Skip to main content

Basic Aspects of Bone Mineralization

  • Chapter
  • First Online:
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

In vivo mineralization is characterized by mineral and matrix disposal in proper orientation and relationships. This chapter will give an overview of bone mineralization starting with the initial events in mineralization. The nucleation of mineral particles, the transport of mineral in matrix vesicles, and the current view of the role of the bone cells for mineral deposition will be mentioned briefly. With increasing tissue age, the mineral particles grow. The processes of particle growth are not fully elucidated; non-collagenous proteins and the collagen itself might drive this process and also limit the final size of the particles. However, it is known that the increase in mineral content occurs in two mineralization phases with different time scales. Mineral is not homogenously distributed in bone matrix; rather bone packets with different degrees of mineralization (according to their tissue age) exist. Temporal increases in mineral content in the organic matrix together with bone turnover are responsible for heterogeneity in matrix mineralization. In the healthy adult individual, the mineralization distribution shows some variation in cortical compartments; however, this parameter is relatively constant in trabecular bone. The focus of this chapter is on the so-called bone mineralization density distribution (BMDD) in health, disease and treatment. Diseases are described where either the deviation in bone turnover or alterations in the mineralization processes determine the mineralization distribution. The effect of treatment on the mineralization density distribution is presented for antiresorptive and anabolic therapies in postmenopausal osteoporosis among others. Emphasis is on results from literature from human bone. In case where information on human bone is lacking, data from animal models are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones DB, Nolte H, Scholübbers JG, Turner E, Veltel D. Biochemical signal transduction of mechanical strain in osteoblast-like cells. Biomaterials. 1991;12(2):101–10.

    Article  CAS  PubMed  Google Scholar 

  2. Paschalis EP, Gamsjaeger S, Hassler N, Klaushofer K, Burr D. Ovarian hormone depletion affects cortical bone quality differently on different skeletal envelopes. Bone. 2017;95:55–64. https://doi.org/10.1016/j.bone.2016.10.029. Epub 2016 Nov 4.

    Article  CAS  PubMed  Google Scholar 

  3. Prockop DJ. Osteogenesis imperfecta: phenotypic heterogeneity, protein suicide, short and long collagen. Am J Hum Genet. 1984;36(3):499–505. Review.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Forlino A, Cabral WA, Barnes AM, Marini JC. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol. 2011;7(9):540–57. https://doi.org/10.1038/nrendo.2011.81. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marini JC, Reich A, Smith SM. Osteogenesis imperfecta due to mutations in non-collagenous genes: lessons in the biology of bone formation. Curr Opin Pediatr. 2014;26(4):500–7. https://doi.org/10.1097/MOP.0000000000000117. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eyre DR, Weis MA. Bone collagen: new clues to its mineralization mechanism from recessive osteogenesis imperfecta. Calcif Tissue Int. 2013;93(4):338–47. https://doi.org/10.1007/s00223-013-9723-9. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hodge AJ, Petruska JA. Recent studies with the electron microscope on ordered aggregates of the tropocollagen molecule. In: Ramachandran, G.N., Ed., Aspects of Protein Structure, Academic Press, New York, Academic Press; 1963; 289-300.

    Google Scholar 

  8. Fratzl P, editor. Collagen – structure and mechanics. ISBN: 978–0–387-73905-2. Springer Science+Business Media, LLC; 2008. 504 pages.

    Google Scholar 

  9. Prostak KS, Lees S. Visualization of crystal-matrix structure. In situ demineralization of mineralized Turkey leg tendon and bone. Calcif Tissue Int. 1996;59(6):474–9.

    Article  CAS  PubMed  Google Scholar 

  10. Starborg T, Kalson NS, Lu Y, Mironov A, Cootes TF, Holmes DF, Kadler KE. Using transmission electron microscopy and 3View to determine collagen fibril size and three-dimensional organization. Nat Protoc. 2013;8(7):1433–48. https://doi.org/10.1038/nprot.2013.086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eriksen EF, Gundersen HJ, Melsen F, et al. Reconstruction of the formative site in iliac trabecular bone in 20 normal individuals employing a kinetic model for matrix and mineral apposition. Metab Bone Dis Relat Res. 1984;5:243–52.

    Article  CAS  PubMed  Google Scholar 

  12. Landis WJ, Silver FH. Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs. 2009;189(1–4):20–4. https://doi.org/10.1159/000151454.

    Article  CAS  PubMed  Google Scholar 

  13. Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sørensen ES, Boskey AL. Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int. 2005;77(1):45–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. George A, Veis A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev. 2008;108(11):4670–93. https://doi.org/10.1021/cr0782729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Millán JL, Whyte MP. Alkaline phosphatase and hypophosphatasia. Calcif Tissue Int. 2016;98(4):398–416. https://doi.org/10.1007/s00223-015-0079-1. Review.

    Article  CAS  PubMed  Google Scholar 

  16. Millán JL. The role of phosphatases in the initiation of skeletal mineralization. Calcif Tissue Int. 2013;93(4):299–306. https://doi.org/10.1007/s00223-012-9672-8. Review.

    Article  CAS  PubMed  Google Scholar 

  17. Orriss IR, Arnett TR, Russell RG. Pyrophosphate: a key inhibitor of mineralisation. Curr Opin Pharmacol. 2016;28:57–68. https://doi.org/10.1016/j.coph.2016.03.003. Review.

    Article  CAS  PubMed  Google Scholar 

  18. Cundy T, Michigami T, Tachikawa K, Dray M, Collins JF, Paschalis EP, Gamsjaeger S, Roschger A, Fratzl-Zelman N, Roschger P, Klaushofer K. Reversible deterioration in hypophosphatasia caused by renal failure with bisphosphonate treatment. J Bone Miner Res. 2015;30(9):1726–37. https://doi.org/10.1002/jbmr.2495.

    Article  CAS  PubMed  Google Scholar 

  19. Murshed M, Harmey D, Millán JL, McKee MD, Karsenty G. Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev. 2005;19(9):1093–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Atkins GJ, Findlay DM. Osteocyte regulation of bone mineral: a little give and take. Osteoporos Int. 2012;23(8):2067–79. Review.

    Article  CAS  PubMed  Google Scholar 

  21. Feng JQ, Ye L, Schiavi S. Do osteocytes contribute to phosphate homeostasis? Curr Opin Nephrol Hypertens. 2009;18(4):285–91. https://doi.org/10.1097/MNH.0b013e32832c224f. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kerschnitzki M, Akiva A, Shoham AB, Koifman N, Shimoni E, Rechav K, Arraf AA, Schultheiss TM, Talmon Y, Zelzer E, Weiner S, Addadi L. Transport of membrane-bound mineral particles in blood vessels during chicken embryonic bone development. Bone. 2016;83:65–72. https://doi.org/10.1016/j.bone.2015.10.009.

    Article  CAS  PubMed  Google Scholar 

  23. Pethő A, Chen Y, George A. Exosomes in extracellular matrix bone biology. Curr Osteoporos Rep. 2018;16(1):58–64. https://doi.org/10.1007/s11914-018-0419-y. Review.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bonucci E. Fine structure of early cartilage calcification. J Ultrastruct Res. 1967;20:33–50.

    Article  CAS  PubMed  Google Scholar 

  25. Boonrungsiman S, Gentleman E, Carzaniga R, Evans ND, McComb DW, Porter AE, Stevens MM. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc Natl Acad Sci U S A. 2012;109(35):14170–5. https://doi.org/10.1073/pnas.1208916109.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mahamid J, Sharir A, Gur D, Zelzer E, Addadi L, Weiner S. Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study. J Struct Biol. 2011;174(3):527–35. https://doi.org/10.1016/j.jsb.2011.03.014.

    Article  CAS  PubMed  Google Scholar 

  27. Shapiro IM, Landis WJ, Risbud MV. Matrix vesicles: are they anchored exosomes? Bone. 2015;79:29–36. https://doi.org/10.1016/j.bone.2015.05.013. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dorvee JR, Veis A. Water in the formation of biogenic minerals: peeling away the hydration layers. J Struct Biol. 2013;183(2):278–303. https://doi.org/10.1016/j.jsb.2013.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grynpas MD, Omelon S. Transient precursor strategy or very small biological apatite crystals? Bone. 2007;41(2):162–4.

    Article  CAS  PubMed  Google Scholar 

  30. Weiner S. Transient precursor strategy in mineral formation of bone. Bone. 2006;39(3):431–3.

    Article  CAS  PubMed  Google Scholar 

  31. Grynpas MD, Bonar LC, Glimcher MJ. Failure to detect an amorphous calcium-phosphate solid phase in bone mineral: a radial distribution function study. Calcif Tissue Int. 1984;36(3):291–301.

    Article  CAS  PubMed  Google Scholar 

  32. Engström A. Chapter 7 Aspects of the molecular structure of bone. In: Bourne GH. The biochemistry and physiology of bone. 2nd ed. Vol. 1 Structure. Academic Press; Elsevier Inc.,1972.

    Google Scholar 

  33. Quan BD, Sone ED. Structural changes in collagen fibrils across a mineralized interface revealed by cryo-TEM. Bone. 2015;77:42–9. https://doi.org/10.1016/j.bone.2015.04.020.

    Article  CAS  PubMed  Google Scholar 

  34. Traub W, Arad T, Weiner S. Origin of mineral crystal growth in collagen fibrils. Matrix. 1992;12(4):251–5.

    Article  CAS  PubMed  Google Scholar 

  35. Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol. 1993;110:39–54.

    Article  CAS  PubMed  Google Scholar 

  36. Weiner S, Traub W. Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett. 1986;206(2):262–6.

    Article  CAS  PubMed  Google Scholar 

  37. Reznikov N, Bilton M, Lari L, Stevens MM, Kröger R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science. 2018;360(6388). pii: eaao2189) https://doi.org/10.1126/science.aao2189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Landis WJ, Hodgens KJ, Song MJ, Arena J, Kiyonaga S, Marko M, Owen C, McEwen BF. Mineralization of collagen occurs on fibril surfaces: evidence from conventional and high voltage electron microscopy and three-dimensional imaging. J Struct Biol. 1996;117:24–35.

    Article  CAS  PubMed  Google Scholar 

  39. Alexander B, Daulton TL, Genin GM, Lipner J, Pasteris JD, Wopenka B, Thomopoulos S. The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen-mineral structure. J R Soc Interface. 2012;9(73):1774–86. https://doi.org/10.1098/rsif.2011.0880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schwarcz HP. The ultrastructure of bone as revealed in electron microscopy of ion-milled sections. Semin Cell Dev Biol. 2015;46:44–50. https://doi.org/10.1016/j.semcdb.2015.06.008. Review.

    Article  PubMed  Google Scholar 

  41. Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci U S A. 2006;103(47):17741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arsenault AL, Grynpas MD. Crystals in calcified cartilage and cortical bone of the rat. Calcif Tissue Int. 1988;43:219–25.

    Article  CAS  PubMed  Google Scholar 

  43. Hassenkam T, Fantner GE, Cutroni JA, Waever JC, Morse DE, Hansma PK. High-resolution AFM imaging of intact and fractured trabecular bone. Bone. 2004;35:4–10.

    Article  PubMed  Google Scholar 

  44. Pabisch S, Wagermaier W, Zander T, Li C, Fratzl P. Imaging the nanostructure of bone and dentin through small- and wide-angle X-ray scattering. Methods Enzymol. 2013;532:391–413. https://doi.org/10.1016/B978-0-12-416617-2.00018-7. Review.

    Article  CAS  PubMed  Google Scholar 

  45. Fratzl P, Gupta HS, Paschalis EP, Roschger P. Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem. 2004;14:2115–23.

    Article  CAS  Google Scholar 

  46. Wess T, Alberts I, Hiller J, Drakopoulos M, Chamberlain AT, Collins M. Microfocus small angle X-ray scattering reveals structural features in archaeological bone samples: detection of changes in bone mineral habit and size. Calcif Tissue Int. 2002;70(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  47. Kaspersen JD, Turunen MJ, Mathavan N, Lages S, Pedersen JS, Olsson U, Isaksson H. Small-angle X-ray scattering demonstrates similar nanostructure in cortical bone from young adult animals of different species. Calcif Tissue Int. 2016;99(1):76–87. https://doi.org/10.1007/s00223-016-0120-z.

    Article  CAS  PubMed  Google Scholar 

  48. Rinnerthaler S, Roschger P, Jakob HF, Nader A, Klaushofer K, Fratzl P. Scanning small angle X-ray scattering analysis of human bone sections. Calcif Tissue Int. 1999;64(5):422–9.

    Article  CAS  PubMed  Google Scholar 

  49. Zizak I, Roschger P, Paris O, Misof BM, Berzlanovich A, Bernstorff S, Amenitsch H, Klaushofer K, Fratzl P. Characteristics of mineral particles in the human bone/cartilage interface. J Struct Biol. 2003;141(3):208–17.

    Article  CAS  PubMed  Google Scholar 

  50. Granke M, Gourrier A, Rupin F, Raum K, Peyrin F, Burghammer M, Saïed A, Laugier P. Microfibril orientation dominates the microelastic properties of human bone tissue at the lamellar length scale. PLoS One. 2013;8(3):e58043. https://doi.org/10.1371/journal.pone.0058043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rehman MT, Hoyland JA, Denton J, Freemont AJ. Age related histomorphometric changes in bone in normal British men and women. J Clin Pathol. 1994;47(6):529–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Recker RR, Kimmel DB, Parfitt AM, Davies KM, Keshawarz N, Hinders S. Static and tetracycline-based bone histomorphometric data from 34 normal postmenopausal females. J Bone Miner Res. 1988;3(2):133–44.

    Article  CAS  PubMed  Google Scholar 

  53. Paschalis EP, Fratzl P, Gamsjaeger S, Hassler N, Brozek W, Eriksen EF, Rauch F, Glorieux FH, Shane E, Dempster D, Cohen A, Recker R, Klaushofer K. Aging versus postmenopausal osteoporosis: bone composition and maturation kinetics at actively-forming trabecular surfaces of female subjects aged 1 to 84 years. J Bone Miner Res. 2016;31(2):347–57. https://doi.org/10.1002/jbmr.2696.

    Article  CAS  PubMed  Google Scholar 

  54. Nawrot-Wawrzyniak K, Varga F, Nader A, Roschger P, Sieghart S, Zwettler E, Roetzer KM, Lang S, Weinkamer R, Klaushofer K, Fratzl-Zelman N. Effects of tumor-induced osteomalacia on the bone mineralization process. Calcif Tissue Int. 2009;84(4):313–23. https://doi.org/10.1007/s00223-009-9216-z.

    Article  CAS  PubMed  Google Scholar 

  55. Roschger P, Fratzl-Zelman N, Misof BM, Glorieux FH, Klaushofer K, Rauch F. Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcif Tissue Int. 2008;82(4):263–70. https://doi.org/10.1007/s00223-008-9113-x.

    Article  CAS  PubMed  Google Scholar 

  56. Buenzli PR, Lerebours C, Roschger A, Roschger P, Weinkamer R. Late stages of mineralization and their signature on the bone mineral density distribution. Connect Tissue Res. 2018;59(sup1):74–80. https://doi.org/10.1080/03008207.2018.1424149.

    Article  CAS  PubMed  Google Scholar 

  57. Lukas C, Ruffoni D, Lambers FM, Schulte FA, Kuhn G, Kollmannsberger P, Weinkamer R, Müller R. Mineralization kinetics in murine trabecular bone quantified by time-lapsed in vivo micro-computed tomography. Bone. 2013;56(1):55–60. https://doi.org/10.1016/j.bone.2013.05.005.

    Article  PubMed  Google Scholar 

  58. Kristensen E, Hallgrimsson B, Morck DW, Boyd SK. Timing of growth hormone treatment affects trabecular bone microarchitecture and mineralization in growth hormone deficient mice. Bone. 2010;47:295–300.

    Article  CAS  PubMed  Google Scholar 

  59. Akkus O, Polyakova-Akkus A, Adar F, Schaffler MB. Aging of microstructural compartments in human compact bone. J Bone Miner Res. 2003;18(6):1012–9.

    Article  CAS  PubMed  Google Scholar 

  60. Bala Y, Farlay D, Delmas PD, Meunier PJ, Boivin G. Time sequence of secondary mineralization and microhardness in cortical and cancellous bone from ewes. Bone. 2010;46(4):1204–12. https://doi.org/10.1016/j.bone.2009.11.032.

    Article  PubMed  Google Scholar 

  61. Fuchs RK, Allen MR, Ruppel ME, Diab T, Phipps RJ, Miller LM, Burr DB. In situ examination of the time-course for secondary mineralization of haversian bone using synchrotron Fourier transform infrared microspectroscopy. Matrix Biol. 2008;27(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  62. Gamsjaeger S, Hofstetter B, Fratzl-Zelman N, Roschger P, Roschger A, Fratzl P, Brozek W, Masic A, Misof BM, Glorieux FH, Klaushofer K, Rauch F, Paschalis EP. Pediatric reference Raman data for material characteristics of iliac trabecular bone. Bone. 2014;69:89–97. https://doi.org/10.1016/j.bone.2014.09.012.

    Article  CAS  PubMed  Google Scholar 

  63. Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone. 2008;42(3):456–66. Epub 2007 Nov 12. Review.

    Article  CAS  PubMed  Google Scholar 

  64. Misof BM, Roschger P, Cosman R, Kurland ES, Tesch W, Messmer P, Dempster DW, Nieves J, Shane E, Fratzl P, Klaushofer K, Bilezikian J, Lindsay R. Effects of intermittent parathyroid hormone administration on bone mineralization density distribution in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J Clin Endocrinol Metab. 2003;88:1150–6.

    Article  CAS  PubMed  Google Scholar 

  65. Hasegawa T. Ultrastructure and biological function of matrix vesicles in bone mineralization. Histochem Cell Biol. 2018;149(4):289–304. https://doi.org/10.1007/s00418-018-1646-0. Review.

    Article  CAS  PubMed  Google Scholar 

  66. Skedros JG, Holmes JL, Vajda EG, Bloebaum RD. Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective. Anat Rec A Discov Mol Cell Evol Biol. 2005;286(1):781–803.

    Article  PubMed  Google Scholar 

  67. Milovanovic P, Vom Scheidt A, Mletzko K, Sarau G, Püschel K, Djuric M, Amling M, Christiansen S, Busse B. Bone tissue aging affects mineralization of cement lines. Bone. 2018;110:187–93. https://doi.org/10.1016/j.bone.2018.02.004. Epub 2018 Feb 7.

    Article  CAS  PubMed  Google Scholar 

  68. Nyssen-Behets C, Arnould V, Dhem A. Hypermineralized lamellae below the bone surface: a quantitative microradiographic study. Bone. 1994;15(6):685–9.

    Article  CAS  PubMed  Google Scholar 

  69. Repp F, Kollmannsberger P, Roschger A, Kerschnitzki M, Berzlanovich A, Gruber GM, Roschger P, Wagermaier W, Weinkamer R. Spatial heterogeneity in the canalicular density of the osteocyte network in human osteons. Bone Rep. 2017;6:101–8. https://doi.org/10.1016/j.bonr.2017.03.001. eCollection 2017 Jun.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hesse B, Varga P, Langer M, Pacureanu A, Schrof S, Männicke N, Suhonen H, Maurer P, Cloetens P, Peyrin F, Raum K. Canalicular network morphology is the major determinant of the spatial distribution of mass density in human bone tissue: evidence by means of synchrotron radiation phase-contrast nano-CT. J Bone Miner Res. 2015;30(2):346–56. https://doi.org/10.1002/jbmr.2324.

    Article  CAS  PubMed  Google Scholar 

  71. Lees S. Considerations regarding the structure of the mammalian osteoid from viewpoint of the generalized packing model. Connect Tissue Res. 1987;16:281–303.

    Article  CAS  PubMed  Google Scholar 

  72. Boskey A, Camacho NP. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials. 2007;28:2465–78.

    Article  CAS  PubMed  Google Scholar 

  73. Paschalis EP, Gamsjaeger S, Fratzl-Zelman N, Roschger P, Masic A, Brozek W, Hassler N, Glorieux FH, Rauch F, Klaushofer K, Fratzl P. Evidence for a role for Nanoporosity and Pyridinoline content in human mild osteogenesis imperfecta. J Bone Miner Res. 2016;31(5):1050–9. https://doi.org/10.1002/jbmr.2780.

    Article  CAS  PubMed  Google Scholar 

  74. Jäger I, Fratzl P. Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J. 2000;79(4):1737–46.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Roschger A, Gamsjaeger S, Hofstetter B, Masic A, Blouin S, Messmer P, Berzlanovich A, Paschalis EP, Roschger P, Klaushofer K, Fratzl P. Relationship between the v2PO4/amide III ratio assessed by Raman spectroscopy and the calcium content measured by quantitative backscattered electron microscopy in healthy human osteonal bone. J Biomed Opt. 2014;19(6):065002. https://doi.org/10.1117/1.JBO.19.6.065002.

    Article  CAS  PubMed  Google Scholar 

  76. Masic A, Bertinetti L, Schuetz R, Chang SW, Metzger TH, Buehler MJ, Fratzl P. Osmotic pressure induced tensile forces in tendon collagen. Nat Commun. 2015;6:5942. https://doi.org/10.1038/ncomms6942.

    Article  CAS  PubMed  Google Scholar 

  77. Bertinetti L, Masic A, Schuetz R, Barbetta A, Seidt B, Wagermaier W, Fratzl P. Osmotically driven tensile stress in collagen-based mineralized tissues. J Mech Behav Biomed Mater. 2015;52:14–21. https://doi.org/10.1016/j.jmbbm.2015.03.010.

    Article  CAS  PubMed  Google Scholar 

  78. Roschger P, Grabner BM, Rinnerthaler S, Tesch W, Kneissel M, Berzlanovich A, Klaushofer K, Fratzl P. Structural development of the mineralized tissue in the human L4 vertebral body. J Struct Biol. 2001;136(2):126–36.

    Article  CAS  PubMed  Google Scholar 

  79. Fratzl-Zelman N, Schmidt I, Roschger P, Glorieux FH, Klaushofer K, Fratzl P, Rauch F, Wagermaier W. Mineral particle size in children with osteogenesis imperfecta type I is not increased independently of specific collagen mutations. Bone. 2014;60:122–8. https://doi.org/10.1016/j.bone.2013.11.023.

    Article  CAS  PubMed  Google Scholar 

  80. Fratzl-Zelman N, Misof BM, Klaushofer K, Roschger P. Bone mass and mineralization in osteogenesis imperfecta. Wien Med Wochenschr. 2015;165(13–14):271–7. https://doi.org/10.1007/s10354-015-0369-2. Epub 2015 Jul 25. Review.

    Article  PubMed  Google Scholar 

  81. Boyde A, Travers R, Glorieux FH, Jones SJ. The mineralization density of iliac crest bone from children with osteogenesis imperfecta. Calcif Tissue Int. 1999;64(3):185–90.

    Article  CAS  PubMed  Google Scholar 

  82. Jones SJ, Glorieux FH, Travers R, Boyde A. The microscopic structure of bone in normal children and patients with osteogenesis imperfecta: a survey using backscattered electron imaging. Calcif Tissue Int. 1999;64(1):8–17.

    Article  CAS  PubMed  Google Scholar 

  83. Granke M, Does MD, Nyman JS. The role of water compartments in the material properties of cortical bone. Calcif Tissue Int. 2015;97(3):292–307. https://doi.org/10.1007/s00223-015-9977-5. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang X, Xu H, Huang Y, Gu S, Jiang JX. Coupling effect of water and proteoglycans on the in situ toughness of bone. J Bone Miner Res. 2016;31(5):1026–9. https://doi.org/10.1002/jbmr.2774.

    Article  CAS  PubMed  Google Scholar 

  85. Ruffoni D, Fratzl P, Roschger P, Klaushofer K, Weinkamer R. The bone mineralization density distribution as a fingerprint of the mineralization process. Bone. 2007;40(5):1308–19.

    Article  CAS  PubMed  Google Scholar 

  86. Grynpas M. Age and disease-related changes in the mineral of bone. Calcif Tissue Int. 1993;53(Suppl1):S57–64.

    Article  PubMed  Google Scholar 

  87. Fratzl-Zelman N, Roschger P, Misof BM, Pfeffer S, Glorieux FH, Klaushofer K, Rauch F. Normative data on mineralization density distribution in iliac bone biopsies of children, adolescents and young adults. Bone. 2009;44(6):1043–8. https://doi.org/10.1016/j.bone.2009.02.021.

    Article  CAS  PubMed  Google Scholar 

  88. Boivin G, Meunier PJ. Changes in bone remodeling rate influence the degree of mineralization of bone. Connect Tissue Res. 2002;43(2–3):535–7.

    Article  CAS  PubMed  Google Scholar 

  89. Fratzl P, Roschger P, Fratzl-Zelman N, Paschalis EP, Phipps R, Klaushofer K. Evidence that treatment with risedronate in women with postmenopausal osteoporosis affects bone mineralization and bone volume. Calcif Tissue Int. 2007;81(2):73–80.

    Article  CAS  PubMed  Google Scholar 

  90. Carden A, Morris MD. Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt. 2000;5(3):259–68. Review.

    Article  CAS  PubMed  Google Scholar 

  91. Boskey AL. Assessment of bone mineral and matrix using backscatter electron imaging and FTIR imaging. Curr Osteoporos Rep. 2006;4(2):71–5. Review.

    Article  PubMed  Google Scholar 

  92. Gamsjaeger S, Mendelsohn R, Boskey AL, Gourion-Arsiquaud S, Klaushofer K, Paschalis EP. Vibrational spectroscopic imaging for the evaluation of matrix and mineral chemistry. Curr Osteoporos Rep. 2014;12(4):454–64. https://doi.org/10.1007/s11914-014-0238-8. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporos Int. 2017;28(8):2275–91. https://doi.org/10.1007/s00198-017-4019-y. Review.

    Article  CAS  PubMed  Google Scholar 

  94. Kovarik J, Willvonseder R, Plenk H Jr, Böhler N, Woloszczuk W, Eschberger J, Dorda W, Haber P. Evidence for negative correlation between quantitative histological studies and microradiography of iliac crest bone and forearm osteodensitometry in elderly women with osteoporosis. Calcif Tissue Int. 1982;34(5):456–8.

    Article  CAS  PubMed  Google Scholar 

  95. Boivin G, Meunier PJ. The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcif Tissue Int. 2002;70:503–11.

    Article  CAS  PubMed  Google Scholar 

  96. Montagner F, Kaftandjian V, Farlay D, Brau D, Boivin G, Follet H. Validation of a novel microradiography device for characterization of bone mineralization. J Xray Sci Technol. 2015;23(2):201–11. https://doi.org/10.3233/XST-150481.

    Article  CAS  PubMed  Google Scholar 

  97. Nuzzo S, Lafage-Proust MH, Martin-Badosa E, Boivin G, Thomas T, Alexandre C, Peyrin F. Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens: effect of etidronate treatment. J Bone Miner Res. 2002;17:1372–82.

    Article  CAS  PubMed  Google Scholar 

  98. Borah B, Ritman EL, Dufresne TE, Jorgensen SM, Liu S, Sacha J, Phipps RJ, Turner RT. The effect of risedronate on bone mineralization as measured by micro-computed tomography with synchrotron radiation: correlation to histomorphometric indices of turnover. Bone. 2005;37:1–9.

    Article  CAS  PubMed  Google Scholar 

  99. Bortel EL, Langer M, Rack A, Forien J-B, Duda GN, Fratzl P, Zaslansky P. Combining coherent hard X-ray tomographies with phase retrieval to generate three-dimensional models of forming bone. Front Mater. 2017;4:39.

    Article  Google Scholar 

  100. Boyde A, Jones SJ. Backscattered electron imaging of skeletal tissues. Metab Bone Dis Rel Res. 1983;5:145–50.

    Article  Google Scholar 

  101. Bloebaum RD, Skedros JG, Vajda EG, Bachus KN, Constantz BR. Determining mineral content variations in bone using backscattered electron imaging. Bone. 1997;20:485–90.

    Article  CAS  PubMed  Google Scholar 

  102. Roschger P, Fratzl P, Eschberger J, Klaushofer K. Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone. 1998;23:319–26.

    Article  CAS  PubMed  Google Scholar 

  103. Roschger P, Gupta HS, Berzlanovich A, Ittner G, Dempster DW, Fratzl P, Cosman F, Parisien M, Lindsay R, Nieves JW, Klaushofer K. Constant mineralization density distribution in cancellous human bone. Bone. 2003;32:316–23.

    Article  CAS  PubMed  Google Scholar 

  104. Koehne T, Vettorazzi E, Küsters N, Lüneburg R, Kahl-Nieke B, Püschel K, Amling M, Busse B. Trends in trabecular architecture and bone mineral density distribution in 152 individuals aged 30–90 years. Bone. 2014;66:31–8. https://doi.org/10.1016/j.bone.2014.05.010.

    Article  CAS  PubMed  Google Scholar 

  105. Misof BM, Gamsjaeger S, Cohen A, Hofstetter B, Roschger P, Stein E, Nickolas TL, Rogers HF, Dempster D, Zhou H, Recker R, Lappe J, McMahon D, Paschalis EP, Fratzl P, Shane E, Klaushofer K. Bone material properties in premenopausal women with idiopathic osteoporosis. J Bone Miner Res. 2012;27(12):2551–61. https://doi.org/10.1002/jbmr.1699.

    Article  CAS  PubMed  Google Scholar 

  106. Balasubramanian M, Fratzl-Zelman N, O'Sullivan R, Bull M, Fa Peel N, Pollitt RC, Jones R, Milne E, Smith K, Roschger P, Klaushofer K, Bishop NJ. Novel PLS3 variants in X-linked osteoporosis: exploring bone material properties. Am J Med Genet A. 2018; https://doi.org/10.1002/ajmg.a.38830. [Epub ahead of print].

    Article  CAS  PubMed  Google Scholar 

  107. Blouin S, Fratzl-Zelman N, Glorieux FH, Roschger P, Klaushofer K, Marini JC, Rauch F. Hypermineralization and high osteocyte lacunar density in osteogenesis imperfecta type V bone indicate exuberant primary bone formation. J Bone Miner Res. 2017;32(9):1884–92. https://doi.org/10.1002/jbmr.3180. Epub 2017 Jun 26.

    Article  CAS  PubMed  Google Scholar 

  108. Webb EA, Balasubramanian M, Fratzl-Zelman N, Cabral WA, Titheradge H, Alsaedi A, Saraff V, Vogt J, Cole T, Stewart S, Crabtree NJ, Sargent BM, Gamsjaeger S, Paschalis EP, Roschger P, Klaushofer K, Shaw NJ, Marini JC, Högler W. Phenotypic Spectrum in osteogenesis imperfecta due to mutations in TMEM38B: unraveling a complex cellular defect. J Clin Endocrinol Metab. 2017;102(6):2019–28. https://doi.org/10.1210/jc.2016-3766.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ciarelli TE, Fyhrie DP. Parfitt AM effects of vertebral bone fragility and bone formation rate on the mineralization levels of cancellous bone from white females. Bone. 2003;32(3):311–5.

    Article  CAS  PubMed  Google Scholar 

  110. Fratzl P. Bone fracture: when the cracks begin to show. Nat Mater. 2008;7(8):610–2.

    Article  CAS  PubMed  Google Scholar 

  111. Koester KJ, Ager JW 3rd, Ritchie RO. The true toughness of human cortical bone measured with realistically short cracks. Nat Mater. 2008;7(8):672–7.

    Article  CAS  PubMed  Google Scholar 

  112. Donnelly E, Meredith DS, Nguyen JT, Boskey AL. Bone tissue composition varies across anatomic sites in the proximal femur and the iliac crest. J Orthop Res. 2012;30(5):700–6. https://doi.org/10.1002/jor.21574.

    Article  PubMed  Google Scholar 

  113. Kingsmill VJ, Gray CM, Moles DR, Boyde A. Cortical vascular canals in human mandible and other bones. J Dent Res. 2007;86(4):368–72.

    Article  CAS  PubMed  Google Scholar 

  114. Fratzl-Zelman N, Roschger P, Gourrier A, Weber M, Misof BM, Loveridge N, Reeve J, Klaushofer K, Fratzl P. Combination of nanoindentation and quantitative backscattered electron imaging revealed altered bone material properties associated with femoral neck fragility. Calcif Tissue Int. 2009;85(4):335–43. https://doi.org/10.1007/s00223-009-9289-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Loveridge N, Power J, Reeve J, Boyde A. Bone mineralization density and femoral neck fragility. Bone. 2004;35(4):929–41.

    Article  PubMed  Google Scholar 

  116. Parfitt AM. Misconceptions (2): turnover is always higher in cancellous than in cortical bone. Bone. 2002;30:807–9.

    Article  CAS  PubMed  Google Scholar 

  117. Duboeuf F, Burt-Pichat B, Farlay D, Suy P, Truy E, Boivin G. Bone quality and biomechanical function: a lesson from human ossicles. Bone. 2015;73:105–10. https://doi.org/10.1016/j.bone.2014.12.009.

    Article  PubMed  Google Scholar 

  118. Misof BM, Dempster DW, Zhou H, Roschger P, Fratzl-Zelman N, Fratzl P, Silverberg SJ, Shane E, Cohen A, Stein E, Nickolas TL, Recker RR, Lappe J, Bilezikian JP, Klaushofer K. Relationship of bone mineralization density distribution (BMDD) in cortical and cancellous bone within the iliac crest of healthy premenopausal women. Calcif Tissue Int. 2014;95(4):332–9. https://doi.org/10.1007/s00223-014-9901-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Eastell R, O'Neill TW, Hofbauer LC, Langdahl B, Reid IR, Gold DT, Cummings SR. Postmenopausal osteoporosis. Nat Rev Dis Primers. 2016;2:16069. https://doi.org/10.1038/nrdp.2016.69. Review.

    Article  PubMed  Google Scholar 

  120. Whyte MP, Bergfeld MA, Murphy WA, Avioli LV, Teitelbaum SL. Postmenopausal osteoporosis: a heterogeneous disorder as assessed by histomorphometric analysis of iliac crest bone from untreated patients. Am J Med. 1982;72:193–202.

    Article  CAS  PubMed  Google Scholar 

  121. Arlot ME, Delmas PD, Cappard D, Meunier PJ. Trabecular and endocortical bone remodeling in postmenopausal osteoporosis: comparison with normal postmenopausal women. Osteoporosis Int. 1990;1:41–9.

    Article  CAS  Google Scholar 

  122. Rehman MTA, Hoyland JA, Denton J, Freemont AJ. Histomorphometric classification of postmenopausal osteoporosis: implications for the management of osteoporosis. J Clin Pathol. 1995;48:229–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Recker R, Lappe J, Davies KM, Heaney R. Bone remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients. J Bone Miner Res. 2004;19:1628–33.

    Article  PubMed  Google Scholar 

  124. Han Z-H, Palnitkar S, Sudhaker Rao D, Nelson D, Parfitt AM. Effects of ethnicity and age or menopause on the remodeling and turnover of iliac bone: implications for mechanisms of bone loss. J Bone Miner Res. 1997;12:498–508.

    Article  CAS  PubMed  Google Scholar 

  125. Borah B, Dufresne TE, Ritman EL, Jorgensen SM, Liu S, Chmielewski PA, Phipps RJ, Zhou X, Sibonga JD, Turner RT. Long-term risedronate treatment normalizes mineralization and continues to preserve trabecular architecture: sequential triple biopsy studies with micro-computed tomography. Bone. 2006;39:345–52.

    Article  CAS  PubMed  Google Scholar 

  126. Roschger P, Rinnerthaler S, Yates J, Rodan GA, Fratzl P, Klaushofer K. Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone. 2001;29(2):185–91.

    Article  CAS  PubMed  Google Scholar 

  127. Faibish D, Ott SM, Boskey AL. Mineral changes in osteoporosis. A Review Clin Orthop Relat Res. 2006;443:28–38.

    Article  PubMed  Google Scholar 

  128. Zoehrer R, Roschger P, Fratzl P, Durchschlag E, Paschalis E, Phipps R, Klaushofer K. Effects of 3- and 5-year treatment with risedronate on the bone mineral density distribution of cancellous bone in human iliac crest biopsies. J Bone Miner Res. 2006;21:1106–12.

    Article  CAS  PubMed  Google Scholar 

  129. Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R. Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int. 2005;16(12):2031–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Roschger P, Misof B, Paschalis E, Fratzl P, Klaushofer K. Changes in the degree of mineralization with osteoporosis and its treatment. Curr Osteoporos Rep. 2014;12(3):338–50. https://doi.org/10.1007/s11914-014-0218-z. Review.

    Article  PubMed  Google Scholar 

  131. Dempster DW, Brown JP, Fahrleitner-Pammer A, Kendler D, Rizzo S, Valter I, Wagman RB, Yin X, Yue SV, Boivin G. Effects of long-term denosumab on bone histomorphometry and mineralization in women with postmenopausal osteoporosis. J Clin Endocrinol Metab. 2018; https://doi.org/10.1210/jc.2017-02669. [Epub ahead of print].

    Article  Google Scholar 

  132. Roschger P, Dempster DW, Zhou H, Paschalis EP, Silverberg SJ, Shane E, Bilezikian JP, Klaushofer K. New observations on bone quality in mild primary hyperparathyroidism as determined by quantitative backscattered electron imaging. J Bone Miner Res. 2007;22:717–23.

    Article  PubMed  Google Scholar 

  133. Misof BM, Roschger P, Dempster DW, Zhou H, Bilezikian JP, Klaushofer K, Rubin MR. PTH(1-84) administration in hypoparathyroidism transiently reduces bone matrix mineralization. J Bone Miner Res. 2016;31(1):180–9. https://doi.org/10.1002/jbmr.2588.

    Article  CAS  PubMed  Google Scholar 

  134. Misof BM, Roschger P, Klaushofer K, Rauch F, Ma J, Mack DR, Ward LM. Increased bone matrix mineralization in treatment-naïve children with inflammatory bowel disease. Bone. 2017;105:50–6. https://doi.org/10.1016/j.bone.2017.07.011.

    Article  CAS  PubMed  Google Scholar 

  135. Fratzl-Zelman N, Valta H, Pereira RC, Misof BM, Roschger P, Jalanko H, Wesseling-Perry K, Klaushofer K, Mäkitie O. Abnormally high and heterogeneous bone matrix mineralization after childhood solid organ transplantation: a complex pathology of low bone turnover and local defects in mineralization. J Bone Miner Res. 2017;32(5):1116–25. https://doi.org/10.1002/jbmr.3087.

    Article  CAS  PubMed  Google Scholar 

  136. Nawrot-Wawrzyniak K, Misof BM, Roschger P, Pańczyk-Tomaszewska M, Ziółkowska H, Klaushofer K. Fratzl-Zelman N changes in bone matrix mineralization after growth hormone treatment in children and adolescents with chronic kidney failure treated by dialysis: a paired biopsy study. Am J Kidney Dis. 2013;61(5):767–77.

    Article  CAS  PubMed  Google Scholar 

  137. Gourion-Arsiquaud S, Lukashova L, Power J, Loveridge N, Reeve J, Boskey AL. Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls. J Bone Miner Res. 2013;28(1):150–61. https://doi.org/10.1002/jbmr.1724.

    Article  CAS  PubMed  Google Scholar 

  138. Paschalis EP, Gamsjaeger S, Dempster D, Jorgetti V, Borba V, Boguszewski CL, Klaushofer K, Moreira CA. Fragility fracture incidence in chronic obstructive pulmonary disease (COPD) patients associates with Nanoporosity, mineral/matrix ratio, and Pyridinoline content at actively bone-forming trabecular surfaces. J Bone Miner Res. 2017;32(1):165–71. https://doi.org/10.1002/jbmr.2933.

    Article  CAS  PubMed  Google Scholar 

  139. Seitz S, Koehne T, Ries C, De Novo OA, Barvencik F, Busse B, Eulenburg C, Schinke T, Püschel K, Rueger JM, Amling M, Pogoda P. Impaired bone mineralization accompanied by low vitamin D and secondary hyperparathyroidism in patients with femoral neck fracture. Osteoporos Int. 2013;24(2):641–9. https://doi.org/10.1007/s00198-012-2011-0.

    Article  CAS  PubMed  Google Scholar 

  140. Boivin G, Bala Y, Doublier A, Farlay D, Ste-Marie LG, Meunier PJ, Delmas PD. The role of mineralization and organic matrix in the microhardness of bone tissue from controls and osteoporotic patients. Bone. 2008;43:532–8.

    Article  CAS  PubMed  Google Scholar 

  141. Fratzl-Zelman N, Roschger P, Misof BM, Nawrot-Wawrzyniak K, Pötter-Lang S, Muschitz C, Resch H, Klaushofer K, Zwettler E. Fragility fractures in men with idiopathic osteoporosis are associated with undermineralization of the bone matrix without evidence of increased bone turnover. Calcif Tissue Int. 2011;88(5):378–87.

    Article  CAS  PubMed  Google Scholar 

  142. Misof BM, Patsch JM, Roschger P, Muschitz C, Gamsjaeger S, Paschalis EP, Prokop E, Klaushofer K, Pietschmann P, Resch H. Intravenous treatment with ibandronate normalizes bone matrix mineralization and reduces cortical porosity after two years in male osteoporosis: a paired biopsy study. J Bone Miner Res. 2013; https://doi.org/10.1002/jbmr.2035.

    Article  CAS  PubMed  Google Scholar 

  143. Stewart TL, Roschger P, Misof BM, Mann V, Fratzl P, Klaushofer K, Aspden R. Ralston SH association of COLIA1 Sp1 alleles with defective bone nodule formation in vitro and abnormal bone mineralization in vivo. Calcif Tissue Int. 2005;77(2):113–8.

    Article  CAS  PubMed  Google Scholar 

  144. Braga V, Gatti D, Rossini M, Colapietro F, Battaglia E, Viapiana O, Adami S. Bone turnover markers in patients with osteogenesis imperfecta. Bone. 2004;34(6):1013–6.

    Article  CAS  PubMed  Google Scholar 

  145. Bishop N. Bone material properties in osteogenesis imperfecta. J Bone Miner Res. 2016;31(4):699–708. https://doi.org/10.1002/jbmr.2835. Review.

    Article  CAS  PubMed  Google Scholar 

  146. Lindahl K, Barnes AM, Fratzl-Zelman N, Whyte MP, Hefferan TE, Makareeva E, Brusel M, Yaszemski MJ, Rubin CJ, Kindmark A, Roschger P, Klaushofer K, McAlister WH, Mumm S, Leikin S, Kessler E, Boskey AL, Ljunggren O, Marini JC. COL1 C-propeptide cleavage site mutations cause high bone mass osteogenesis imperfecta. Hum Mutat. 2011;32(6):598–609. https://doi.org/10.1002/humu.21475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cundy T, Dray M, Delahunt J, Hald JD, Langdahl B, Li C, Szybowska M, Mohammed S, Duncan EL, McInerney-Leo AM, Wheeler PG, Roschger P, Klaushofer K, Rai J, Weis M, Eyre D, Schwarze U, Byers PH. Mutations that Alter the carboxy-terminal-Propeptide cleavage site of the chains of type I procollagen are associated with a unique osteogenesis imperfecta phenotype. J Bone Miner Res. 2018; https://doi.org/10.1002/jbmr.3424. [Epub ahead of print].

    Article  CAS  PubMed  Google Scholar 

  148. Fratzl-Zelman N, Schmidt I, Roschger P, Roschger A, Glorieux FH, Klaushofer K, Wagermaier W, Rauch F, Fratzl P. Unique micro- and nano-scale mineralization pattern of human osteogenesis imperfecta type VI bone. Bone. 2015;73:233–41. https://doi.org/10.1016/j.bone.2014.12.023.

    Article  CAS  PubMed  Google Scholar 

  149. Cheung M, Roschger P, Klaushofer K, Veilleux LN, Roughley P, Glorieux FH, Rauch F. Cortical and trabecular bone density in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab. 2013;98(5):E954–61. https://doi.org/10.1210/jc.2012-4133. Epub 2013 Mar 26.

    Article  PubMed  Google Scholar 

  150. Bartko J, Roschger P, Zandieh S, Brehm A, Zwerina J, Klaushofer K. Hypophosphatemia, severe bone pain, gait disturbance, and fatigue fractures after Iron substitution in inflammatory bowel disease: a case report. J Bone Miner Res. 2018;33(3):534–9. https://doi.org/10.1002/jbmr.3319.

    Article  PubMed  Google Scholar 

  151. Whyte MP. Hypophosphatasia – aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2016;12(4):233–46. https://doi.org/10.1038/nrendo.2016.14. Review.

    Article  CAS  PubMed  Google Scholar 

  152. Whyte MP, Rockman-Greenberg C, Ozono K, Riese R, Moseley S, Melian A, Thompson DD, Bishop N, Hofmann C. Asfotase alfa treatment improves survival for perinatal and infantile hypophosphatasia. J Clin Endocrinol Metab. 2016;101(1):334–42. https://doi.org/10.1210/jc.2015-3462.

    Article  CAS  PubMed  Google Scholar 

  153. Mornet E. Hypophosphatasia. Metabolism. 2018;82:142–55. https://doi.org/10.1016/j.metabol.2017.08.013. Epub 2017 Sep 20. Review.

    Article  CAS  PubMed  Google Scholar 

  154. Berkseth KE, Tebben PJ, Drake MT, Hefferan TE, Jewison DE, Wermers RA. Clinical spectrum of hypophosphatasia diagnosed in adults. Bone. 2013;54(1):21–7. https://doi.org/10.1016/j.bone.2013.01.024.

    Article  CAS  PubMed  Google Scholar 

  155. Barvencik F, Beil FT, Gebauer M, Busse B, Koehne T, Seitz S, Zustin J, Pogoda P, Schinke T, Amling M. Skeletal mineralization defects in adult hypophosphatasia – a clinical and histological analysis. Osteoporos Int. 2011;22(10):2667–75. https://doi.org/10.1007/s00198-011-1528-y.

    Article  CAS  PubMed  Google Scholar 

  156. Whyte MP. Hypophosphatasia: enzyme replacement therapy brings new opportunities and new challenges. J Bone Miner Res. 2017;32(4):667–75. https://doi.org/10.1002/jbmr.3075. Review.

    Article  CAS  PubMed  Google Scholar 

  157. Liu J, Campbell C, Nam HK, Caron A, Yadav MC, Millán JL, Hatch NE. Enzyme replacement for craniofacial skeletal defects and craniosynostosis in murine hypophosphatasia. Bone. 2015;78:203–11. https://doi.org/10.1016/j.bone.2015.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gasque KC, Foster BL, Kuss P, Yadav MC, Liu J, Kiffer-Moreira T, van Elsas A, Hatch N, Somerman MJ, Millán JL. Improvement of the skeletal and dental hypophosphatasia phenotype in Alpl−/− mice by administration of soluble (non-targeted) chimeric alkaline phosphatase. Bone. 2015;72:137–47. https://doi.org/10.1016/j.bone.2014.11.017.

    Article  CAS  PubMed  Google Scholar 

  159. Dempster DW, Roschger P, Misof BM, Zhou H, Paschalis EP, Alam J, Ruff VA, Klaushofer K, Taylor KA. Differential effects of teriparatide and zoledronic acid on bone mineralization density distribution at 6 and 24 months in the SHOTZ study. J Bone Miner Res. 2016;31(8):1527–35. https://doi.org/10.1002/jbmr.2825.

    Article  CAS  PubMed  Google Scholar 

  160. Naylor KE, Jacques RM, Paggiosi M, Gossiel F, Peel NF, McCloskey EV, Walsh JS, Eastell R. Response of bone turnover markers to three oral bisphosphonate therapies in postmenopausal osteoporosis: the TRIO study. Osteoporos Int. 2016;27(1):21–31. https://doi.org/10.1007/s00198-015-3145-7.

    Article  CAS  PubMed  Google Scholar 

  161. Ruffoni D, Fratzl P, Roschger P, Phipps R, Klaushofer K, Weinkamer R. Effect of temporal changes in bone turnover on the bone mineralization density distribution: a computer simulation study. J Bone Miner Res. 2008;23(12):1905–14. https://doi.org/10.1359/jbmr.080711.

    Article  CAS  PubMed  Google Scholar 

  162. Boivin G, Lips P, Ott SM, Harper KD, Sarkar S, Pinette KV, Meunier PJ. Contribution of raloxifene and calcium and vitamin D3 supplementation to the increase of the degree of mineralization of bone in postmenopausal women. J Clin Endocrinol Metab. 2003;88(9):4199–205.

    Article  CAS  PubMed  Google Scholar 

  163. McClung MR. New management options for osteoporosis with emphasis on SERMs. Climacteric. 2015;18(Suppl 2):56–61. https://doi.org/10.3109/13697137.2015.1104010. Review.

    Article  CAS  PubMed  Google Scholar 

  164. Boivin G, Vedi S, Purdie DW, Compston JE, Meunier PJ. Influence of estrogen therapy at conventional and high doses on the degree of mineralization of iliac bone tissue: a quantitative microradiographic analysis in postmenopausal women. Bone. 2005;36:562–7.

    Article  CAS  PubMed  Google Scholar 

  165. Paschalis EP, Boskey AL, Kassem M, Eriksen EF. Effect of hormone replacement therapy on bone quality in early postmenopausal women. J Bone Miner Res. 2003;18(6):955–9.

    Article  CAS  PubMed  Google Scholar 

  166. Russell RG. Bisphosphonates: the first 40 years. Bone. 2011;49(1):2–19. https://doi.org/10.1016/j.bone.2011.04.022. Review.

    Article  CAS  PubMed  Google Scholar 

  167. Kenkre JS, Bassett J. The bone remodelling cycle. Ann Clin Biochem. 2018;55(3):308–27. https://doi.org/10.1177/0004563218759371. Epub 2018 Mar 4.

    Article  CAS  PubMed  Google Scholar 

  168. Roschger P, Lombardi A, Misof BM, Maier G, Fratzl-Zelman N, Kimmel D, LaMotta A, Fratzl P, Klaushofer K. Mineralization density distribution of postmenopausal osteoporotic bone is restored to normal after long-term alendronate treatment: qBEI and sSAXS data from the fracture intervention trial long-term extension (FLEX). J Bone Miner Res. 2010;25:48–55.

    Article  CAS  PubMed  Google Scholar 

  169. Shane E, Burr D, Abrahamsen B, Adler RA, Brown TD, Cheung AM, Cosman F, Curtis JR, Dell R, Dempster DW, Ebeling PR, Einhorn TA, Genant HK, Geusens P, Klaushofer K, Lane JM, McKiernan F, McKinney R, Ng A, Nieves J, O'Keefe R, Papapoulos S, Howe TS, van der Meulen MC, Weinstein RS, Whyte MP. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American society for bone and mineral research. J Bone Miner Res. 2014;29(1):1–23. https://doi.org/10.1002/jbmr.1998.

    Article  PubMed  Google Scholar 

  170. Misof BM, Roschger P, Gabriel D, Paschalis EP, Eriksen EF, Recker RR, Gasser JA, Klaushofer K. Annual intravenous zoledronic acid for three years increased cancellous bone matrix mineralization beyond normal values in the HORIZON biopsy cohort. J Bone Miner Res. 2013;28(3):442–8. https://doi.org/10.1002/jbmr.1780.

    Article  CAS  PubMed  Google Scholar 

  171. Krause M, Soltau M, Zimmermann EA, Hahn M, Kornet J, Hapfelmeier A, Breer S, Morlock M, Wulff B, Püschel K, Glueer CC, Amling M, Busse B. Effects of long-term alendronate treatment on bone mineralisation, resorption parameters and biomechanics of single human vertebral trabeculae. Eur Cell Mater. 2014;28:152–63; discussion 163–5.

    Article  CAS  PubMed  Google Scholar 

  172. Misof BM, Roschger P, McMillan HJ, Ma J, Klaushofer K, Rauch F, Ward LM. Histomorphometry and bone matrix mineralization before and after bisphosphonate treatment in boys with Duchenne muscular dystrophy: a paired Transiliac biopsy study. J Bone Miner Res. 2016;31(5):1060–9. https://doi.org/10.1002/jbmr.2756.

    Article  CAS  PubMed  Google Scholar 

  173. Misof BM, Blouin S, Lueger S, Paschalis EP, Recker RR, Phipps R, Klaushofer K, Roschger P. Baseline mineralizing surface determines the magnitude of the bisphosphonate effect on cortical bone mineralization in postmenopausal osteoporotic patients. J Musculoskelet Neuronal Interact. 2017;17(3):183–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Fuchs RK, Faillace ME, Allen MR, Phipps RJ, Miller LM, Burr DB. Bisphosphonates do not alter the rate of secondary mineralization. Bone. 2011;49(4):701–5. https://doi.org/10.1016/j.bone.2011.05.009.

    Article  CAS  PubMed  Google Scholar 

  175. Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, Mangood A, Russell RG, Ebetino FH. Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone. 2006;38(5):617–27.

    Article  CAS  PubMed  Google Scholar 

  176. Hofstetter B, Gamsjaeger S, Phipps RJ, Recker RR, Ebetino FH, Klaushofer K, Paschalis EP. Effects of alendronate and risedronate on bone material properties in actively forming trabecular bone surfaces. J Bone Miner Res. 2012;27(5):995–1003. https://doi.org/10.1002/jbmr.1572.

    Article  CAS  PubMed  Google Scholar 

  177. Gamsjaeger S, Buchinger B, Zoehrer R, Phipps R, Klaushofer K, Paschalis EP. Effects of one year daily teriparatide treatment on trabecular bone material properties in postmenopausal osteoporotic women previously treated with alendronate or risedronate. Bone. 2011;49(6):1160–5. https://doi.org/10.1016/j.bone.2011.08.015.

    Article  CAS  PubMed  Google Scholar 

  178. Hofstetter B, Gamsjaeger S, Varga F, Dobnig H, Stepan JJ, Petto H, Pavo I, Klaushofer K, Paschalis EP. Bone quality of the newest bone formed after two years of teriparatide therapy in patients who were previously treatment-naïve or on long-term alendronate therapy. Osteoporos Int. 2014;25(12):2709–19. https://doi.org/10.1007/s00198-014-2814-2.

    Article  CAS  PubMed  Google Scholar 

  179. Bone HG, Wagman RB, Brandi ML, Brown JP, Chapurlat R, Cummings SR, Czerwiński E, Fahrleitner-Pammer A, Kendler DL, Lippuner K, Reginster JY, Roux C, Malouf J, Bradley MN, Daizadeh NS, Wang A, Dakin P, Pannacciulli N, Dempster DW, Papapoulos S. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 2017;5(7):513–23. https://doi.org/10.1016/S2213-8587(17)30138-9.

    Article  CAS  PubMed  Google Scholar 

  180. Reid IR, Miller PD, Brown JP, Kendler DL, Fahrleitner-Pammer A, Valter I, Maasalu K, Bolognese MA, Woodson G, Bone H, Ding B, Wagman RB, San Martin J, Ominsky MS, Dempster DW. Denosumab phase 3 bone histology study group. Effects of denosumab on bone histomorphometry: the FREEDOM and STAND studies. J Bone Miner Res. 2010;25(10):2256–65. https://doi.org/10.1002/jbmr.149.

    Article  CAS  PubMed  Google Scholar 

  181. Marie PJ, Felsenberg D, Brandi ML. How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporos Int. 2011;22(6):1659–67. https://doi.org/10.1007/s00198-010-1369-0. Review.

    Article  CAS  PubMed  Google Scholar 

  182. Chavassieux P, Meunier PJ, Roux JP, Portero-Muzy N, Pierre M, Chapurlat R. Bone histomorphometry of transiliac paired bone biopsies after 6 or 12 months of treatment with oral strontium ranelate in 387 osteoporotic women. Randomized comparison to alendronate. J Bone Miner Res. 2013; https://doi.org/10.1002/jbmr.2074.

    Article  CAS  PubMed  Google Scholar 

  183. Roschger P, Manjubala I, Zoeger N, Meirer F, Simon R, Li C, Fratzl-Zelman N, Misof BM, Paschalis EP, Streli C, Fratzl P, Klaushofer K. Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years of strontium ranelate treatment. J Bone Miner Res. 2010;25(4):891–900. https://doi.org/10.1359/jbmr.091028.

    Article  PubMed  Google Scholar 

  184. Li C, Paris O, Siegel S, Roschger P, Paschalis EP, Klaushofer K, Fratzl P. Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J Bone Miner Res. 2010;25(5):968–75. https://doi.org/10.1359/jbmr.091038.

    Article  CAS  PubMed  Google Scholar 

  185. Riedel C, Zimmermann EA, Zustin J, Niecke M, Amling M, Grynpas M, Busse B. The incorporation of fluoride and strontium in hydroxyapatite affects the composition, structure, and mechanical properties of human cortical bone. J Biomed Mater Res A. 2017;105(2):433–42. https://doi.org/10.1002/jbm.a.35917.

    Article  CAS  PubMed  Google Scholar 

  186. Riggs BL, Hodgson SF, O'Fallon WM, Chao EY, Wahner HW, Muhs JM, Cedel SL, Melton LJ 3rd. Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med. 1990;322(12):802–9.

    Article  CAS  PubMed  Google Scholar 

  187. Chachra D, Vieira AP, Grynpas MD. Fluoride and mineralized tissues. Crit Rev Biomed Eng. 2008;36(2–3):183–223. Review.

    Article  PubMed  Google Scholar 

  188. Fratzl P, Roschger P, Eschberger J, Abendroth B, Klaushofer K. Abnormal bone mineralization after fluoride treatment in osteoporosis: a small-angle x-ray-scattering study. J Bone Miner Res. 1994;9(10):1541–9.

    Article  CAS  PubMed  Google Scholar 

  189. Gourrier A, Li C, Seigel S, Paris O, Roschger P, Klaushofer K, Fratzl P. Scanning small-angle X-ray scattering analysis of the size and organization of the mineral nanoparticles in fluorotic bone using a stack of cards model. J Appl Crystallogr. 2010;43:1385–92.

    Article  CAS  Google Scholar 

  190. Boivin G, Duriez J, Chapuy MC, Flautre B, Hardouin P, Meunier PJ. Relationship between bone fluoride content and histological evidence of calcification defects in osteoporotic women treated long term with sodium fluoride. Osteoporos Int. 1993;3(4):204–8.

    Article  CAS  PubMed  Google Scholar 

  191. Rubin CD, Pak CY, Adams-Huet B, Genant HK, Li J, Rao DS. Sustained-release sodium fluoride in the treatment of the elderly with established osteoporosis. Arch Intern Med. 2001;161(19):2325–33.

    Article  CAS  PubMed  Google Scholar 

  192. Paschalis EP, Glass EV, Donley DW, Eriksen EF. Bone mineral and collagen quality in iliac crest biopsies of patients given teriparatide: new results from the fracture prevention trial. J Clin Endocrinol Metab. 2005;90:4644–9.

    Article  CAS  PubMed  Google Scholar 

  193. Misof BM, Paschalis EP, Blouin S, Fratzl-Zelman N, Klaushofer K, Roschger P. Effects of 1 year of daily teriparatide treatment on iliacal bone mineralization density distribution (BMDD) in postmenopausal osteoporotic women previously treated with alendronate or risedronate. J Bone Miner Res. 2010;25(11):2297–303. https://doi.org/10.1002/jbmr.198.

    Article  CAS  PubMed  Google Scholar 

  194. Augustine M, Horwitz MJ. Parathyroid hormone and parathyroid hormone-related protein analogs as therapies for osteoporosis. Curr Osteoporos Rep. 2013;11(4):400–6.

    Article  PubMed  Google Scholar 

  195. Moreira CA, Fitzpatrick LA, Wang Y, Recker RR. Effects of abaloparatide-SC (BA058) on bone histology and histomorphometry: The ACTIVE phase 3 trial. Bone. 2017;97:314–9. https://doi.org/10.1016/j.bone.2016.11.004.

    Article  CAS  PubMed  Google Scholar 

  196. Ross RD, Edwards LH, Acerbo AS, Ominsky MS, Virdi AS, Sena K, Miller LM, Sumner DR. Bone matrix quality after sclerostin antibody treatment. J Bone Miner Res. 2014;29(7):1597–607. https://doi.org/10.1002/jbmr.2188.

    Article  CAS  PubMed  Google Scholar 

  197. Roschger A, Roschger P, Keplingter P, Klaushofer K, Abdullah S, Kneissel M, Rauch F. Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta. Bone. 2014;66:182–8. https://doi.org/10.1016/j.bone.2014.06.015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Prof. Dr. Dr.h.c. Peter Fratzl (Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany) for the numerous studies in collaboration with the Ludwig Boltzmann Institute of Osteology during more than two decades which represent a significant contribution in this text. Moreover, they thank him for the discussion and his fruitful comments on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara M. Misof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roschger, P., Misof, B.M., Klaushofer, K. (2020). Basic Aspects of Bone Mineralization. In: Leder, B., Wein, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-319-69287-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69287-6_5

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-319-69286-9

  • Online ISBN: 978-3-319-69287-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics