Skip to main content

Detection of Atrial Fibrillation

  • Chapter
  • First Online:
Atrial Fibrillation from an Engineering Perspective

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

In this chapter, the main design principles used in detection of atrial fibrillation are reviewed, either exploring rhythm information only or information on both rhythm and atrial wave morphology. Aspects on detector implementation are briefly considered, and the pros and cons of different detection performance measures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Paroxysmal AF manifested by episodes briefer than 30 s is sometimes referred to as occult paroxysmal AF, especially when asymptomatic or undetected by conventional methods [7,8,9,10,11].

  2. 2.

    Several other detectors have been proposed besides those listed in Table 4.1. However, for various reasons, their respective performance was not evaluated on AFDB.

  3. 3.

    The relationship between histogram shape and mean heart rate has previously been investigated in noninvasive studies on atrioventricular node physiology in AF, leading to the concept of heart rate stratified histograms [53, 54].

  4. 4.

    It should be noted that \(\hat{C}(m,r)\) constitutes an essential part of the correlation dimension, a measure introduced to describe the dimensionality of the space occupied by a set of random samples [68].

  5. 5.

    Yet another approach proposed for characterizing the Poincaré plot is the complex correlation measure, quantifying the point-to-point (temporal) variation of the RR series [74], see also [75]. However, this measure has not received any attention in AF detection, probably because it is better suited for discriminating between ectopic rhythms and normal sinus rhythm than between AF and normal sinus rhythm.

  6. 6.

    In [50], the computation of \(\bar{m}_x\) includes all RR intervals in the window except the first and last RR intervals, i.e., x(0) and \(x(N-1)\); however, the interpretation of \(\bar{m}_x\) is similar to that otherwise used in this chapter.

  7. 7.

    Strictly speaking, this type of detector does not explore both rhythm and morphology. However, since information on P wave absence is still required, the detector is described in this section.

  8. 8.

    The idea of studying the deviation from “normality”, i.e., whether a P wave is absent, is closely related to the concept of novelty detection [102, 103].

  9. 9.

    While classification of beat morphology is not reviewed here, it deserves to be mentioned that this classification problem has received, and continues to receive, considerable attention in the literature, see, e.g., [116,117,118,119,120].

  10. 10.

    Neither is noise level taken into account in classification of beat morphology, even though it is well-known that certain beats are difficult to cluster due to excessive noise. This problem was indirectly addressed in [120], where an elegant technique based on switching Kalman filters was proposed for detecting “strange” beat morphologies falling outside the well-established clusters.

References

  1. A. Haeberlin, L. Roten, M. Schilling, F. Scarcia, T. Niederhauser, R. Vogel, J. Fuhrer, H. Tanner, Software-based detection of atrial fibrillation in long-term ECGs. Heart Rhythm 11, 933–938 (2014)

    Article  Google Scholar 

  2. K.M. Stein, J. Walden, N. Lippman, B.B. Lerman, Ventricular response in atrial fibrillation: random or deterministic? Am. J. Physiol. 277, H452–458 (1999)

    Google Scholar 

  3. J. Hayano, F. Yamasaki, S. Sakata, A. Okada, S. Mukai, T. Fujinami, Spectral characteristics of ventricular response to atrial fibrillation. Am. J. Physiol. 273, H2811–2816 (1997)

    Google Scholar 

  4. V. Fuster, L.E. Rydén, D.S. Cannom, H.J. Crijns, A.B. Curtis et al., ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the European Society of Cardiology Committee for Practice Guidelines developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society Heart Association Task Force on practice guidelines and the European Society of Cardiology Committee for Practice Guidelines developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Europace 8, 651–745 (2006)

    Google Scholar 

  5. C.T. January, L.S. Wann, J.S. Alpert, H. Calkins, J.E. Cigarroa et al., 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Circulation 130, 2071–2104 (2014)

    Article  Google Scholar 

  6. P. Kirchhof, S. Benussi, D. Kotecha, A. Ahlsson, D. Atar, B. Casadei, M. Castella, H.C. Diener, H. Heidbuchel, J. Hendriks, G. Hindricks, A.S. Manolis, J. Oldgren, B.A. Popescu, U. Schotten, B. Van Putte, P. Vardas, S. Agewall, J. Camm, G. Baron Esquivias, W. Budts, S. Carerj, F. Casselman, A. Coca, R. De Caterina, S. Deftereos, D. Dobrev, J.M. Ferro, G. Filippatos, D. Fitzsimons, B. Gorenek, M. Guenoun, S.H. Hohnloser, P. Kolh, G.Y. Lip, A. Manolis, J. McMurray, P. Ponikowski, R. Rosenhek, F. Ruschitzka, I. Savelieva, S. Sharma, P. Suwalski, J.L. Tamargo, C.J. Taylor, I.C. Van Gelder, A.A. Voors, S. Windecker, J.L. Zamorano, K. Zeppenfeld, 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 37, 2893–2962 (2016)

    Article  Google Scholar 

  7. R.C.S. Seet, P.A. Friedman, A.A. Rabinstein, Prolonged rhythm monitoring for the detection of occult paroxysmal atrial fibrillation in ischemic stroke of unknown cause. Circulation 124, 477–486 (2011)

    Article  Google Scholar 

  8. J.W. Keach, S.M. Bradley, M.P. Turakhia, T.M. Maddox, Early detection of occult atrial fibrillation and stroke prevention. Heart 101, 1097–1102 (2015)

    Article  Google Scholar 

  9. J.G. Andrade, T. Field, P. Khairy, Detection of occult atrial fibrillation in patients with embolic stroke of uncertain source: a work in progress. Front. Physiol. 1, 1–9 (2015)

    Google Scholar 

  10. D.J. Miller, K. Shah, S. Modi, A. Mahajan, S. Zahoor, M. Affan, The evolution and application of cardiac monitoring for occult atrial fibrillation in cryptogenic stroke and TIA. Curr. Treat. Options Neurol. 18, 17 (2016)

    Article  Google Scholar 

  11. J.O. Cerasuolo, L.E. Cipriano, L.A. Sposato, The complexity of atrial fibrillation newly diagnosed after ischemic stroke and transient ischemic attack: advances and uncertainties. Curr. Opin. Neurol. 30, 28–37 (2017)

    Article  Google Scholar 

  12. A.H. Tayal, M. Tian, K.M. Kelly, S.C. Jones, D.G. Wright, D. Singh, J. Jarouse, J. Brillman, S. Murali, R. Gupta, Atrial fibrillation detected by mobile cardiac outpatient telemetry in cryptogenic TIA or stroke. Neurology 71, 1696–1701 (2008)

    Article  Google Scholar 

  13. A.A. Rabinstein, J.E. Fugate, J. Mandrekar, J.D. Burns, R.C. Seet, S.A. Dupont, T.J. Kauffman, S.J. Asirvatham, P.A. Friedman, Paroxysmal atrial fibrillation in cryptogenic stroke: a case control study. J. Stroke Cerebrovascular Dis. 22, 1405–1411 (2013)

    Article  Google Scholar 

  14. A.H. Abdul-Rahim, K.R. Lees, Paroxysmal atrial fibrillation after ischemic stroke: how should we hunt for it? Expert Rev. Cardiovasc. Ther. 11, 485–494 (2013)

    Article  Google Scholar 

  15. C.G. Favilla, E. Ingala, J. Jara, E. Fessler, B. Cucchiara, S.R. Messé, M.T. Mullen, A. Prasad, J. Siegler, M.D. Hutchinson, S.E. Kasner, Predictors of finding occult atrial fibrillation after cryptogenic stroke. Stroke 46, 1210–1215 (2015)

    Article  Google Scholar 

  16. E.I. Charitos, U. Stierle, P.D. Ziegler, M. Baldewig, D.R. Robinson, H. Sievers, T. Hanke, A comprehensive evaluation of rhythm monitoring strategies for the detection of atrial fibrillation recurrence: insights from 647 continuously monitored patients and implications for monitoring after therapeutic interventions. Circulation 126, 806–814 (2012)

    Article  Google Scholar 

  17. T. Etgen, M. Hochreiter, M. Mundel, T. Freudenberger, Insertable cardiac event recorder in detection of atrial fibrillation after cryptogenic stroke: an audit report. Stroke 44, 2007–2009 (2013)

    Article  Google Scholar 

  18. J. Reiffel, A. Verma, J.L. Halperin, B. Gersh, S. Tombul, J. Carrithers, L. Sherfesee, P. Kowey, Rationale and design of REVEAL AF: a prospective study of previously undiagnosed atrial fibrillation as documented by an insertable cardiac monitor in high-risk patients. Am. Heart J. 167, 22–27 (2014)

    Article  Google Scholar 

  19. A.C. Flint, N.M. Banki, X. Ren, V.A. Rao, A.S. Go, Detection of paroxysmal atrial fibrillation by 30-day event monitoring in cryptogenic ischemic stroke: The stroke and monitoring for PAF in real time (SMART) registry. Stroke 43, 2788–2790 (2012)

    Article  Google Scholar 

  20. S.B. Silverman, Paroxysmal atrial fibrillation: Novel strategies for monitoring and implications for treatment in stroke. Curr. Treat. Options Cardio. Med. 18, 1–13 (2016)

    Article  Google Scholar 

  21. L. Sörnmo, P. Laguna, Bioelectrical Signal Processing in Cardiac and Neurological Applications (Elsevier (Academic Press), Amsterdam, 2005)

    Google Scholar 

  22. N. Lowres, L. Neubeck, J. Redfern, S.B. Freedman, Screening to identify unknown atrial fibrillation. A systematic review. Thromb. Haemost. 110, 213–222 (2013)

    Article  Google Scholar 

  23. B. Vaes, S. Stalpaert, K. Tavernier, B. Thaels, D. Lapeire, W. Mullens, J. Degryse, The diagnostic accuracy of the MyDiagnostick to detect atrial fibrillation in primary care. BMC Fam. Pract. 15, 113 (2014)

    Google Scholar 

  24. F. Kaasenbrood, M.H.F.H. Rutten, L.J. Gerhards, A.W. Hoes, R.G. Tieleman, Yield of screening for atrial fibrillation in primary care with a hand-held, single-lead electrocardiogram device during influenza vaccination. Europace 18, 1514–1520 (2016)

    Article  Google Scholar 

  25. L. Desteghe, Z. Raymaekers, M. Lutin, J. Vijgen, D. Dilling-Boer, P. Koopman, J. Schurmans, P. Vanduynhoven, P. Dendale, H. Heidbuchel, Performance of handheld electrocardiogram devices to detect atrial fibrillation in a cardiology and geriatric ward setting. Europace 19, 29–39 (2017)

    Article  Google Scholar 

  26. E. Svennberg, J. Engdahl, F. Al-Khalili, L. Friberg, V. Frykman, M. Rosenqvist, Mass screening for untreated atrial fibrillation: the STROKESTOP study. Circulation 131, 2176–2184 (2015)

    Article  Google Scholar 

  27. E. Svennberg, M. Stridh, J. Engdahl, F. Al-Khalili, L. Friberg, V. Frykman, M. Rosenquist, Safe automatic one-lead electrocardiogram analysis in screening for atrial fibrillation. Europace 19, 1449–1453 (2016)

    Google Scholar 

  28. S.R. Steinhubl, R.R. Mehta, G.S. Ebner, M.M. Ballesteros, J. Waalen, G. Steinberg, P. Van Crocker, Jr., E. Felicione, C. T. Carter, S. Edmonds, J. P. Honcz, G. D. Miralles, D. Talantov, T. C. Sarich, E. J. Topol, Rationale and design of a home-based trial using wearable sensors to detect asymptomatic atrial fibrillation in a targeted population: the mHealth screening to prevent strokes (mSToPS) trial. Am. Heart J. 175, 77–85 (2016)

    Article  Google Scholar 

  29. M.P. Turakhia, D.W. Kaiser, Transforming the care of atrial fibrillation with mobile health. J. Interv. Card. Electrophysiol. 47, 45–50 (2016)

    Article  Google Scholar 

  30. G. D. Clifford, C. Liu, B. Moody, L.-W. H. Lehman, I. Silva, Q. Li, A. Johnson, and R. G. Mark, “AF classification from a short single lead ECG recording: the PhysioNet Computing in Cardiology Challenge 2017, in Proceedings of Computing in Cardiology, vol. 44 (2017)

    Google Scholar 

  31. K. Tateno, L. Glass, Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and deltaRR intervals. Med. Biol. Eng. Comput. 39, 664–671 (2001)

    Article  Google Scholar 

  32. S. Dash, K.H. Chon, S. Lu, E.A. Raeder, Automatic real time detection of atrial fibrillation. Ann. Biomed. Eng. 37, 1701–1709 (2009)

    Article  Google Scholar 

  33. J. Lian, L. Wang, D. Muessig, A simple method to detect atrial fibrillation using RR intervals. Am. J. Cardiol. 107, 1494–1497 (2011)

    Article  Google Scholar 

  34. D. E. Lake, J.R. Moorman, Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. Am. J. Physiol. (Heart Circ. Physiol.) 300: H319–H325 (2011)

    Article  Google Scholar 

  35. C. Huang, S. Ye, H. Chen, D. Li, F. He, Y. Tu, A novel method for detection of the transition between atrial fibrillation and sinus rhythm. IEEE Trans. Biomed. Eng. 58, 1113–1119 (2011)

    Article  Google Scholar 

  36. R.B. Shouldice, C. Heneghan, P. de Chazal, Automatic detection of paroxysmal atrial fibrillation, in Atrial fibrillation – basic research and clinical applications. (J. Choi, ed.), chap. 7, pp. 125–146, InTech (2012)

    Google Scholar 

  37. J. Lee, Y. Nam, D.D. McManus, K.H. Chon, Time-varying coherence function for atrial fibrillation detection. IEEE Trans. Biomed. Eng. 60, 2783–2793 (2013)

    Article  Google Scholar 

  38. X. Zhou, H. Ding, B. Ung, E. Pickwell-MacPherson, Y. Zhang, Automatic online detection of atrial fibrillation based on symbolic dynamics and shannon entropy. Biomed. Eng. Online 13, 18 (2014)

    Article  Google Scholar 

  39. S. Asgari, A. Mehrni, M. Moussavi, Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Comput. Biol. Med. 60, 132–142 (2015)

    Article  Google Scholar 

  40. A. Petrėnas, V. Marozas, L. Sörnmo, Low-complexity detection of atrial fibrillation in continuous long-term monitoring. Comput. Biol. Med. 65, 184–191 (2015)

    Article  Google Scholar 

  41. X. Zhou, H. Ding, W. Wu, Y. Zhang, A real-time atrial fibrillation detection algorithm based on the instantaneous state of heart rate. PLoS ONE 10, e0136544 (2015)

    Article  Google Scholar 

  42. G.B. Moody, R.G. Mark, A new method for detecting atrial fibrillation using R-R intervals. in Proceedings of Computers in Cardiology vol. 10, pp. 227–230 (1983)

    Google Scholar 

  43. S. Cerutti, L.T. Mainardi, A. Porta, A.M. Bianchi, Analysis of the dynamics of RR interval series for the detection of atrial fibrillation episodes, in Proceedings of Computers in Cardiology, vol. 24, pp. 7–80 (1997)

    Google Scholar 

  44. S. Shkurovich, A.V. Sahakian, S. Swiryn, Detection of atrial activity from high-voltage leads of implantable ventricular defibrillators using a cancellation technique. IEEE Trans. Biomed. Eng. 45, 229–234 (1998)

    Article  Google Scholar 

  45. D. Duverney, J.M. Gaspoz, V. Pichot, F. Roche, R. Brion, A. Antoniadis, J.C. Barthelemy, High accuracy of automatic detection of atrial fibrillation using wavelet transform of heart rate intervals. Pacing Clin. Electrophysiol. 25, 457–462 (2002)

    Article  Google Scholar 

  46. F. Yaghouby, A. Ayatollahi, R. Bahramali, M. Yaghouby, A.H. Alavi, Towards automatic detection of atrial fibrillation: a hybrid computational approach. Comput. Biol. Med. 40, 919–930 (2010)

    Article  Google Scholar 

  47. C.-T. Lin, K.-C. Chang, C.-L. Lin, C.-C. Chiang, S.-W. Lu, S.-S. Chang, B.-S. Lin, H.-Y. Liang, R.-J. Chen, Y.-T. Lee, L.-W. Ko, An intelligent telecardiology system using a wearable and wireless ECG to detect atrial fibrillation. IEEE Trans. Info. Tech. Biomed. 14, 726–733 (2010)

    Article  Google Scholar 

  48. P. Langley, M. Dewhurst, L.D. Marco, P. Adams, F. Dewhurst, J. Mwita, R. Walker, A. Murray, Accuracy of algorithms for detection of atrial fibrillation from short duration beat interval recordings. Med. Eng. Phys. 34, 1441–1447 (2012)

    Article  Google Scholar 

  49. J. Lee, B. Reyes, D. McManus, O. Mathias, K. Chon, Atrial fibrillation detection using an iPhone 4S. IEEE Trans. Biomed. Eng. 60, 203–206 (2013)

    Article  Google Scholar 

  50. J. Park, S. Lee, M. Jeon, Atrial fibrillation detection by heart rate variability in Poincaré plot. Biomed. Eng. Online 8, 1–12 (2009)

    Article  Google Scholar 

  51. S. Sarkar, D. Ritscher, R. Mehra, A detector for a chronic implantable atrial tachyarrhythmia monitor. IEEE Trans. Biomed. Eng. 55, 1219–1224 (2008)

    Article  Google Scholar 

  52. M.S. Kendall, A. Stuart, J.K. Ord, The Advanced Theory of Statistics, vol. 3, 4th edn. (High Wycombe: Charles Griffin, 1983)

    Google Scholar 

  53. S.B. Olsson, N. Cai, M. Dohnal, K.K. Talwar, Noninvasive support for and characterization of multiple intranodal pathways in patients with mitral valve disease and atrial fibrillation. Eur. Heart J. 7, 320–333 (1986)

    Article  Google Scholar 

  54. N. Cai, M. Dohnal, S.B. Olsson, Methodological aspects of the use of heart rate stratified RR interval histograms in the analysis of atrioventricular conduction during atrial fibrillation. Cardiovasc. Res. 21, 455–462 (1987)

    Article  Google Scholar 

  55. J. Dickinson Gibbons and S. Chakraborti, Nonparametric Statistical Inference, 5th edn. (Chapman and Hall/CRC, 2010)

    Google Scholar 

  56. J. Tebbenjohanns, B. Schumacher, T. Korte, M. Niehaus, D. Pfeiffer, Bimodal RR interval distribution in chronic atrial fibrillation: impact of dual atrioventricular nodal physiology on long-term rate control after catheter ablation of the posterior atrionodal input. J. Cardiovasc. Electrophysiol. 11, 497–503 (2000)

    Article  Google Scholar 

  57. S. Rokas, S. Gaitanidou, S. Chatzidou, C. Pamboucas, D. Achtipis, S. Stamatelopoulos, Atrioventricular node modification in patients with chronic atrial fibrillation: role of morphology of RR interval variation. Circulation 103, 2942–2948 (2001)

    Article  Google Scholar 

  58. V.D.A. Corino, F. Sandberg, L.T. Mainardi, L. Sörnmo, An atrioventricular node model for analysis of the ventricular response during atrial fibrillation. IEEE Trans. Biomed. Eng. 58, 3386–3395 (2011)

    Article  Google Scholar 

  59. C.E. Shannon, A mathematical theory of communication. Bell Sys. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  60. S.J. Richman, J.R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. 278, H2039–H2049 (2000)

    Google Scholar 

  61. D.E. Lake, J.S. Richman, M.P. Griffin, J.R. Moorman, Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R789–R797 (2002)

    Article  Google Scholar 

  62. D.E. Lake, Renyi entropy measures of heart rate Gaussianity. IEEE Trans. Biomed. Eng. 53, 21–27 (2006)

    Article  Google Scholar 

  63. M. S. Pincus, A.L. Goldberger, Physiological time-series analysis: what does regularity quantify? Am. J. Physiol. 266 (Heart Circ. Physiol.) 35: H1643–H1656 (1994)

    Article  Google Scholar 

  64. W. Chen, Z. Wang, H. Xie, W. Yu, Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Sys. Rehab. Eng. 15, 266–272 (2007)

    Article  Google Scholar 

  65. A. Avolio, Heart rate variability and stroke: strange attractors with loss of complexity. J. Hypertension 31, 1529–1531 (2013)

    Article  Google Scholar 

  66. M. Julián, R. Alcaraz, J.J. Rieta, Comparative assessment of nonlinear metrics to quantify organization-related events in surface electrocardiograms of atrial fibrillation. Comput. Biol. Med. 48, 66–76 (2014)

    Article  Google Scholar 

  67. L. Hong-wei, S. Ying, L. Min, L. Pi-ding, Z. Zheng, A probability density function method for detecting atrial fibrillation using R-R intervals. Med. Eng. Phys. 31, 116–123 (2009)

    Article  Google Scholar 

  68. P. Grassberger, I. Procaccia, Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  69. T. Anan, K. Sunagawa, H. Araki, M. Nakamura, Arrhythmia analysis by successive RR plotting. J. Electrocardiol. 23, 243–248 (1990)

    Article  Google Scholar 

  70. P.W. Kamen, H. Krum, A.M. Tonkin, Poincaré plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin. Sci. (Lond.) 91, 201–208 (1996)

    Article  Google Scholar 

  71. M. Brennan, M. Palaniswami, P. Kamen, Poincaré plot interpretation using a physiological model of HRV based on a network of oscillators. Am. J. Physiol. Heart Circ. Physiol. 283, H1873–H1886 (2002)

    Article  Google Scholar 

  72. M. Malik, Standard measurements of heart rate variability, in Dynamic electrocardiography ed. by M. Malik, A.J. Camm, chap. 2, (Wiley–Blackwell, New York, 2004), pp. 13–21

    Google Scholar 

  73. K. Monahan, Y. Song, K. Loparo, R. Mehra, F.E. Harrell Jr., S. Redline, Automated detection of atrial fibrillation from the electrocardiogram channel of polysomnograms. Sleep Breath 20, 515–522 (2015)

    Article  Google Scholar 

  74. C.K. Karmakar, A.H. Khandoker, J. Gubbi, M. Palaniswami, Complex correlation measure: a novel descriptor for Poincaré plot. BioMed. Eng. Online 8, 37–48 (2009)

    Article  Google Scholar 

  75. L. Zhang, T. Guo, B. Xi, Y. Fan, K. Wang, J. Bi, Y. Wang, Automatic recognition of cardiac arrhythmias based on the geometric patterns of Poincaré plots. Physiol. Meas. 36, 283–301 (2015)

    Article  Google Scholar 

  76. R. Mehra, J. Gillberg, P. Ziegler, S. Sarkar, Algorithms for atrial tachyarrhythmia detection for long-term monitoring with implantable devices, in Understanding atrial fibrillation: the signal processing contribution ed. by L.T. Mainardi, L.Sörnmo, S. Cerutti, chap. 8 (Morgan & Claypool, San Francisco, 2008), pp. 175–214

    Google Scholar 

  77. H. Käsmacher, S. Wiese, M. Lahl, Monitoring the complexity of ventricular response in atrial fibrillation. Discrete Dynamics Nature Soc. 4, 63–75 (2000)

    Article  Google Scholar 

  78. M. Brennan, M. Palaniswami, P. Kamen, Do existing measures of Poincaré plot geometry reflect nonlinear features of heart rate variability? IEEE Trans. Biomed. Eng. 48, 1342–1347 (2001)

    Article  Google Scholar 

  79. R.A. Thuraisingham, An electrocardiogram marker to detect paroxysmal atrial fibrillation. J. Electrocardiol. 40, 344–347 (2007)

    Article  Google Scholar 

  80. H. Zhao, S. Lu, R. Zou, K. Ju, K.H. Chon, Estimation of time-varying coherence function using time-varying transfer functions. Ann. Biomed. Eng. 33, 1582–1594 (2005)

    Article  Google Scholar 

  81. R. Zou, H. Wang, K.H. Chon, A robust time-varying identification algorithm using basis functions. Ann. Biomed. Eng 31, 840–853 (2003)

    Article  Google Scholar 

  82. F. van der Heijden, R.P.W. Duin, D. de Ridder, D.M.J. Tax, Classification, Parameter Estimation and State Estimation–An Engineering Approach using Matlab (Wiley, New York, 2005)

    MATH  Google Scholar 

  83. P. Carvalho, J. Henriques, R. Couceiro, M. Harris, M. Antunes, J. Habetha, Model-based atrial fibrillation detection, in ECG signal processing, classification and interpretation ed. by A. Gacek, W. Pedrycz (Springer London, 2012), pp. 99–133

    Google Scholar 

  84. R. Colloca, A.E.W. Johnson, L. Mainardi, G.D. Clifford, A support vector machine approach for reliable detection of atrial fibrillation events, in Proceedings of Computing in Cardiology, vol. 40, pp. 1047–1050 (2013)

    Google Scholar 

  85. R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd edn. (Wiley–Interscience, New York, 2001)

    Google Scholar 

  86. N. Larburu, T. Lopetegi, I. Romero, Comparative study of algorithms for atrial fibrillation detection, in Proceedings of Computing in Cardiology, vol. 38, pp. 265–268 (2011)

    Google Scholar 

  87. S. Babaeizadeh, R.E. Gregg, E.D. Helfenbein, J.M. Lindauer, S.H. Zhou, Improvements in atrial fibrillation detection for real-time monitoring. J. Electrocardiol. 42, 522–526 (2009)

    Article  Google Scholar 

  88. S. Ladavich, B. Ghoraani, Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity. Biomed. Signal Process. Control 18, 274–281 (2015)

    Article  Google Scholar 

  89. J. Ródenas, M. García, R. Alcaraz, J.J. Rieta, Wavelet entropy automatically detects episodes of atrial fibrillation from single-lead electrocardiograms. Entropy 17, 6179–6199 (2015)

    Article  Google Scholar 

  90. Y. Xia, N. Wulan, K. Wang, H. Zhang, Detecting atrial fibrillation by deep convolutional neural networks. Comput. Biol. Med. 93, 84–92 (2018)

    Article  Google Scholar 

  91. P. Laguna, R. Jané, P. Caminal, Automatic detection of wave boundaries in multilead ECG signals: validation with the CSE database. Comput. Biomed. Res. 27, 45–60 (1994)

    Article  Google Scholar 

  92. J.P. Martínez, R. Almeida, S. Olmos, A.P. Rocha, P. Laguna, A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans. Biomed. Eng. 51, 570–581 (2004)

    Article  Google Scholar 

  93. J. Dumont, A. Hernández, G. Carrault, Improving ECG beats delineation with an evolutionary optimization process. IEEE Trans. Biomed. Eng. 57, 607–615 (2010)

    Article  Google Scholar 

  94. L. Clavier, J.-M. Boucher, R. Lepage, J.-J. Blanc, J.-C. Cornily, Automatic P-wave analysis of patients prone to atrial fibrillation. Med. Biol. Eng. Comput. 40, 63–71 (2002)

    Article  Google Scholar 

  95. F. Censi, G. Calcagnini, C. Ricci, R.P. Ricci, M. Santini, A. Grammatico, P. Bartolini, P-wave morphology assessment by a Gaussian functions-based model in atrial fibrillation patients. IEEE Trans. Biomed. Eng. 54, 663–671 (2007)

    Article  Google Scholar 

  96. A. Martínez, D. Abásolo, R. Alcaraz, J.J. Rieta, Alteration of the P-wave non-linear dynamics near the onset of paroxysmal atrial fibrillation. Med. Eng. Phys. 37, 692–697 (2015)

    Article  Google Scholar 

  97. P. Laguna, R. G. Mark, A. L. Goldberger, and G. B. Moody, “A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG, in Proceedings of Computers in Cardiology, Vol. 23, pp. 673–676 (1997)

    Google Scholar 

  98. A.L. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101, E215–220 (2000)

    Article  Google Scholar 

  99. I. Dotsinsky, Atrial wave detection algorithm for discovery of some rhythm abnormalities. Physiol. Meas 28, 595–610 (2007)

    Article  Google Scholar 

  100. A. Petrėnas, L. Sörnmo, A. Lukoševičius, V. Marozas, Detection of occult paroxysmal atrial fibrillation. Med. Biol. Eng. Comput. 53, 287–297 (2015)

    Article  Google Scholar 

  101. A. Petrėnas, V. Marozas, L. Sörnmo, A. Lukoševičius, An echo state neural network for QRST cancellation during atrial fibrillation. IEEE Trans. Biomed. Eng. 59, 2950–2957 (2012)

    Article  Google Scholar 

  102. S. Roberts, L. Tarassenko, A probabilistic resource allocating network for novelty detection. Neural Comput. 6, 270–284 (1994)

    Article  Google Scholar 

  103. M. Markou, S. Singh, Novelty detection: a review. Signal Process. 83, 2481–2497 (2003)

    Article  MATH  Google Scholar 

  104. X. Du, N. Rao, M. Qian, D. Liu, J. Li, W. Feng, L. Yin, X. Chen, A novel method for real-time atrial fibrillation detection in electrocardiograms using multiple parameters. Ann. Noninvasive Electrocardiol. 19, 217–225 (2014)

    Article  Google Scholar 

  105. F. Castells, J.J. Rieta, J. Millet, V. Zarzoso, Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias. IEEE Trans. Biomed. Eng. 52, 258–267 (2005)

    Article  Google Scholar 

  106. R. Llinares, J. Igual, J. Miró-Borrás, A fixed point algorithm for extracting the atrial activity in the frequency domain. Comput. Biol. Med. 40, 943–949 (2010)

    Article  Google Scholar 

  107. S.M. Kay, Modern Spectral Estimation Theory and Application (Prentice-Hall, New Jersey, 1999)

    Google Scholar 

  108. M. Stridh, A. Bollmann, S.B. Olsson, L. Sörnmo, Time-frequency analysis of atrial tachyarrhythmias: detection and feature extraction. IEEE Eng. Med. Biol. Mag. 25, 31–39 (2006)

    Article  Google Scholar 

  109. Q. Li, R.G. Mark, G.D. Clifford, Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter. Physiol. Meas. 29, 15–32 (2008)

    Article  Google Scholar 

  110. G.D. Clifford, D. Clifton, Wireless technology in disease management and medicine. Ann. Rev. Med. 63, 479–92 (2012)

    Article  Google Scholar 

  111. J. Behar, J. Oster, Q. Li, G.D. Clifford, ECG signal quality during arrhythmia and its application to false alarm reduction. IEEE Trans. Biomed. Eng. 60, 1660–1666 (2013)

    Article  Google Scholar 

  112. A.E.W. Johnson, J. Behar, F. Andreotti, G.D. Clifford, J. Oster, Multimodal heart beat detection using signal quality indices. Physiol. Meas. 36, 1665–1677 (2015)

    Article  Google Scholar 

  113. C. Orphanidou, T. Bonnici, P. Charlton, D. Clifton, D. Vallance, L. Tarassenko, Signal-quality indices for the electrocardiogram and photoplethysmogram: derivation and applications to wireless monitoring. IEEE J. Biomed. Health Inform. 19, 832–838 (2015)

    Google Scholar 

  114. J. Oster, G.D. Clifford, Impact of the presence of noise on RR interval-based atrial fibrillation detection. J. Electrocardiol. 48, 947–951 (2015)

    Article  Google Scholar 

  115. N. Gambarotta, F. Aletti, G. Baselli, M. Ferrario, A review of methods for the signal quality assessment to improve reliability of heart rate and blood pressures derived parameters. Med. Biol. Eng. Comput. 54, 1025–1035 (2016)

    Article  Google Scholar 

  116. S.H. Rappaport, L. Gillick, G.B. Moody, R.G. Mark, QRS morphology classification: quantitative evaluation of different strategies, in Proceedings of Computers in Cardiology, Vol. 9, pp. 33–38 (1982)

    Google Scholar 

  117. M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandt, L. Sörnmo, Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47, 838–848 (2000)

    Article  Google Scholar 

  118. P. de Chazal, M. O’Dwyer, R.B. Reilly, Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51, 1196–1206 (2004)

    Article  Google Scholar 

  119. M. Llamedo, J.P. Martínez, Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans. Biomed. Eng. 58, 616–625 (2011)

    Article  Google Scholar 

  120. J. Oster, J. Behar, O. Sayadi, S. Nemati, A.E.W. Johnson, G.D. Clifford, Semisupervised ECG ventricular beat classification with novelty detection based on switching Kalman filters. IEEE Trans. Biomed. Eng. 62, 2125–2134 (2015)

    Article  Google Scholar 

  121. R. Couceiro, P. Carvalho, J. Henriques, M. Antunes, M. Harris, J. Habertha, Detection of atrial fibrillation using model-based ECG analysis, in Proceedings of International Conference on Pattern Recognition (ICPR), vol. 19, pp. 1–5 (2008)

    Google Scholar 

  122. T. Jeon, B. Kim, M. Jeon, B.-G. Lee, Implementation of a portable device for real-time ECG signal analysis. Biomed. Eng. Online 13, 1–13 (2014)

    Article  Google Scholar 

  123. O. Andersson, K.H. Chon, L. Sörnmo, J. Neves Rodrigues, A 290 mV sub-V\({}_{{\rm T}}\) ASIC for real-time atrial fibrillation detection. IEEE Trans. Biomed. Circ. Sys. 9: 377–386 (2015)

    Google Scholar 

  124. B. Matthews, Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta 405, 442–451 (1975)

    Article  Google Scholar 

  125. P. Baldi, S. Brunak, Y. Chauvin, C.A. Andersen, H. Nielsen, Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16, 412–424 (2000)

    Article  Google Scholar 

  126. F. Jager, G.B. Moody, A. Taddei, R. Mark, Performance measures for algorithms to detect transient ischemic ST segment changes, in Proceedings of Computers in Cardiology, vol. 18, pp. 369–372 (1991)

    Google Scholar 

  127. R.J. Martis, U.R. Acharya, H. Prasad, C.K. Chua, C.M. Lim, Automated detection of atrial fibrillation using Bayesian paradigm. Knowledge-Based Syst. 54, 269–275 (2013)

    Article  Google Scholar 

  128. M. García, J. Ródenas, R. Alcaraz, J.J. Rieta, Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation. Comput. Meth. Progr. Biomed. 131, 157–168 (2016)

    Article  Google Scholar 

  129. A. Isaksson, M. Wallman, H. Göransson, M.G. Gustafsson, Cross-validation and bootstrapping are unreliable in small sample classification. Pattern Recogn. Letter 29, 1960–1965 (2008)

    Article  Google Scholar 

  130. J. Slocum, A.V. Sahakian, S. Swiryn, Diagnosis of atrial fibrillation from surface electrocardiograms based on computer-detected atrial activity. J. Electrocardiol. 25, 1–8 (1992)

    Article  Google Scholar 

  131. M. Haïssaguerre, P. Jaïs, D.C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Métayer, J. Clémenty, Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339, 659–666 (1998)

    Article  Google Scholar 

  132. S.-A. Chen, M.-H. Hsieh, C.-T. Tai, C.-F. Tsai, V.S. Prakash, W.-C. Yu, T.-L. Hsu, Y.-A. Ding, M.-S. Chang, Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablation. Circulation 100, 1879–1886 (1999)

    Article  Google Scholar 

  133. C. Kolb, S. Nürnberger, G. Ndrepepa, B. Zrenner, A. Schömig, C. Schmitt, Modes of initiation of paroxysmal atrial fibrillation from analysis of spontaneously occurring episodes using a 12-lead Holter monitoring system. Am. J. Cardiol. 88, 853–857 (2001)

    Article  Google Scholar 

  134. D. Wallmann, D. Tüller, K. Wustmann, P. Meier, J. Isenegger, M. Arnold, H.P. Mattle, E. Delacrétaz, Frequent atrial premature beats predict paroxysmal atrial fibrillation in stroke patients. An opportunity for a new diagnostic strategy. Stroke 38, 2292–2294 (2007)

    Article  Google Scholar 

  135. K.T. Nguyen, E. Vittinghoff, T.A. Dewland, M.C. Mandyam, P.K. Stein, E.Z. Soliman, S.R. Heckbert, G.M. Marcus, Electrocardiographic predictors of incident atrial fibrillation. Am. J. Cardiol. 118, 714–719 (2016)

    Article  Google Scholar 

  136. T. Thong, J. McNames, M. Aboy, B. Goldstein, Prediction of paroxysmal atrial fibrillation by analysis of atrial premature complexes. IEEE Trans. Biomed. Eng. 4, 561–569 (2004)

    Article  Google Scholar 

  137. J.L. Huang, W.C. Wen, W.L. Lee, M.S. Chang, S.A. Chen, Changes of autonomic tone before the onset of paroxysmal atrial fibrillation. Int. J. Cardiol. 66, 275–283 (1998)

    Article  Google Scholar 

  138. M. Bettoni, M. Zimmermann, Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation 105, 2753–2759 (2002)

    Article  Google Scholar 

  139. C. Gallo, P.P. Bocchino, M. Magnano, L. Gaido, D. Zema, A. Battaglia, M. Anselmino, F. Gaita, Autonomic tone activity before the onset of atrial fibrillation. J. Cardiovasc. Electrophysiol. 28, 304–314 (2017)

    Article  Google Scholar 

  140. F. Lombardi, D. Tarricone, F. Tundo, F. Colombo, S. Belletti, C. Fiorentini, Autonomic nervous system and paroxysmal atrial fibrillation: a study based on the analysis of RR interval changes before, during and after paroxysmal atrial fibrillation. Eur. Heart J. 25, 1242–1248 (2004)

    Article  Google Scholar 

  141. D.-G. Shin, C.-S. Yoo, S.-H. Yi, J.-H. Bae, Y.-J. Kim, J.-S. Park, G.-R. Hong, Prediction of paroxysmal atrial fibrillation using nonlinear analysis of the R-R interval dynamics before the spontaneous onset of atrial fibrillation. Circ. J. 70, 94–99 (2006)

    Article  Google Scholar 

  142. Y. Chesnokov, Complexity and spectral analysis of the heart rate variability dynamics for distant prediction of paroxysmal atrial fibrillation with artificial intelligence methods. Artif. Intell. Med. 43, 151–165 (2008)

    Article  Google Scholar 

  143. M. Mohebbi, H. Ghassemian, Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal. Comput. Meth. Progr. Biomed. 5, 40–49 (2012)

    Article  Google Scholar 

  144. F. Holmqvist, P.G. Platonov, J. Carlson, W. Zareba, A.J. Moss, Altered interatrial conduction detected in MADIT II patients bound to develop atrial fibrillation. Ann. Noninvasive Electrocardiol. 14:268–275 (2009)

    Article  Google Scholar 

  145. F. Holmqvist, P.G. Platonov, S. McNitt, S. Polonsky, J. Carlson, W. Zareba, A.J. Moss, Abnormal P-wave morphology is a predictor of atrial fibrillation development and cardiac death in MADIT II patients. Ann. Noninvasive Electrocardiol. 15: 63–72 (2010)

    Article  Google Scholar 

  146. H. Gonna, M.M. Gallagher, X.H. Guo, Y.G. Yap, K. Hnatkova, A.J. Camm, P-wave abnormality predicts recurrence of atrial fibrillation after electrical cardioversion: a prospective study. Ann. Noninvasive Electrocardiol. 19, 57–62 (2014)

    Article  Google Scholar 

  147. J.B. Nielsen, J.T. Kühl, A. Pietersen, C. Graff, B. Lind, J.J. Struijk, M.S. Olesen, M.F. Sinner, T.N. Bachmann, S. Haunsø, B.G. Nordestgaard, P.T. Ellinor, J.H. Svendsen, K.F. Kofoed, L. Køber, A.G. Holst, P-wave duration and the risk of atrial fibrillation: results from the copenhagen ECG study. Heart Rhythm 12, 1887–1895 (2015)

    Article  Google Scholar 

  148. G. Conte, A. Luca, S. Yazdani, M.L. Caputo, F. Regol, T. Moccetti, L. Kappenberger, J.-M. Vesin, A. Auricchio, Usefulness of P-wave duration and morphologic variability to identify patients prone to paroxysmal atrial fibrillation. Am. J. Cardiol. 119, 275–279 (2017)

    Article  Google Scholar 

  149. I.C.Y. Chang, E. Austin, B. Krishnan, D.G. Benditt, C.N. Quay, L.H. Ling, L.Y. Chen, Shorter minimum P-wave duration is associated with paroxysmal lone atrial fibrillation. J. Electrocardiol. 47, 106–112 (2014)

    Article  Google Scholar 

  150. F. Nilsson, M. Stridh, A. Bollmann, L. Sörnmo, Predicting spontaneous termination of atrial fibrillation using the surface ECG. Med. Eng. Phys. 26, 802–808 (2006)

    Article  Google Scholar 

  151. P. G. Platonov, V.D.A. Corino, M. Seifert, F. Holmqvist, L. Sörnmo, Atrial fibrillatory rate in the clinical context: natural course and prediction of intervention outcome. Europace 16: iv110–iv119 (2014)

    Article  Google Scholar 

  152. R. Alcaraz, J.J. Rieta, Application of wavelet entropy to predict atrial fibrillation progression from the surface ECG. Comput. Math. Meth. Med. 13, 1–9 (2012)

    Article  MATH  Google Scholar 

  153. T. Tanantong, E. Nantajeewarawat, S. Thiemjarus, False alarm reduction in BSN-based cardiac monitoring using signal quality and activity type information. Sensors 15, 3952–3974 (2015)

    Article  Google Scholar 

  154. T. Koivisto, M. Pänkäälä, T. Hurnanen, T. Vasankari, T. Kiviniemi, A. Saraste, J. Airaksinen, Automatic detection of atrial fibrillation using MEMS accelerometer. in Proceedings of Computing in Cardiology, vol. 42, pp. 829–832 (2015)

    Google Scholar 

  155. C. Brueser, J. Diesel, M.D.H. Zink, S. Winter, P. Schauerte, S. Leonhardt, Automatic detection of atrial fibrillation in cardiac vibration signals. IEEE J. Biomed. Health Inform. 17, 162–171 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Sörnmo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sörnmo, L., Petrėnas, A., Marozas, V. (2018). Detection of Atrial Fibrillation. In: Sörnmo, L. (eds) Atrial Fibrillation from an Engineering Perspective. Series in BioEngineering. Springer, Cham. https://doi.org/10.1007/978-3-319-68515-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68515-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68513-7

  • Online ISBN: 978-3-319-68515-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics