Skip to main content

Porous Metals in Orthopedics

  • Chapter
  • First Online:
Biomaterials in Clinical Practice

Abstract

This chapter aims to bring the reader some knowledge about porous metals and their use in orthopedics in particular. The first section highlights the importance of porous metals. This section is followed by an overview of the different production processes used today. These are divided in two groups: additive and non-additive manufacturing processes. From the first group, selective laser melting and electron beam melting are treated in detail. From the second group, the production processes for Tritanium® and Trabecular Metal™ are explained. The third section gives an overview of the equations which govern the mechanical properties of porous metals. The importance and possibilities of finite element modelling are also considered in this chapter. Hereafter the standards available for testing of porous metals in medicine are described. In the fifth section the most important materials for (porous) orthopedic implants are reviewed. Although biodegradable porous metals are shortly touched in this section, the emphasis is on the bio-inert materials as these comprise the majority of porous implants used today. The sixth section concludes this chapter and points out some practical aspects which need to be considered in the design and production of a porous orthopedic implant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadi SM, Campoli G, Amin Yavari S et al (2014) Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. J Mech Behav Biomed Mater 34C:106–115

    Article  Google Scholar 

  • Almeida CR, Serra T, Oliveira MI et al (2014) Impact of 3-D printed PLA-and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater 10:613–622

    Article  Google Scholar 

  • Alvarez K, Sato K, Hyun SK et al (2008) Fabrication and properties of Lotus-type porous nickel-free stainless steel for biomedical applications. Mater Sci Eng, C 28:44–50

    Article  Google Scholar 

  • Alvarez K, Nakajima H (2009) Metallic scaffolds for bone regeneration. Mater 2:790–832

    Article  Google Scholar 

  • Ambrose CG, Hartline BE, Clanton TO et al (2015) Polymers in orthopaedic surgery. In: Puoci F (ed) Advanced polymers in medicine, 1st edn. Springer International Publishing Switzerland, Cham, pp p129–p145

    Google Scholar 

  • Arcam AB (2015) Arcam A2X—Setting the standard for additive manufacturing. http://www.arcam.com/wp-content/uploads/arcam-a2x.pdf. Accessed 18 Feb 2015

  • ASTM (2011) F1295-11: Standard specification for wrought titanium-6aluminium-7niobium alloy for surgical implant applications

    Google Scholar 

  • ASTM (2012) F2792-12a: standard practice for reporting data for test specimens prepared by additive manufacturing

    Google Scholar 

  • ASTM (2013) F136-13: standard specification for wrought titanium-6aluminium-4vanadium eli (extra low interstitial) alloy for surgical implant applications

    Google Scholar 

  • ASTM (2013) F1713: standard specification for wrought titanium-13niobium-13zirconium alloy for surgical implant applications

    Google Scholar 

  • ASTM (2013) F1813-13: standard specification for wrought titanium-12molybdenum-6zirconium-2iron alloy for surgical implant

    Google Scholar 

  • ASTM (2013) F3001-13: standard specification for additive manufacturing titanium-6aluminium-4vanadium eli (extra low interstitial) with powder bed fusion

    Google Scholar 

  • ASTM (2013) F67-13: standard specification for unalloyed titanium, for surgical implant applications

    Google Scholar 

  • ASTM (2014) F2924: standard specification for additive manufacturing titanium-6 aluminum-4 vanadium with powder bed fusion

    Google Scholar 

  • Babis GC, Mavrogenis AF (2013) Cobalt-chrome porous-coated implant-bone interface in total joint arthroplasty. In: Karachalios T (ed) Bone-implant interface in orthopedic surgery, 1st edn. Springer, London, pp p55–p65

    Google Scholar 

  • Bansiddhi A, Sargeant TD, Stupp SI et al (2008) Porous NiTi for bone implants: a review. Acta Biomater 4:773–782

    Article  Google Scholar 

  • Bidan CM, Kommareddy KP, Rumpler M et al (2012) How linear tension converts to curvature: geometric control of bone tissue growth. PLoS One 7

    Google Scholar 

  • Bidan CM, Kommareddy KP, Rumpler M et al (2013a) Geometry as a factor for tissue growth: towards shape optimization of tissue engineering scaffolds. Adv Healthc Mater 2:186–194

    Article  Google Scholar 

  • Bidan CM, Wang GM, Dunlop JW (2013b) A three-dimensional model for tissue deposition on complex surfaces. Comput Method Biomechanic Biomed Eng 16:1056–1070

    Article  Google Scholar 

  • Boccaccio A, Ballini A, Pappalettere D et al (2011) Finite element method (FEM), mechanobiology, and biomimetic scaffolds in bone tissue engineering. Int J Biol Sci 26:112–132

    Article  Google Scholar 

  • Bozic KJ, Kurtz SM, Lau E et al (2009) The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg Am 91:128–133

    Article  Google Scholar 

  • Brubaker SM, Brown TE, Manaswi A et al (2007) Treatment options and allograft use in revision total hip arthroplasty: the acetabulum. J Arthrop 22:52–56

    Article  Google Scholar 

  • Campoli G, Borleffs MS, Amin Yavari S et al (2013) Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Mater Des 49:957–965

    Article  Google Scholar 

  • Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng, R 87:1–57

    Article  Google Scholar 

  • Davis & Associates (2003) Metallic materials. In: Davis JR (ed) Handbook of materials for medical devices, 1st edn. ASM International, Materials Park OH, pp 21–50

    Google Scholar 

  • Ding Y, Wen C, Hodgson P et al (2014) Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. J Mater Chem B 2:1912–1933

    Article  Google Scholar 

  • Doppalapudi S, Jain A, Khan W et al (2014) Biodegradable polymers—an overview. Polym Advan Technol 25:427–435

    Article  Google Scholar 

  • Dunbar MJ, Wilson DAJ, Hennigar AW et al (2001) J Bone Joint Surg Am 91:1578–1586

    Article  Google Scholar 

  • Eglin D, Alini M (2008) Degradable polymeric materials for osteosynthesis: tutorial. Eur Cell Mater 16:81–90

    Google Scholar 

  • FDA (2016) 3D printing of medical devices. http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/3DPrintingofMedicalDevices/default.htm. Accessed 29/8/2016

  • Feng Q, Zhang D, Xin C et al (2013) Characterization and in vivo evaluation of a bio-corrodible nitride iron stent. J Mater Sci—Mater Med 24:713–724

    Article  Google Scholar 

  • Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perf 23:1917–1928

    Article  Google Scholar 

  • Frigg A, Dougall H, Boyd S et al (2010) Can porous tantalum be used to achieve ankle and subtalar arthrodesis? A pilot study. Clin Orthop Relat R 468:209–216

    Article  Google Scholar 

  • Fuerst J, Medlin D, Carter M et al (2015) LASER additive manufacturing of titanium-tantalum alloy structured interfaces for modular orthopedic devices. JOM 64:775–780

    Article  Google Scholar 

  • ISO (2011) 13314: Mechanical testing of metals—ductility testing—compression test for porous and cellular metals

    Google Scholar 

  • Gamsjager E, Bidan C, Fischer F et al (2013) Modelling the role of surface stress on the kinetics of tissue growth in confined geometries. Acta Biomater 9:5531–5543

    Article  Google Scholar 

  • Geetha M, Singh AJ, Asokamani R et al (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425

    Article  Google Scholar 

  • Giannitelli SM, Accoto D, Trombetta M et al (2014) Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater 10:580–594

    Article  Google Scholar 

  • Gibson LJ, Ashby MF (1999) Cellular solids—structure and properties. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Gieseke M, Noelke C, Kaierle S et al (2013) Selective laser melting of magnesium and magnesium alloys. Paper presented at the magnesium technology conference, San Antonio TX, 3–7 March 2013

    Google Scholar 

  • Gong H, Wang K, Strich R et al (2015) In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy. J Biomed Mater Res B 103:1632–1640

    Article  Google Scholar 

  • Goodall R, Mortensen A (2014) Porous Metals. In: Laughlin D, Hono K (eds) Physical metallurgy, 5th edn. Elsevier, Amsterdam, pp p2399–p2596

    Chapter  Google Scholar 

  • Haude M, Erbel R, Erne P et al (2013) Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 months results of the prospective, multicenter, first-in-man BIOSOLVE-I trial. Lancet 381:836–844

    Article  Google Scholar 

  • Hazlehurst KB, Wang CJ, Stanford M (2013a) The potential of a cobalt chrome molybdenum femoral stem with functionally graded orthotropic structures manufactured using Laser Melting technologies. Med Hypotheses 81:1096–1099

    Article  Google Scholar 

  • Hazlehurst KB, Wang CJ, Stanford M (2013b) Evaluation of the stiffness characteristics of square pore CoCrMo cellular structures manufactured using laser melting technology for potential orthopedic applications. Mater Des 51:949–955

    Article  Google Scholar 

  • Hazlehurst KB, Wang CJ, Standford M (2014) An investigation into the flexural characteristics of functionally graded cobalt chrome femoral stems manufactured using selective laser melting. Mater Des 60:177–183

    Article  Google Scholar 

  • Helsen JA, Missirlis Y (2010) Biomaterials—a tantalus experience. Springer, Heidelberg

    Google Scholar 

  • Hermawan H (2012) Biodegradable metals—from concept to applications. Springer, Heidelberg

    Google Scholar 

  • Hiemenz J (2007) Electron beam melting. Adv Mater Process March 2007:45–46

    Google Scholar 

  • Hornberger H, Virtanen S, Boccaccini AR (2012) Biomedical coatings on magnesium alloys—a review. Acta Biomater 8:2442–2455

    Article  Google Scholar 

  • Issack PS (2013) Use of porous tantalum for acetabular reconstruction in revision hip arthroplasty. J Bone Joint Surg Am 95:1981–1987

    Article  Google Scholar 

  • Jafari SM, Bender B, Coyle C et al (2010) Do tantalum and titanium cups show similar results in revision hip arthroplasty? Clin Orthop Relat R 468:459–465

    Article  Google Scholar 

  • Jani JM, Leary M, Subic A et al (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113

    Article  Google Scholar 

  • Kaplan RB (2000) Open cell tantalum structures for cancellous bone implants and cell and tissue receptors. EP 0560279 B1

    Google Scholar 

  • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomater 26:5474–5491

    Article  Google Scholar 

  • Kaur G, Pandey OP, Singh K et al (2014) A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J Biomed Mater Res A 102:254–274

    Article  Google Scholar 

  • Kaya RA, Cavusoglu H, Tanik C et al (2007) The effects of magnesium particles in posterolateral spinal fusion: an experimental in vivo study in a sheep model. J Neurosurg Spine 6:141–149

    Article  Google Scholar 

  • Kircher RS, Christensen AM, Wurth KW (2009) Electron beam melted (EBM) Co-Cr-Mo alloy for orthopaedic implant applications. Paper presented at the Solid Freeform Fabrication Symposium, University of Texas at Austin, Austin TX, 3–5 August 2009

    Google Scholar 

  • Knychala J, Bouropoulos N, Catt C et al (2013) Pore geometry regulates early stage human bone marrow cell tissue formation and organization. Ann Biomed Eng 41:917–930

    Article  Google Scholar 

  • Lacroix D, Planell JA, Prendergast PJ (2009) Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering. Philos Trans A 373:1993–2009

    Article  MATH  Google Scholar 

  • Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370:1508–1519

    Article  Google Scholar 

  • Lefebvre LP (2013) Porous metals and metallic foams in orthopedic applications. In: Dukhan N (ed) Metal foams: fundamentals and applications, 1st edn. DEStech Publications, Lancaster, pp p317–p362

    Google Scholar 

  • Levine B (2008) A new era in porous metals: applications in orthopaedics. Adv Eng Mater 10:788–792

    Article  Google Scholar 

  • Levine BR, Fabi DW (2010) Porous metals in orthopedic applications—a review. Materialwiss Werkst 41:1002–1010

    Article  Google Scholar 

  • Li Y, Yang C, Zhao H et al (2014) New developments of Ti-based alloys for biomedical applications. Mater 7:1709–1800

    Article  Google Scholar 

  • Lietaert K, Weber L, Van Humbeeck J et al (2013) Open cellular magnesium alloys for biodegradable orthopaedic implants. J Magnes Alloys 1:303–311

    Article  Google Scholar 

  • Muth J, Poggie M, Kulesha G et al (2012) Novel highly porous metal technology in artificial hip and knee replacement: processing methodologies and clinical applications. JOM 65:318–324

    Article  Google Scholar 

  • Ng CC, Savalani MM, Man HC et al (2010) Layer manufacturing of magnesium and its alloy structures for future applications. Virtual Phys Prototyping 5:13–19

    Article  Google Scholar 

  • Ng CC, Savalani MM, Lau ML et al (2011a) Microstructure and mechanical properties of selective laser melted magnesium. Appl Surf Sci 257:7447–7454

    Article  Google Scholar 

  • Ng CC, Savalani M, Man HC (2011b) Fabrication of magnesium using selective laser melting technique. Rapid Prototyping J 17:479–490

    Article  Google Scholar 

  • Orinakova R, Orinak A, Buckova LM et al (2013) Iron based degradable foam structures for potential orthopedic applications. Int J Electrochem Sci 8:12451–12465

    Google Scholar 

  • Petrini L, Migliavacca F (2011) Biomedical applications of shape memory alloys. J Metall. doi:10.1155/2011/501483

    Google Scholar 

  • PR Newswire (2015) Chinese magnesium alloy manufacturer Eontec expects to have its medical magnesium alloy available for clinical trial in 2015. www.prnewswire.com/news-releases/chinese-magnesium-alloy-manufacturer-eontec-expects-to-have-its-medical-magnesium-alloy-available-for-clinical-trial-in-2015-300002124.html. Accessed 21 Apr 2015

  • Razi H, Checa S, Schaser K-D et al (2012) Shaping scaffold structures in rapid manufacturing implants: a modeling approach toward mechano-biologically optimized configurations for large bone defect. J Biomed Mater Res B 100:1736–1745

    Article  Google Scholar 

  • Ripamonti U, Roden L (2010) Biomimetics for the induction of bone formation. Expert Rev Biomed Devices 7:469–479

    Article  Google Scholar 

  • Ripamonti U, Roden L, Renton L (2012) Osteoinductive hydroxyapatite-coated titanium implants. Biomater 33:3813–3823

    Article  Google Scholar 

  • Roland Berger (2013) Additive manufacturing—a game changer for the manufacturing industry? http://www.rolandberger.com/media/pdf/Roland_Berger_Additive_Manufacturing_20131129.pdf. Accessed 18 Feb 2015

  • Rotaru H, Schumacher R, Kim S-G et al (2015) Selective laser melted titanium implants: a new technique for the reconstruction of extensive zygomatic complex defects. Maxillofac Plast Reconstr Surg. doi:10.1186/s40902-015-0001-9

    Google Scholar 

  • Rumpler M, Woesz A, Dunlop JW et al (2008) The effect of geometry on three-dimensional tissue growth. J R Soc Interface 5:1173–1180

    Article  Google Scholar 

  • Sidambe AT (2014) Biocompatibility of advanced manufactured titanium implants—a review. Mater 7:8168–8188

    Article  Google Scholar 

  • Sinclair S, Konz G, Dawson J et al (2012) Host bone response to polyetheretherketone versus porous tantalum implants for cervical fusion in a goat model. Spine 37:571–580

    Article  Google Scholar 

  • SLM Solutions (2015) SLM 500 HL Laser beam melting system. http://stage.slm-solutions.com/download.php?f=9004e24eca5e8bc0fa296f27daf32523. Accessed 18 Feb 2015

  • Smith M, Guan Z, Cantwell WJ (2013) Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int J Mech Sci 67:28–41

    Article  Google Scholar 

  • Smith & Nephew (2015) SMF stem. http://www.smith-nephew.com/global/assets/pdf/smf_stem_st.pdf. Accessed 18 Feb 2015

  • Speirs M, Kruth J-P, Van Humbeeck J et al (2013) The effect of SLM parameters on geometrical characteristic of open porous NiTi scaffolds. Paper presented at the VRAP Advanced Research in Virtual and Rapid Prototyping conference, Leiria, 1–5 Oct 2013

    Google Scholar 

  • Song B, Dong S, Deng S et al (2014) Microstructure and tensile properties of iron parts fabricated by selective laser melting. Opt Laser Technol 56:451–460

    Article  Google Scholar 

  • Stankiewicz P (2000) Method for producing controlled aspect ratio reticulated carbon foam and the resultant foam. US 6103149 A

    Google Scholar 

  • Straley KS, Foo CW, Heilshorn SC (2010) Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotraum 27:1–19

    Article  Google Scholar 

  • Sumita M, Hanawa T, Teoh SW (2004) Development of nitrogen-containing nickel-free austenitic steels for metallic biomaterials—review. Mater Sci Eng, C 24:753–760

    Article  Google Scholar 

  • Sundfeldt M, Carlsson LV, Johansson CB et al (2006) Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop 77:177–197

    Article  Google Scholar 

  • Talha M, Behera CK, Sinha OP (2013) A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Mater Sci Eng, C 33:3563–3575

    Article  Google Scholar 

  • Thijs L, Montero Sistiaga ML, Wauthle R et al (2013) Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum. Acta Materer 61:4657–4668

    Article  Google Scholar 

  • van Grunsven W, Hernandez-Nava E, Reilly GC et al (2014) Fabrication and mechanical characterization of titanium lattices with graded porosity. Metals 4:401–409

    Article  Google Scholar 

  • Villanueva M, Rios-Luna A, Pereiro De Lamo J et al (2008) A review of the treatment of pelvic discontinuity. HSS J 4:128–137

    Article  Google Scholar 

  • Wauthle R (2014) Industrialization of selective laser melting for the production of porous titanium and tantalum implants. Dissertation, KU Leuven

    Google Scholar 

  • Wauthle R, Vrancken B, Beynaerts B et al (2015a) Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit Manuf 5:77–84

    Article  Google Scholar 

  • Wauthle R, van der Stok J, Amin Yavari S et al (2015b) Additively manufactured porous tantalum implants. Acta Biomater 14:217–225

    Article  Google Scholar 

  • Wei K, Gao M, Wang Z et al (2014) Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy. Mater Sci Eng, A 611:212–222

    Article  Google Scholar 

  • Wieding J, Wolf A, Bader R (2014) Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone. J Mech Behav Biomed Mater 37:56–68

    Article  Google Scholar 

  • Windhagen H, Radtke K, Weizbauer A et al (2013) Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed Eng OnLine 12

    Google Scholar 

  • Wohlers T (2013) Wohlers report 2013. Wohlers Associates, Fort Collins CO

    Google Scholar 

  • Woodruff MA, Lange C, Reichert J et al (2012) Bone tissue engineering: from bench to bedside. Mater Today 15:430–435

    Article  Google Scholar 

  • Wuisman PI, Smit TH (2006) Bioresorbable polymers: heading for a new generation of spinal cages. Eur Spine J 15:133–148

    Article  Google Scholar 

  • Zadpoor AA (2015) Bone tissue regeneration: the role of scaffold geometry. Biomater Sci 3:231–245

    Article  Google Scholar 

  • Zardiackas LD, Parsell DE, Dillon LD (2001) Structure, metallurgy, and mechanical properties of a porous tantalum foam. J Biomed Mater Res 58:180–187

    Article  Google Scholar 

  • Zhang B, Liao H, Coddet C (2012) Effects of processing parameters on properties of selective laser melting Mg-9%Al powder mixture. Mater Des 23:753–758

    Article  Google Scholar 

  • Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng, R 77:1–34

    Article  Google Scholar 

Download references

Acknowledgements

Karel Lietaert would like to acknowledge the support of the agency for Innovation by Science and Technology (IWT) of the Flemish government through Baekeland mandate ‘IWT140257’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Lietaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Lietaert, K., Wauthle, R., Schrooten, J. (2018). Porous Metals in Orthopedics. In: Zivic, F., Affatato, S., Trajanovic, M., Schnabelrauch, M., Grujovic, N., Choy, K. (eds) Biomaterials in Clinical Practice . Springer, Cham. https://doi.org/10.1007/978-3-319-68025-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68025-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68024-8

  • Online ISBN: 978-3-319-68025-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics