Skip to main content

Major Degradation Mechanisms

  • Chapter
  • First Online:
Tantalum and Niobium-Based Capacitors
  • 721 Accesses

Abstract

The basic bilayer of all types of tantalum capacitors, tantalum anode, and anodic oxide film of tantalum as a dielectric is not a thermodynamically stable system. This is demonstrated by the tantalum-oxygen equilibrium diagram that does not contain two-phase equilibrium areas for pure tantalum and tantalum pentoxide]. Relaxation of the Ta-Ta2O5 system into the thermodynamically stable state occurs through oxygen migration from Ta2O5 to Ta, resulting in oxygen vacancies in the tantalum oxide dielectric. Conductivity of the dielectric and, thereby, DCL of tantalum capacitor increase exponentially with the concentration x of oxygen vacancies in the depleted with oxygen Ta2O5–x. Another reason for the thermodynamic instability of tantalum capacitors is the amorphous structure of the anodic oxide film of tantalum formed on crystalline tantalum. Amorphous dielectrics trend to ordering and crystallization spontaneously to reduce their internal energy. Growth of crystalline inclusions in amorphous matrix of the anodic oxide film induces mechanical stress in the film, which results in a disruption of the dielectric and, thereby, in the failure of the capacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.B. Tripp, Tantalum and tantalum compounds, in Kirk-Othmer Encyclopedia of Chemical Technology, 4th edn., (Wiley, Hoboken, 1997)

    Google Scholar 

  2. D.M. Smyth, G.A. Shirn, T.B. Tripp, J. Electrochem. Soc. 110, 1264 (1963)

    Article  Google Scholar 

  3. D.M. Smyth, T.B. Tripp, J. Electrochem. Soc. 110, 1271 (1963)

    Article  Google Scholar 

  4. D.M. Smyth, G.A. Shirn, T.B. Tripp, J. Electrochem. Soc. 111, 1331 (1964)

    Article  Google Scholar 

  5. D.M. Smyth, T.B. Tripp, G.A. Shirn, J. Electrochem. Soc. 113, 101 (1966)

    Article  Google Scholar 

  6. D.M. Smyth, J. Electrochem. Soc. 114, 723 (1967)

    Article  Google Scholar 

  7. D.M. Smyth, G.A. Shirn, J. Electrochem. Soc. 115, 186 (1968)

    Article  Google Scholar 

  8. L. Young, Anodic Oxide Films (Academic Press, New York, 1961)

    Google Scholar 

  9. B. Boiko, P. Pancheha, V. Kopach, Y. Pozdeev-Freeman, Thin Solid Films 130, 341 (1985)

    Article  Google Scholar 

  10. B. Boiko, V. Kopach, S. Melentyev, P. Pancheha, Y. Pozdeev-Freeman, V. Starikov, Thin Solid Films 229, 207 (1993)

    Article  Google Scholar 

  11. E. Fromm, E. Hebhardt, Gase und Kohlenstaff in Metallen (Springer, Berlin, 1976)

    Book  Google Scholar 

  12. B. Predel, in Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, ed. by O. Madelung, (Springer International, Berlin/London, 1998)

    Google Scholar 

  13. Y. Pozdeev-Freeman, A. Gladkikh, M. Karpovski, A. Palevsky, J. Electron. Mater. 27, 1034 (1998)

    Article  Google Scholar 

  14. L. Yang, M. Viste, J. Hossick-Schott, B. Sheldon, Electrochim. Acta 81, 90 (2012)

    Article  Google Scholar 

  15. D.A. Vermilyea, Acta Metall. 5, 113 (1957)

    Article  Google Scholar 

  16. D.A. Vermilyea, J. Electrochem. Soc. 104, 485 (1957)

    Article  Google Scholar 

  17. J.J. Randell, W.J. Bernard, R.R. Wilkinson, Electrochim. Acta 10, 183 (1965)

    Article  Google Scholar 

  18. J.J. Randell, Electrochim. Acta 20, 63 (1975)

    Article  Google Scholar 

  19. T.B. Tripp, R.M. Creasi, B. Cox, in Proceedings of 20 th Capacitor and Resistor Technology Symposium (CARTS), Huntington Beach, 2000, p. 256

    Google Scholar 

  20. R.E. Pawel, J. Electrochem. Soc. 114, 1222 (1967)

    Article  Google Scholar 

  21. W. Anders, Thin Solid Films 27, 135 (1975)

    Article  Google Scholar 

  22. P.K. Reddy, S.R. Jawalehan, Thin Solid Films 64, 71 (1979)

    Article  Google Scholar 

  23. T.B. Tripp, M. Shaw, B. Cox, in Proceedings of 19 th Capacitor and Resistor Technology Symposium (CARTS), New Orleans, 1999, vol. 19, p. 317

    Google Scholar 

  24. R. Hahn, B. Melody, J. Kinard, D. Wheeler, U.S. Patent 6,214,271 B1

    Google Scholar 

  25. G.P. Klein, J. Electrochem. Soc. 119, 1551 (1972)

    Article  Google Scholar 

  26. R.E. Pawel, J.P. Pensler, C.A. Evans, J. Electrochem. Soc. 119, 24 (1972)

    Article  Google Scholar 

  27. N.F. Jackson, J. Appl. Electrochem. 3, 91 (1973)

    Article  Google Scholar 

  28. G.E. Cavigliasso, M.J. Esplandiu, V.A. Macagano, J. Appl. Electrochem. 28, 1213 (1998)

    Article  Google Scholar 

  29. Y.M. Li, L. Young, J. Electrochem. Soc. 147, 1344 (2000)

    Article  Google Scholar 

  30. B. Melody, T. Kinard, P. Lessner, in Proceedings of 19 th Capacitor and Resistor Technology Symposium (CARTS), New Orleans, 1999, p. 84

    Google Scholar 

  31. G.P. Klein, J. Electrochem. Soc. 113, 348 (1966)

    Article  Google Scholar 

  32. Y. Pozdeev-Freeman, A. Gladkikh, J. Electron. Mater. 30, 931 (2001)

    Article  Google Scholar 

  33. M. Tierman, R.J. Millard, in Proceedings of 33 rd Electronic Components Conference, Orlando, 1983

    Google Scholar 

  34. Y. Pozdeev-Freeman, Y. Rozenberg, A. Gladkikh, M. Karpovski, A. Palevski, J. Mater. Sci. Mater. Electron. 9, 309 (1998)

    Article  Google Scholar 

  35. Y. Freeman, P. Lessner, A.J. Kramer, J. Li, E.C. Dickey, J. Koenitzer, L. Mann, Q. Chen, T. Kinard, J. Qazi, J. Elecrtochem. Soc. 157(7), G161 (2010)

    Article  Google Scholar 

  36. R.E. Pawel, J.J. Campbell, J. Electrochem. Soc. 111, 1230 (1964)

    Article  Google Scholar 

  37. G.V. Samsonov, Handbook of Physicochemical Properties of Oxides (Moskow, Metallurgia, 1978)

    Google Scholar 

  38. G.P. Klein, Proc. IEEE 1, 70 (1965)

    Google Scholar 

  39. Y. Pozdeev-Freeman, Qual. Reliab. Eng. Int. 14, 79 (1998)

    Article  Google Scholar 

  40. Y. Pozdeev-Freeman, A. Gladkikh, Y. Rosenberg, Mater. Res. Soc. Symp. Proc. 788, L3.32 (2004)

    Google Scholar 

  41. Y. Pozdeev-Freeman, P. Maden, in Proceedings of 22 nd Capacitor and Resistor Technology Symposium (CARTS), New Orleans, 2002, p. 148

    Google Scholar 

  42. I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.M. Gross, K.E. Nygren, Edward DeMille Campbell Memorial Lecture, ASM International, 2014

    Google Scholar 

  43. Y. Freeman, P. Lessner, R. Hahn, J. Prymak, in Passive Component Industry (ECA, January–February 2007), p. 22

    Google Scholar 

  44. H. Haas, M. Hagymasi, H. Brumm, C. Schnitter, U.S. Patent 9,378,894 B2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freeman, Y. (2018). Major Degradation Mechanisms. In: Tantalum and Niobium-Based Capacitors. Springer, Cham. https://doi.org/10.1007/978-3-319-67870-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67870-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67869-6

  • Online ISBN: 978-3-319-67870-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics