plataformas LEGO y Arduino en la enseñanza de la programación (2014)

    Google Scholar 

  21. Armesto, L., Fuentes-Durá, P., Perry, D.: Low-cost printable robots in education. J. Intell. Robot. Syst. 81, 5–24 (2016)

    Article  Google Scholar 

  22. Galeriu, C.: An Arduino-Controlled Photogate. Phys. Teach. 51, 156–158 (2013)

    Article  Google Scholar 

  23. Wu, F., He, T.: Application of Proteus in Microcontroller Comprehensive Design Projects. In: Zhang T. (eds.) Instrumentation, Measurement, Circuits and Systems. Advances in Intelligent and Soft Computing, vol 127. Springer, Heidelberg (2012)

    Google Scholar 

  24. Ramos, E.: Arduino basics. In: Arduino and Kinect Projects, pp. 1–22. Apress, Berkeley (2012)

    Google Scholar 

  25. Badamasi, Y.A.: The working principle of an arduino. In: 2014 11th International Conference on Electronics, Computer and Computation (ICECCO), pp. 1–4. IEEE (2014)

    Google Scholar 

  26. Skiba, D.J.: The Internet of Things (IoT). Nurs. Educ. Perspect. 34, 63–64 (2013)

    Article  Google Scholar 

  27. Barbon, G., Margolis, M., Palumbo, F., Raimondi, F., Weldin, N.: Taking Arduino to the Internet of Things: The ASIP programming model. Comput. Commun. 89–90, 128–140 (2016)

    Article  Google Scholar 

  28. Warren, J.-D., Adams, J., Molle, H.: Arduino for robotics. In: Arduino Robotics, pp. 51–82. Apress, Berkeley (2011)

    Google Scholar 

  29. Tutorials for App Inventor: Anyone Can Build Apps That Impact the World. http://appinventor.mit.edu/explore/ai2/tutorials.html

  30. Kim, D.-O., Liu, L., Shin, I.-S., Kim, J.-J., Han, K.-J.: Spatial TinyDB: a spatial sensor database system for the USN environment. Int. J. Distrib. Sens. Netw. 9 (2013). 10.1155/2013/512368

  31. Jamieson, P.: Arduino for teaching embedded systems. are computer scientists and engineering educators missing the boat? In: Proceedings FECS, pp. 289–294 (2010)

    Google Scholar 

  32. Chao, K.-M., James, A.E., Nanos, A.G., Chen, J.-H., Stan, S.-D., Muntean, I., Figliolini, G., Rea, P., Bouzgarrou, C.B., Vitliemov, P., Cooper, J., van Capelle, J.: Cloud E-learning for mechatronics: CLEM. Futur. Gener. Comput. Syst. 48, 46–59 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Gómez-Chabla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gómez-Chabla, R., Aguirre-Munizaga, M., Samaniego-Cobo, T., Choez, J., Vera-Lucio, N. (2017). A Reference Framework for Empowering the Creation of Projects with Arduino in the Ecuadorian Universities. In: Valencia-García, R., Lagos-Ortiz, K., Alcaraz-Mármol, G., Del Cioppo, J., Vera-Lucio, N., Bucaram-Leverone, M. (eds) Technologies and Innovation. CITI 2017. Communications in Computer and Information Science, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-319-67283-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67283-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67282-3

  • Online ISBN: 978-3-319-67283-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics