Skip to main content

An Overview of Evidence-Based Occupational and Physiotherapy for Children with Cerebral Palsy

  • Chapter
  • First Online:
Book cover Cerebral Palsy
  • 4368 Accesses

Abstract

This chapter focuses on school-aged children and adolescents and is presented in two parts. The first part introduces the foundational principles and practices for occupational and physiotherapy for children with cerebral palsy. The second part provides an overview of evidence-based interventions that aim to optimise participation outcomes, reduce activity limitations or minimise body structure or function impairments of children with cerebral palsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Townsend E, Polatajko H. Enabling occupation II: advancing an occupational therapy vision for health, well-being and justice through occupation. Ottawa: CAOT Publications ACE; 2013.

    Google Scholar 

  2. World Federation of Occupational Therapists (2016) Definitions of occupational therapy from member organisations. 2013 to December 2016.

    Google Scholar 

  3. Law M, Cooper BA, Strong S, et al. The person-environment-occupation model: a transactive approach to occupational performance. Can J Occup Ther. 1996;63:9–23.

    Article  Google Scholar 

  4. Strong S, Rigby P, Stewart D, et al. Application of the person-environment-occupation model: a practical tool. Can J Occup Ther. 1999;66:122–33.

    Article  CAS  PubMed  Google Scholar 

  5. Mathiowetz V, Federman S, Wiemer D. Box and blocks test of manual dexterity: norms for 6-19 year olds. Can J Occup Ther. 1985;52:241–5.

    Article  Google Scholar 

  6. Wikström-Grotell C, Eriksson K. Movement as a basic concept in physiotherapy—a human science approach. Physiother Theory Pract. 2012;28:428–38.

    Article  PubMed  Google Scholar 

  7. Novak I. Evidence-based diagnosis, health care, and rehabilitation for children with cerebral palsy. J Child Neurol. 2014;29:1141–56.

    Article  PubMed  Google Scholar 

  8. WHO. International classification of functioning, disability and health: children and youth version: ICF-CY. Geneva: WHO; 2007. p. 349.

    Google Scholar 

  9. Imms C, Granlund M, Wilson PH, et al. Participation, both a means and an end: a conceptual analysis of processes and outcomes in childhood disability. Dev Med Child Neurol. 2016;59:16–25.

    Article  PubMed  Google Scholar 

  10. Sackett DL, Rosenberg WMC, GJA M, et al. REvidence-based medicine: what it is and what it isn’t. Br Med J. 1996;312:71–2.

    Article  CAS  Google Scholar 

  11. Sackett DL, Strauss SE, Richardson WS, et al. Evidence-based medicine: how to practice and teach EBM. Edinburg: Churchill Livingston; 2000. p. 261.

    Google Scholar 

  12. Boaz A, Baeza J, Fraser A. European Implementation Score Collaborative G. Effective implementation of research into practice: an overview of systematic reviews of the health literature. BMC Res Notes. 2011;4:212.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Novak I, McIntyre S, Morgan C, et al. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol. 2013;55:885–910.

    Article  PubMed  Google Scholar 

  14. OCEBM. OCEBM Levels of Evidence Working Group. The Oxford levels of evidence 2. Oxford: Oxford Centre for Evidence-Based Medicine; 2011. http://www.cebm.net/index.aspx?o=5653

    Google Scholar 

  15. King GA, Chiarello L. Family-centered care for children with cerebral palsy: conceptual and practical considerations to advance care and practice. J Child Neurol. 2014;29:1046–54.

    Article  PubMed  Google Scholar 

  16. Law M, Teplicky R, King S, et al. Family-centred service: moving ideas into practice. Child Care Health Dev. 2005;31:633–42.

    Article  CAS  PubMed  Google Scholar 

  17. Halfon N, Larson K, Lu M, et al. Lifecourse health development: past, present and future. Matern Child Health J. 2014;18:344–65.

    Article  PubMed  Google Scholar 

  18. Gibson B, Teachman G, Wright V, et al. Children’s and parents’ beliefs regarding the value of walking: rehabilitation implications for children with cerebral palsy. Child Care Health Develop. 2012;38:61–9.

    Article  CAS  Google Scholar 

  19. Palisano RJ, Hanna SE, Rosenbaum PL, et al. Validation of a model of gross motor function for children with cerebral palsy. Phys Ther. 2000;80:974–85.

    CAS  PubMed  Google Scholar 

  20. Thomason P, Selber P, Graham HK. Single event multilevel surgery in children with bilateral spastic cerebral palsy: a 5 year prospective cohort study. Gait Posture. 2013;37:23–8.

    Article  PubMed  Google Scholar 

  21. Gray L, Ng H, Bartlett D. The gross motor function classification system: an update on impact and clinical utility. Pediatr Phys Ther. 2010;22:315–20.

    Article  PubMed  Google Scholar 

  22. Eliasson AC, Krumlinde-Sundholm L, Rosblad B, et al. Using the MACS to facilitate communication about manual abilities of children with cerebral palsy. Dev Med Child Neurol. 2007;49:156–7.

    Article  PubMed  Google Scholar 

  23. Carnahan KD, Arner M, Hagglund G, et al. Association between gross motor function (GMFCS) and manual ability (MACS) in children with cerebral palsy. A population-based study of 359 children. BMC Musculoskelet Disord. 2007;8:50.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hidecker MJ, Ho NT, Dodge N, et al. Inter-relationships of functional status in cerebral palsy: analyzing gross motor function, manual ability, and communication function classification systems in children. Dev Med Child Neurol. 2012;54:737–42.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Palisano RJ, Rosenbaum PL, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39:214–23.

    Article  CAS  PubMed  Google Scholar 

  26. Morris C, Galuppi B, Rosenbaum PL. Reliability of family report for the Gross Motor Function Classification System. Dev Med Child Neurol. 2004;246:455–60.

    Google Scholar 

  27. Wood E, Rosenbaum PL. The gross motor function classification system for cerebral palsy: a study of reliability and stability over time. Dev Med Child Neurol. 2000;42:292–6.

    Article  CAS  PubMed  Google Scholar 

  28. Morris C, Bartlett D. Gross Motor Function Classification System: impact and utility. Dev Med Child Neurol. 2004;46:60–5.

    Article  PubMed  Google Scholar 

  29. Palisano RJ, Cameron D, Rosenbaum PL, et al. Stability of the gross motor function classification system. Dev Med Child Neurol. 2006;48:424–8.

    Article  PubMed  Google Scholar 

  30. Rosenbaum PL, Walter SD, Hanna SE, et al. Prognosis for gross motor function in cerebral palsy: creation of motor development curves. JAMA. 2002;288:1357–63.

    Article  PubMed  Google Scholar 

  31. Palisano RJ, Rosenbaum P, Bartlett D, Livingston MH. Content validity of the expanded and revised Gross Motor Function Classification System. Dev Med Child Neurol. 2008;50:744–50.

    Article  PubMed  Google Scholar 

  32. Gudmundsson C, Nordmark E. The agreement between GMFCS and GMFCS-E&R in children with cerebral palsy. Eur J Physiother. 2013;15:127–33.

    Article  Google Scholar 

  33. Eliasson AC, Krumlinde-Sundholm L, Rosblad B, et al. The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006;48:549–54.

    Article  PubMed  Google Scholar 

  34. Imms C, Eliasson A, Boyd RN, editors. Manual ability classification system: a Swedish-Australian collaborative validation study. Victoria: Faculty of Health Sciences Research Conference Bundoora; 2004.

    Google Scholar 

  35. Morris C, Kurinczuk JJ, Fitzpatrick R, Rosenbaum PL. Reliability of the manual ability classification system for children with cerebral palsy. Dev Med Child Neurol. 2006;48:950–3.

    Article  PubMed  Google Scholar 

  36. Akpinar P, Tezel CG, Eliasson AC, Icagasioglu A. Reliability and cross-cultural validation of the Turkish version of Manual Ability Classification System (MACS) for children with cerebral palsy. Disabil Rehabil. 2010;32:1910–6.

    Article  PubMed  Google Scholar 

  37. Ohrvall AM, Krumlinde-Sundholm L, Eliasson AC. Exploration of the relationship between the Manual Ability Classification System and hand-function measures of capacity and performance. Disabil Rehabil. 2013;35:913–8.

    Article  PubMed  Google Scholar 

  38. Sellers D, Mandy A, Pennington L, et al. Development and reliability of a system to classify the eating and drinking ability of people with cerebral palsy. Dev Med Child Neurol. 2014;56:245–51.

    Article  PubMed  Google Scholar 

  39. Hidecker MJ, Paneth N, Rosenbaum PL, et al. Developing and validating the Communication Function Classification System for individuals with cerebral palsy. Dev Med Child Neurol. 2011;53:704–10.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Randall M, Harvey A, Imms C, et al. Reliable classification of functional profiles and movement disorders of children with cerebral palsy. Phys Occup Ther Pediatr. 2013;33:342–52.

    Article  PubMed  Google Scholar 

  41. Poulson A, Ziviani J, Cuskelly M. Goal setting and motivation in therapy: engaging children and parents. London: Jessica Kingsley; 2015. p. 268.

    Google Scholar 

  42. Kerr C, Imms C, Shields N, et al. Extent of goal setting and selection of evidence-based interventions by paediatric physiotherapists working with children with cerebral palsy in Australia. Physiotherapy. 2015;101:e740–e1.

    Article  Google Scholar 

  43. Kiresuk TJ, Smith A, Cardillo JE. Goal attainment scaling: applications, theory and measurement. Hillsdale: Erlbaum Associates; 1994.

    Google Scholar 

  44. Law M, Baptiste S, Carswell A, et al. Canadian occupational performance measure. 4th ed. Ottawa: CAOT; 2005.

    Google Scholar 

  45. Cusick A, McIntyre S, Novak I, et al. A comparison of goal attainment scaling and the Canadian Occupational Performance Measure for paediatric rehabilitation research. Pediatr Rehabil. 2006;9:149–57.

    Article  CAS  PubMed  Google Scholar 

  46. King GA, Law M, King S, Hurley P, Rosenbaum PL, Hanna S, et al. Children’s assessment of participation and enjoyment and preferences for activities of kids. San Antonio, TX: PsychCorp; 2004. p. 117.

    Google Scholar 

  47. Arnould C, Penta M, Renders A, Thonnard JL. Abilhands-Kids: a measure of manual ability in children with cerebral palsy. Neurology. 2004;63:1045–52.

    Article  PubMed  Google Scholar 

  48. Verschuren O, Takken T, Ketelaar M, et al. Reliability and validity of data for 2 newly developed shuttle run tests in children with cerebral palsy. Phys Ther. 2006;86:1107–17.

    PubMed  Google Scholar 

  49. Verschuren O, Takken T, Ketelaar M, Gorter JW, Helders PJ. Reliability for running tests for measuring agility and anaerobic muscle power in children and adolescents with cerebal palsy. Pediatr Phys Ther. 2007;19(2):108–15.

    Article  PubMed  Google Scholar 

  50. Coster W, Law M, Bedell G, Teplicky R. Participation and environment measure for children and youth (PEM-CY). Boston, MA: Boston University; 2010.

    Google Scholar 

  51. Young NL, Williams JI, Yoshida KK, Wright JG. Measurement properties of the activities scale for kids. J Clin Epidemiol. 2000;53(2):125–37.

    Article  CAS  PubMed  Google Scholar 

  52. House J, Gwathmey F, Fidler M. A dynamic approach to the thumb-in palm deformity in cerebral palsy. J Bone Joint Surg Am. 1981;63(2):216–25.

    Article  CAS  PubMed  Google Scholar 

  53. Williams EN, Carroll SG, Reddihough DS, et al. Investigation of the timed ‘up & go’ test in children. Dev Med Child Neurol. 2005;47:518–24.

    Article  PubMed  Google Scholar 

  54. Graham HK, Harvey A, Rodda J, Nattrass GR, Pirpiris M. The functional mobility scale (FMS). J Pediatr Orthop. 2004;24(5):514–20.

    Article  PubMed  Google Scholar 

  55. Thompson P, Beath T, Bell J, Jacobson G, Phair T, Salbach NM, et al. Test–retest reliability of the 10‐metre fast walk test and 6‐minute walk test in ambulatory school‐aged children with cerebral palsy. Dev Med Child Neurol. 2008;50(5):370–6.

    Article  PubMed  Google Scholar 

  56. McDowell BC, Kerr C, Parkes J, Cosgrove A. Validity of a 1 minute walk test for children with cerebral palsy. Dev Med Child Neurol. 2005;47(11):744–8.

    Article  PubMed  Google Scholar 

  57. Novacheck TF, Stout JL, Tervo R. Reliability and validity of the Gillette Functional Assessment Questionnaire as an outcome measure in children with walking disabilities. J Pediatr Orthop. 2000;20(1):75.

    CAS  PubMed  Google Scholar 

  58. Gibson N, Laird K, Mori R, et al. Paediatric biomechanical assessment: significance to the interpretation of gait. Perth: Princess Margaret Hospital; 2002.

    Google Scholar 

  59. Gajdosik RL, Bohannon RW. Clinical measurement of range of motion. Phys Ther. 1987;67(12):1867–72.

    Article  CAS  PubMed  Google Scholar 

  60. Norkin CC, White DJ. Measurement of joint motion: a guide to goniometry. Philadelphia: F.A. Davis Company; 2009.

    Google Scholar 

  61. Krumlinde-Sundholm L, Holmefur M, Kottorp A, Eliasson AC. The assisting hand assessment: current evidence of validity, reliability and responsiveness to change. Dev Med Child Neurol Suppl. 2007;49:259–64.

    Article  Google Scholar 

  62. Verschuren O, Ketelaar M, Takken T, et al. Reliability of hand-held dynamometry and functional strength tests for the lower extremity in children with cerebral palsy. Disabil Rehabil. 2008;30:1358–66.

    Article  PubMed  Google Scholar 

  63. Gordon AM, Schneider JA, Ashley C, Charles JR. Efficacy of a hand-arm bimanual intensive therapy (HABIT) in children with hemiplegic cerebral palsy: a randomised control trial. Dev Med Child Neurol. 2007;49:830–8.

    Article  PubMed  Google Scholar 

  64. van Meeteren J, van Rijn RM, Selles RW, Roebroeck ME, Stam HJ. Grip strength parameters and functional activities in young adults with unilateral cerebral palsy compared with healthy subjects. J Rehabil Med. 2007;39(8):598–604.

    Article  PubMed  Google Scholar 

  65. Crompton J, Galea MP, Phillips B. Hand‐held dynamometry for muscle strength measurement in children with cerebral palsy. Dev Med Child Neurol. 2007;49(2):106–11.

    Article  PubMed  Google Scholar 

  66. Taylor NF, Dodd KJ, Graham HK. Test-retest reliability of hand-held dynamometric strength testing in young people with cerebral palsy. Arch Phys Med Rehabil. 2004;85(1):77–80.

    Article  PubMed  Google Scholar 

  67. Skold A, Hermansson LN, Krumlinde-Sundholm L, Eliasson AC. Development and evidence of validity for the children’s hand-use experience questionnaire (CHEQ). Dev Med Child Neurol. 2011;53(5):436–42.

    Article  PubMed  Google Scholar 

  68. Love S, Gibson N, Smith N, Bear N, Blair E. Interobserver reliability of the Australian spasticity assessment scale (ASAS). Dev Med Child Neurol. 2016;58S:8–24.

    Google Scholar 

  69. Russell D, Rosenbaum PL, Avery LM, Lane M, editors. Gross Motor Function Measure (GMFM-66 & GMFM-88) user’s manual. London: Mac Keith Press; 2002.

    Google Scholar 

  70. Bartlett D, Purdie B. Testing of the spinal alignment and range of motion measure: a discriminative measure of posture and flexibility for children with cerebral palsy. Dev Med Child Neurol. 2005;47(11):739–43.

    Article  PubMed  Google Scholar 

  71. Kissane AL, Eldridge BJ, Kelly S, et al. High-level mobility skills in children and adolescents with traumatic brain injury. Brain Inj. 2015;29(13–14):1711–6.

    Article  PubMed  Google Scholar 

  72. Randall M, Imms C, Carey LM, Pallant JF. Rasch analysis of the Melbourne assessment of unilateral upper limb function. Dev Med Child Neurol. 2014;56:665–72.

    Article  PubMed  Google Scholar 

  73. Chen C-l, Shen I-h, Chen C-y, Wu C-y, Liu W-Y, Chung C-y. Validity, responsiveness, minimal detectable change, and minimal clinically important change of Pediatric Balance Scale in children with cerebral palsy. Res Dev Disabil. 2013;34(3):916–22.

    Article  PubMed  Google Scholar 

  74. Dumas HM, Fragala-Pinkham MA, Haley SM, et al. Computer adaptive test performance in children with and without disabilities: prospective field study of the PEDI-CAT. Disabil Rehabil. 2012;34:393–401.

    Article  PubMed  Google Scholar 

  75. Haley SM, Coster WJ, Dumas HM, Fragala-Pinkham MA, Kramer J, Ni P, et al. Accuracy and precision of the Pediatric Evaluation of Disability Inventory computer-adaptive tests (PEDI-CAT). Dev Med Child Neurol. 2011;53(12):1100–6.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Haley SM, Coster WJ, Ludlow LH, Haltiwanger JT, Andrellos PJ. Pediatric evaluation of disability inventory (PEDI). Version 1. Development, standardization and administration manual. Boston, MA: New England Medical Centre Hospitals Inc.; 1992.

    Google Scholar 

  77. DeMatteo C, Law M, Russell D, Pollock N, Rosenbaum PL, Walter CB. QUEST: quality of upper extremity skills test manual. Hamilton, ON: McMaster University; 1991.

    Google Scholar 

  78. Mäenpää H, Autti-Rämö I, Varho T, et al. Multiprofessional evaluation in clinical practice: establishing a core set of outcome measures for children with cerebral palsy. Dev Med Child Neurol. 2016;59:322–8.

    Article  PubMed  Google Scholar 

  79. Damiano DL. Activity, activity, activity: rethinking our physical therapy approach to cerebral palsy. Phys Ther. 2006;86:1534–40.

    Article  PubMed  Google Scholar 

  80. Valvano J, Rapport MJ. Activity-focused motor interventions for infants and young children with neurological conditions. Infants Young Child. 2006;19:292–307.

    Article  Google Scholar 

  81. Adair B, Ullenhag A, Keen D, Granlund M, Imms C. The effect of interventions aimed at improving participation outcomes for children with disabilities: a systematic review. Dev Med Child Neurol. 2015;57:1093–10104.

    Article  PubMed  Google Scholar 

  82. Anaby DR, Law M, Majnemer A, Feldman D. Opening doors to participation of youth with physical disabilities: an intervention study. Can J Occup Ther. 2016;83:83–90.

    Article  PubMed  Google Scholar 

  83. Law M, Anaby D, Imms C, et al. Improving the participation of youth with physical disabilities in community activities: an interrupted time series design. Aust Occup Ther J. 2015;62:105–15.

    Article  PubMed  Google Scholar 

  84. Coster W, Bedell G, Law M, et al. Psychometric evaluation of the participation and environment measure for children and youth. Dev Med Child Neurol. 2011;53:1030–7.

    Article  PubMed  Google Scholar 

  85. Kramer JM, Roemer K, Liljenquist K, et al. Formative evaluation of project TEAM (Teens Making Environment and Activity Modifications). Intellect Dev Disabil. 2014;52:258–72.

    Article  PubMed  Google Scholar 

  86. Missiuna C, Mandich AD, Polatajko H, et al. Cognitive orientation to daily occupational performance (CO-OP): part 1—theoretical foundation. Phys Occup Ther Pediatr. 2001;20:69–81.

    CAS  PubMed  Google Scholar 

  87. Kramer J, Barth Y, Curtis K, et al. Involving youth with disabilities in the development and evaluation of a new advocacy training: project TEAM. Disabil Rehabil. 2013;35:614–22.

    Article  PubMed  Google Scholar 

  88. Keller J, Kielhofner G. Psychometric characteristics of the child occupational self-assessment (COSA), part two: refining the psychometric properties. Scand J Occup Ther. 2015;22:402.

    Article  PubMed  Google Scholar 

  89. Imms C, Mathews S, Richmond KN. Optimising leisure participation: a pilot intervention study for adolescents with physical impairments. Disabil Rehabil. 2016;38:963–71.

    Article  PubMed  Google Scholar 

  90. World Health Organization. International classification of functioning, disability and health (ICF). Geneva: World Health Organization; 2001. www.who.int/icf

    Google Scholar 

  91. Angsupaisal M, Maathuis CGB, Hadders-Algra M. Adaptive seating systems in children with severe cerebral palsy across international classification of functioning, disability and health for children and youth version domains: a systematic review. Dev Med Child Neurol. 2015;57:919–30.

    Article  PubMed  Google Scholar 

  92. Novak I, Hines M, Goldsmith S, Barclay R. Clinical prognostic messages from a systematic review on cerebral palsy. Pediatrics. 2012;130:e1285–312.

    Article  PubMed  Google Scholar 

  93. Wilson DJ, Mitchell JM, Kemp BJ, et al. Effects of assistive technology on functional decline in people aging with a disability. Assist Technol. 2009;21:208–17.

    Article  PubMed  Google Scholar 

  94. Blake SF, Logan S, Humphreys G, et al. Sleep positioning systems for children with cerebral palsy. Hoboken: The Cochrane Library; 2015.

    Google Scholar 

  95. Freeman J, Marsden J, Rapson R, Kent B. The clinical effectiveness and personal experience of supported standing for children with cerebral palsy: a comprehensive systematic review protocol. JBI Database Syst Rev Implement Rep. 2014;12:101–18.

    Article  Google Scholar 

  96. Bourke-Taylor H, Cotter C, Stephan R. Young children with cerebral palsy: families self-reported equipment needs and out-of-pocket expenditure. Child Care Health Dev. 2014;40:654–62.

    Article  CAS  PubMed  Google Scholar 

  97. Morris C. Measuring participation in childhood disability: how does the capability approach improve our understanding? Dev Med Child Neurol. 2009;51:92–4.

    Article  PubMed  Google Scholar 

  98. Sakzewski L, Ziviani J, Boyd RN. Efficacy of upper limb therapies for unilateral cerebral palsy: a meta-analysis. Pediatrics. 2014;33:e175–204.

    Article  Google Scholar 

  99. Mastos M, Miller K, Eliasson A-C, Imms C. Goal-directed training: linking theories of treatment to clinical practice for improved functional activities in daily life. Clin Rehabil. 2007;21:47–55.

    Article  CAS  PubMed  Google Scholar 

  100. Sorsdahl AB, Moe-Nilssen R, Kaale HK, et al. Change in basic motor abilities, quality of movement and everyday activities following intensive, goal-directed, activity-focused physiotherapy in a group setting for children with cerebral palsy. BMC Pediatr. 2010;10:26.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ahl LE, Johansson E, Granat T, Carlberg EB. Functional therapy for children with cerebral palsy: an ecological approach. Dev Med Child Neurol. 2005;47:613–9.

    Article  PubMed  Google Scholar 

  102. King GA, McDougall J, Palisano RJ, et al. Goal attainment scaling: its use in evaluating pediatric therapy programs. Phys Occup Ther Pediatr. 2000;19:31–52.

    Google Scholar 

  103. Lowing K, Thews K, Haglund-Akerlind Y, et al. Effects of Botulinum toxin-A and goal-directed physiotherapy in children with cerebral palsy GMFCS levels I & II. Phys Occup Ther Pediatr. 2016;55:1–15.

    Google Scholar 

  104. Hoare BJ, Imms C, Rawicki HB, Carey L. Modified constraint-induced movement therapy or bimanual occupational therapy following injection of Botulinum toxin-A to improve bimanual performance in young children with hemiplegic cerebral palsy: a randomised controlled trial methods paper. BMC Neurol. 2010;10:58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Ferre CL, Brandao M, Surana B, et al. Caregiver-directed home-based intensive bimanual training in young children with unilateral spastic cerebral palsy: a randomized trial. Dev Med Child Neurol. 2016;59:497–504.

    Article  PubMed  Google Scholar 

  106. Hoare B, Imms C, Villanueva E, et al. Intensive therapy following upper limb botulinum toxin a injection in young children with unilateral cerebral palsy: a randomized trial. Dev Med Child Neurol. 2013;55:238–47.

    Article  PubMed  Google Scholar 

  107. Sakzewski L, Gordon A, Eliasson AC. The state of the evidence for intensive upper limb therapy approaches for children with unilateral cerebral palsy. J Child Neurol. 2014;29:1077–90.

    Article  PubMed  Google Scholar 

  108. Dong VA, Tung IH, Siu HW, Fong KN. Studies comparing the efficacy of constraint-induced movement therapy and bimanual training in children with unilateral cerebral palsy: a systematic review. Dev Neurorehabil. 2013;16:133–43.

    Article  PubMed  Google Scholar 

  109. Sakzewski L, Boyd R, Gilmore R, et al. One hand or two? Randomised trial of constraint induced movement therapy versus bimanual training for children with congenital hemiplegia. Dev Med Child Neurol Suppl. 2008;50(S4):15.

    Google Scholar 

  110. Holmefur MM, Krumlinde-Sundholm L. Psychometric properties of a revised version of the assisting hand assessment (Kids-AHA 5.0). Dev Med Child Neurol. 2016;58:618–24.

    Article  PubMed  Google Scholar 

  111. Louwers A, Beelen A, Holmefur M, Krumlinde-Sundholm L. Development of the assisting hand assessment for adolescents (Ad-AHA) and validation of the AHA from 18 months to 18 years. Dev Med Child Neurol. 2016;58:1303–9.

    Article  PubMed  Google Scholar 

  112. Hoare BJ, Wasiak J, Imms C, Carey L. Constraint induced movement therapy in the treatment of the upper limb in children with cerebral palsy. Cochrane Database Syst Rev. 2007;(2):CD004149. doi:https://doi.org/10.1002/14651858.

  113. Eliasson AC, Krumlinde-Sundholm L, Gordon AM, et al. Guidelines for future research in constraint-induced movement therapy for children with unilateral cerebral palsy: an expert consensus. Dev Med Child Neurol. 2014;56:125–37.

    Article  PubMed  Google Scholar 

  114. Aarts PB, Jongerius PH, Geerdink YA, et al. Modified Constraint-Induced Movement Therapy combined with Bimanual Training (mCIMT-BiT) in children with unilateral spastic cerebral palsy: how are improvements in arm-hand use established? Res Dev Disabil. 2011;32:271–9.

    Article  PubMed  Google Scholar 

  115. Geerdink Y, Aarts P, van der Burg J, et al. Intensive upper limb intervention with self-management training is feasible and promising for older children and adolescents with unilateral cerebral palsy. Res Dev Disabil. 2015;43-44:97–105.

    Article  PubMed  Google Scholar 

  116. Sakzewski L, Miller L, Ziviani J, et al. Randomized comparison trial of density and context of upper limb intensive group versus individualized occupational therapy for children with unilateral cerebral palsy. Dev Med Child Neurol. 2015;57:539–47.

    Google Scholar 

  117. Jebson RH, Taylor NF, Trieschmann RB, et al. An objective and standardised test of hand function. Archiv Phys Med Rehabil. 1969;50:311–9.

    Google Scholar 

  118. Novak I, Cusick A, Lannin N. Occupational therapy home programs for cerebral palsy: double-blind, randomized, controlled trial. Pediatrics. 2009;124:e606–e14.

    Article  PubMed  Google Scholar 

  119. Palisano RJ, Murr S. Intensity of therapy services: what are the considerations? Phys Occup Ther Pediatr. 2009;29:107–12.

    Article  PubMed  Google Scholar 

  120. Myrhaug HT, Ostensjo S, Larun L, et al. Intensive training of motor function and functional skills among young children with cerebral palsy: a systematic review and meta-analysis. BMC Pediatr. 2014;14:1.

    Article  Google Scholar 

  121. Lillo-Navarro C, Medina-Mirapeix F, Escolar-Reina P, et al. Parents of children with physical disabilities perceive that characteristics of home exercise programs and physiotherapists’ teaching styles influence adherence: a qualitative study. J Physiother. 2015;61:81–6.

    Article  PubMed  Google Scholar 

  122. Darrah J, Law MC, Pollock N, et al. Context therapy: a new intervention approach for children with cerebral palsy. Dev Med Child Neurol. 2011;53:615–20.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Law M, Darrah J, Pollock N, et al. Focus on function: a cluster, randomized controlled trial comparing child-versus context-focused intervention for young children with cerebral palsy. Dev Med Child Neurol. 2011;53:621–9.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Georgiadis M, Elliott C, Wilton J, et al. Neurological hand deformity classification for children with cerebral palsy. Aust Occup Ther. 2014;J61:394–402.

    Article  Google Scholar 

  125. Willerslev-Olsen M, Lorentzen J, Sinkjaer T, Nielsen JB. Passive muscle properties are altered in children with cerebral palsy before the age of 3 years and are difficult to distinguish clinically from spasticity. Dev Med Child Neurol. 2013;55:617–23.

    Article  PubMed  Google Scholar 

  126. Wynter M, Gibson N, Kentish M, et al. The consensus statement on hip surveillance for children with cerebral palsy: Australian standards of care. J Pediatr Rehabil Med. 2011;4:183–95.

    CAS  PubMed  Google Scholar 

  127. Wynter M, Gibson N, Willoughby KL, et al. Australian hip surveillance guidelines for children with cerebral palsy: 5-year review. Dev Med Child Neurol. 2015;57:808–20.

    Article  PubMed  Google Scholar 

  128. Parkinson KN, Dickinson HO, Arnaud C, et al. Pain in young people aged 13 to 17 years with cerebral palsy: cross-sectional, multicentre European study. Arch Dis Child. 2013;98:434–40.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hägglund G, Andersson S, Duppe H, et al. Prevention of severe contractures might replace multilevel surgery in cerebral palsy: results of a population-based health care programme and new techniques to reduce spasticity. J Pediatr Orthop B. 2005;14:269–73.

    Article  PubMed  Google Scholar 

  130. Huntley JS, Bradley LJ. The evidence base for Botulinum toxin injection for the treatment of cerebral palsy-related spasticity in the lower limb: the long-term effects. In: Alshryda S, Huntley JS, Banaszkiewicz PA, editors. Paediatric orthopaedics: an evidence-based approach to clinical questions. Cham: Springer International; 2017. p. 369–73.

    Chapter  Google Scholar 

  131. Morgan P, McGinley J. Gait function and decline in adults with cerebral palsy: a systematic review. Disabil Rehabil. 2014;36:1–9.

    Article  CAS  PubMed  Google Scholar 

  132. Slaman J, Roebroeck M, Dallmijer A, et al. Can a lifestyle intervention programme improve physical behaviour among adolescents and young adults with spastic cerebral palsy? A randomized controlled trial. Dev Med Child Neurol. 2015;57:159–66.

    Article  PubMed  Google Scholar 

  133. Brunton L, Hall S, Passingham A, et al. The prevalence, location, severity, and daily impact of pain reported by youth and young adults with cerebral palsy. J Pediatr Rehabil Med. 2016;9:177–83.

    Article  PubMed  Google Scholar 

  134. Carlon SL, Taylor NF, Dodd KJ, Shields N. Differences in habitual physical activity levels of young people with cerebral palsy and their typically developing peers: a systematic review. Disabil Rehabil. 2013;35:647–55.

    Article  PubMed  Google Scholar 

  135. Terjesen T. The natural history of hip development in cerebral palsy. Dev Med Child Neurol. 2012;54:951–7.

    Article  PubMed  Google Scholar 

  136. Loeters MJ, Maathuis CG, Hadders-Algra M. Risk factors for emergence and progression of scoliosis in children with severe cerebral palsy: a systematic review. Dev Med Child Neurol. 2010;52:605–11.

    Article  PubMed  Google Scholar 

  137. Gu Y, Shelton JE, Ketchum JM, et al. Natural history of scoliosis in nonambulatory spastic tetraplegic cerebral palsy. PM R. 2011;3:27–32.

    Article  PubMed  Google Scholar 

  138. Persson-Bunke M, Hägglund G, Lauge-Pedersen H, et al. Scoliosis in a total population of children with cerebral palsy. Spine. 2012;37:E708–E13.

    Article  PubMed  Google Scholar 

  139. Himmelmann K, Sundh W. Survival with cerebral palsy over five decades in Western Sweden. Dev Med Child Neurol. 2015;57:762–7.

    Article  PubMed  Google Scholar 

  140. Reid SM, Carlin JB, Reddihough DS. Survival of individuals with cerebral palsy born in Victoria, Australia, between 1970 and 2004. Dev Med Child Neurol. 2004;54:353–60.

    Article  Google Scholar 

  141. Hagglund G, Alriksson-Schmidt A, Lauge-Pedersen H, et al. Prevention of dislocation of the hip in children with cerebral palsy: 20-year results of a population-based prevention programme. Bone Joint J. 2014;96-B:1546–52.

    Article  CAS  PubMed  Google Scholar 

  142. Graham HK, Aoki KR, Autti-Rämö I, et al. Recommendations for the use of botulinum toxin type A in the management of cerebral palsy. Gait Posture. 2000;11:67–79.

    Article  CAS  PubMed  Google Scholar 

  143. Gibson N, Graham HK, Love S. Botulinum toxin A in the management of focal muscle overactivity in children with cerebral palsy. Disabil Rehabil. 2007;29:1813–22.

    Article  PubMed  Google Scholar 

  144. Imms C, Novak I, Kerr C, et al. Improving allied health professionals’ research implementation behaviours for children with cerebral palsy: protocol for a before-after study. Implement Sci. 2015;10:16.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Sakai T, Yamada H, Nakamura T, et al. Lumbar spinal disorders in patients with athetoid cerebral palsy: a clinical and biomechanical study. Spine. 2006;31:E66–70.

    Article  PubMed  Google Scholar 

  146. Blackmore AM, Bear N, Blair E, Gibson N, et al. Factors associated with respiratory illness in children and young adults with cerebral palsy. J Pediatr. 2016;168:151–7.

    Article  PubMed  Google Scholar 

  147. Parrott J, Boyd RN, Dobson F, et al. Hip displacement in spastic cerebral palsy: repeatability of radiologic measurement. J Pediatr Orthopaed. 2002;22:660–7.

    Google Scholar 

  148. Pountney T, Mandy A, Gard P. Repeatability and limits of agreement in measurement of hip migration percentage in children with bilateral cerebral palsy. Physiotherapy. 2003;89:276–81.

    Article  Google Scholar 

  149. Lieber RL, Steinman S, Barash IA, Chambers H. Structural and functional changes in spastic skeletal muscle. Muscle Nerve. 2004;29:615–27.

    Article  PubMed  Google Scholar 

  150. Barrett RS, Lichtwark GA. Gross muscle morphology and structure in spastic cerebral palsy: a systematic review. Dev Med Child Neurol. 2010;52:794–804.

    Article  PubMed  Google Scholar 

  151. Verschuren O, Ada L, Maltais DB, et al. Muscle strengthening in children and adolescents with spastic cerebral palsy: considerations for future resistance training protocols. Phys Ther. 2011;91:1130–9.

    Article  PubMed  Google Scholar 

  152. Arnould C, Penta M, Hand TJ-L. Impairments and their relationship with manual ability in children with cerebral palsy. J Rehabil Med. 2008;39:708–14.

    Article  Google Scholar 

  153. BrÆNdvik SM, Elvrum A-KG, Vereijken B, Roeleveld K. Relationship between neuromuscular body functions and upper extremity activity in children with cerebral palsy. Dev Med Child Neurol. 2010;52:e29–34.

    Article  PubMed  Google Scholar 

  154. Rameckers EA, Janssen-Potten YJ, Essers IM, Smeets RJ. Efficacy of upper limb strengthening n children with cerebral palsy: a critical review. Res Dev Disabil. 2014;36C:87–101.

    CAS  PubMed  Google Scholar 

  155. Faigenbaum AD, Kraemer WJ, Blimkie CJ, et al. Youth resistance training: updated position statement paper from the national strength and conditioning association. J Strength Cond Res. 2009;23:S60–79.

    Article  PubMed  Google Scholar 

  156. Ross SA, Engsberg JR. Relationships between spasticity, strength, gait, and the GMFM-66 in persons with spastic diplegia cerebral palsy. Arch Phys Med Rehabil. 2007;88:1114–20.

    Article  PubMed  Google Scholar 

  157. Kerr C, McDowell BC, Parkes J. Age-related changes in energy efficiency of gait, activity, and participation in children with cerebral palsy. Dev Med Child Neurol. 2011;53:61–7.

    Article  PubMed  Google Scholar 

  158. Opheim A, McGinley J, Olsson E, et al. Walking deterioration and gait analysis in adults with spastic bilateral cerebral palsy. Gait Posture. 2013;37:165–71.

    Article  CAS  PubMed  Google Scholar 

  159. Rethlefsen SA, Blumstein G, Kay RM, et al. Prevalence of specific gait abnormalities in children with cerebral palsy revisited: influence of age, prior surgery, and Gross Motor Function Classification System level. Dev Med Child Neurol. 2017;59:79–88.

    Article  PubMed  Google Scholar 

  160. Rutz E, Tirosh O, Thomason P, et al. Stability of the Gross Motor Function Classification System after single-event multilevel surgery in children with cerebral palsy. Dev Med Child Neurol. 2009;54:1109–13.

    Article  Google Scholar 

  161. Verschuren O, Ketelaar M, Gorter JW, et al. Relation between physical fitness and gross motor capacity in children and adolescents with cerebral palsy. Dev Med Child Neurol. 2009;51:866–71.

    Article  PubMed  Google Scholar 

  162. Verschuren O, Ketelaar M, Gorter JW, et al. Exercise training program in children and adolescents with cerebral palsy: a randomized controlled trial. Arch Pediatr Adolesc Med. 2007;161:1075–81.

    Article  PubMed  Google Scholar 

  163. Verschuren O, Ketelaar M, Takken T, et al. Exercise programs for children with cerebral palsy: a systematic review of the literature. Am J Phys Med Rehabil. 2008;87:404–17.

    Article  PubMed  Google Scholar 

  164. Damiano DL, Arnold AS, Steele KM, Delp SL. Can strength training predictably improve gait kinematics? A pilot study on the effects of hip and knee extensor strengthening on lower-extremity alignment in cerebral palsy. Phys Ther. 2010;90:269–79.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Williams G, Kahn M, Randall A. Strength training for walking in neurologic rehabilitation is not task specific: a focused review. Am J Phys Med Rehabil. 2014;93:511–22.

    Article  PubMed  Google Scholar 

  166. Bleyenheuft Y, Arnould C, Brandao MB, et al. Hand and Arm Bimanual Intensive Therapy Including Lower Extremity (HABIT-ILE) in children with unilateral spastic cerebral palsy: a randomized trial. Neurorehabil Neural Repair. 2015;29:645–57.

    Article  PubMed  Google Scholar 

  167. Dodd KJ, Taylor NF, Damiano DL. A systematic review of the effectiveness of strength—training programs for people with cerebral palsy. Arch Phys Med Rehabil. 2002;83:1157–64.

    Article  PubMed  Google Scholar 

  168. Willoughby KL, Dodd KJ, Shields N. A systematic review of the effectiveness of treadmill training for children with cerebral palsy. Disabil Rehabil. 2009;31:1971–9.

    Article  PubMed  Google Scholar 

  169. Meyer-Heim A, van Hedel HJ. Robot-assisted and computer-enhanced therapies for children with cerebral palsy: current state and clinical implementation. Sem Pediatr Neurol. 2013;20:139–45.

    Article  Google Scholar 

  170. Cauraugh JH, Naik SK, Hsu WH, et al. Children with cerebral palsy: a systematic review and meta-analysis on gait and electrical stimulation. Clin Rehabil. 2010;24:963–78.

    Article  PubMed  Google Scholar 

  171. Pool D, Valentine J, Bear N, et al. The orthotic and therapeutic effects following daily community applied functional electrical stimulation in children with unilateral spastic cerebral palsy: a randomised controlled trial. BMC Pediatr. 2015;15:1.

    Article  Google Scholar 

  172. Ratamess N, Alvar B, Evetoch T, et al. Progression models in resistance training for healthy adults [ACSM position stand]. Med Sci Sports Exerc. 2009;41:687–708.

    Article  Google Scholar 

  173. Williams GP, Schache AG. Evaluation of a conceptual framework for retraining high-level mobility following traumatic brain injury: two case reports. J Head Trauma Rehabil. 2010;25:164–72.

    Article  PubMed  Google Scholar 

  174. Maher CA, Williams MT, Olds TS. The six-minute walk test for children with cerebral palsy. Int J Rehabil Res. 2008;31:185–8.

    Article  PubMed  Google Scholar 

  175. Jackman M, Novak I, Lannin N. Effectiveness of hand splints in children with cerebral palsy: a systematic review with meta-analysis. Dev Med Child Neurol. 2014;56:138–47.

    Article  PubMed  Google Scholar 

  176. Lannin NA, Ada L. Neurorehabilitation splinting: theory and principles of clinical use. NeuroRehabil. 2011;28:21–8.

    Google Scholar 

  177. Harvey LA, Katalinic OM, Herbert RD, et al. Stretch for the treatment and prevention of contractures. Cochrane Database Syst Rev. 2017;1:CD007455.

    PubMed  Google Scholar 

  178. Figueiredo EM, Ferreira GB, Maia Moreira RC, et al. Efficacy of ankle-foot orthoses on gait of children with cerebral palsy: systematic review of literature. Pediatr Phys Ther. 2008;20:207–23.

    Article  PubMed  Google Scholar 

  179. Gough M. Serial casting in cerebral palsy: panacea, placebo, or peril? Dev Med Child Neurol. 2007;49:725.

    Article  PubMed  Google Scholar 

  180. Wingstrand M, Hagglund G, Rodby-Bousquet E. Ankle-foot orthoses in children with cerebral palsy: a cross sectional population based study of 2200 children. BMC Musculoskelet Disord. 2014;15:327.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Imms .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Imms, C., Gibson, N. (2018). An Overview of Evidence-Based Occupational and Physiotherapy for Children with Cerebral Palsy. In: Panteliadis, C. (eds) Cerebral Palsy. Springer, Cham. https://doi.org/10.1007/978-3-319-67858-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67858-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67857-3

  • Online ISBN: 978-3-319-67858-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics