Skip to main content

The Roles of Seagrasses in Structuring Associated Fish Assemblages and Fisheries

  • Chapter
  • First Online:
Seagrasses of Australia

Abstract

Seagrasses are known to provide important habitats for a diversity of fish and fisheries species. Continued research has allowed us to re-evaluate the generalisations, and identify the gaps in our knowledge regarding these habitats, particularly in an Australian context. Seagrasses generally form part of a mosaic with other habitats within a seascape that contributes to its overall biodiversity of fish. Patterns of abundance and diversity of fish between seagrass and other habitats, such as unvegetated flats and reef habitats, is inconsistent and depends on the region, fish and seagrass species, and sampling method. Edge effects, adjacent habitats, and fragmentation can strongly influence fish assemblages. Seagrass structural complexity can enhance survival and growth of juvenile fishes, but recent studies show that survival rates of individual prey do not vary greatly across seagrass densities when densities of both prey and predators increase with seagrass density. The concept of the nursery habitat has been built on data from studies in estuaries or highly seasonal seagrass habitats, whereas recent studies in marine systems or cool temperate seagrass meadows suggest that this role does not always hold. Direct grazing on seagrasses by fishes occurs mainly in tropical regions, although there is a paucity of data on this process along with several other processes, from tropical Australia. Grazing on seagrasses by fishes appears to be limited in temperate regions, with consumption of seagrass restricted mainly to omnivorous species. However, tropicalisation, that is, the immigration of tropical grazers to higher latitudes due to global ocean warming , is predicted to increase grazing rates on temperate seagrasses. Reductions in seagrass biomass caused by increased grazing will disrupt connectivity processes between seagrass meadows and surrounding habitats, and are likely to have significant ramifications for the biodiversity and ecosystem services those other coastal habitats provide. Although other habitats rely on inputs of seagrass detritus, and the immigration of fish and fisheries species from their juvenile seagrass habitats , quantitative data on this link are limited. Evidence that fisheries declines, either directly or indirectly, have resulted from seagrass loss is equivocal to date, and therefore, the quantification of this role is still needed. Managing seagrass for fisheries is complex, and many fisheries agencies embrace ecosystem-based management, but do not have direct responsibility for seagrass habitat. Significant progress has been made in our knowledge of fish and fisheries in seagrasses, but our review highlights significant knowledge gaps where further research is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrantes KG, Barnett A, Baker R, Sheaves M (2015) Habitat-specific food webs and trophic interactions supporting coastal-dependent fishery species: an Australian case study. Rev Fish Biol Fisheries 25:337–363

    Article  Google Scholar 

  • Adams AJ, Ebersole JP (2004) Processes influencing recruitment inferred from distributions of coral reef fishes. Bull Mar Sci 75:153–174

    Google Scholar 

  • Airoldi L, Beck MW (2007) Loss, status and trends for coastal marine habitats of Europe. Oceanography and Marine Biology

    Google Scholar 

  • Armitage AR, Fourqurean JW (2006) The short-term influence of herbivory near patch reefs varies between seagrass species. J Exp Mar Biol Ecol 339:65–74

    Article  Google Scholar 

  • Arrivillaga A, Baltz DM (1999) Comparison of fishes and macroinvertebrates on seagrass and bare-sand sites on Guatemala’s Atlantic coast. Bull Mar Sci 65:301–319

    Google Scholar 

  • Beck MW, Heck KL, Able KW, Childers DL, Eggleston DB, Gillanders BM, Halpern B, Hays CG, Hoshino K, Minello TJ, Orth RJ, Sheridan PF, Weinstein MP (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51:633–641

    Article  Google Scholar 

  • Bell JD, Burchmore JJ, Pollard DA (1978) Feeding ecology of three sypatric species of leatherjackets (Pisces: Monacanthidae) from a Posidonia seagrass habitat in New South Wales. Aust J Mar Freshw Res 29:631–643

    Article  Google Scholar 

  • Bell JD, Harmelin-Vivien ML (1982) Fish fauna of French Mediterranean Posidonia oceanica seagrass meadows. 1. Community structure. Tethys 10:337–347

    Google Scholar 

  • Bell JD, Harmelin-Vivien ML (1983) Fish fauna of French Mediterranean Posidonia oceanica seagrass meadows. 2. Feeding habits. Tethys 11:1–14

    Google Scholar 

  • Bell JD, Westoby M (1986) Importance of local changes in leaf height and density to fish and decapods associated with seagrasses. J Exp Mar Biol Ecol 104:249–274

    Article  Google Scholar 

  • Bell JD, Westoby M, SA S (1987) Fish larvae settling in seagrass: do they disciminate between beds of different leaf density? J Exp Mar Biol Ecol 111:133–144

    Article  Google Scholar 

  • Bell SJM, Pollard DA (1989) Ecology of fish assemblages and fisheries associated with seagrasses. In: Larkum AWD, Mccomb AJ, Sheperd SA (eds) Biology of seagrasses: a treatise on the biology of seagrasses with specieal reference to the australian region. Elsevier, Amsterdam

    Google Scholar 

  • Bell SS, Brooks RA, Robbins BD, Fonseca MS, Hall MO (2001) Faunal response to fragmentation in seagrass habitats: implications for seagrass conservation. Biol Cons 100:115–123

    Article  Google Scholar 

  • Berkström C, Lindborg R, Thyresson M, Gullström M (2013) Assessing connectivity in a tropical embayment: fish migrations and seascape ecology. Biol Cons 166:43–53

    Article  Google Scholar 

  • Boström C, Pittman SJ, Simenstad C, Kneib RT (2011) Seascape ecology of coastal biogenic habitats: Advances, gaps, and challenges. Mar Ecol Prog Ser 427:191–217

    Article  Google Scholar 

  • Blandon A, Zu Ermgassen PSE (2014) Quantitative estimate of commercial fish enhancement by seagrass habitat in southern Australia. Estuar Coast Shelf Sci 141:1–8

    Article  Google Scholar 

  • Borowitzka MA, Lethbridge RC, Charlton L (1990) Species richness, spatial distribution and colonisation pattern of algal and invertebrate epiphytes on the seagrass Amphibolis griffithii. Mar Ecol Prog Ser 64:281–291

    Article  Google Scholar 

  • Bostrom C, Jackson EL, Simenstad CA (2006) Seagrass landscapes and their effects on associated fauna: A review. Estuar Coast Shelf Sci 68:383–403

    Article  Google Scholar 

  • Burchmore JJ, Pollard DA, Bell JD (1984) Community structure and trophic relationships of the fish fauna of an estuarine Posidonia australis seagrass habitat in Port Hacking, New South Wales. Aquat Bot 18:71–87

    Article  Google Scholar 

  • Burkholder DA, Heithaus MR, Fourqurean JW (2012) Feeding preferences of herbivores in a relatively pristine subtropical seagrass ecosystem. Mar Freshw Res 63:1051

    Article  Google Scholar 

  • Bussotti S, Guidetti P (1999) Fish communities associated with different seagrass systems in the Mediterranean Sea. Naturalista Sicil 23:245–259 (Suppl.)

    Google Scholar 

  • Campbell SJ, Kartawijaya T, Sabarini EK (2011) Connectivity in reef fish assemblages between seagrass and coral reef habitats. Aquat Biol 13:65–77

    Article  Google Scholar 

  • Canion CR, Heck KL (2009) Effect of habitat complexity on predation success: re-evaluating the current paradigm in seagrass beds. Mar Ecol Prog Ser 393:37–46

    Article  Google Scholar 

  • Cheminée A, Feunteun E, Clerici S, Cousin B, Francour P (2014) Management of infralittoral habitats: towards a seascape scale approach. In: Musard O, Le Dû-Blayo L, Francour P, Beurier JP, Feunteun E, Talassinos L (eds) Underwater seascapes—from geographical to ecological perspectives. Springer Science & Business Media, pp 161–183

    Google Scholar 

  • Cheung WWL, Watson R, Pauly D (2013) Signature of ocean warming in global fisheries catch. Nature, 497:365

    Google Scholar 

  • Chittleborough RG, Phillips BF (1975) Fluctuations of year-class strength and recruitment in the western rock lobster Panulirus longipes (Milne-Edwards). Aust J Mar Freshw Res 26:317–328

    Article  Google Scholar 

  • Chittleborough RG (1970) Studies on recruitment in the western rock lobster Panulirus longipes cygnus George: density and natural mortality of juveniles. Aust J Mar Freshw Res 21:131–148

    Article  Google Scholar 

  • Clements KD, Raubenheimer D, Choat JH (2009) Nutritional ecology of marine herbivorous fishes: ten years on. Funct Ecol 23:79–92

    Article  Google Scholar 

  • Coles RG, Lee Long WJ, Squire BA, Squire LC, Bibby JM (1987) Distribution of seagrasses and associated juvenile commercial penaeid prawns in north-eastern Queensland waters. Aust J Mar Freshw Res 38:103–119

    Article  Google Scholar 

  • Coles RG, Lee Long WJ, Watson RA, Derbyshire KJ (1993) Distribution of seagrasses, and their fish and penaeid prawn communities, in Cairns Harbour, a tropical estuary, northern Queensland, Australia. Aust J Mar Freshw Res 44:193–210

    Google Scholar 

  • Conacher MJ, Lanzing WJR, Larkum AWD (1979) Ecology of Botany Bay II. Aspects of the feeding ecology of the fanbellied leatherjacket Monocanthus chinensis in Posidonia australis seagrass beds. Aust J Mar Freshw Res 30:387–400

    Article  Google Scholar 

  • Connolly R, Jenkins G, Loneragan N (1999a) Seagrass dynamics and fisheries sustainability. In: Butler A, Jernakoff P (eds) Seagrass in Australia: strategic review and development of an R & D plan. CSIRO, Melbourne

    Google Scholar 

  • Connolly RM (1994a) A comparison of fish assemblages from seagrass and unvegetated areas of a southern Australian estuary. Aust J Mar Freshw Res 45:1033–1044

    Article  Google Scholar 

  • Connolly RM (1994b) Removal of seagrass canopy—effects on small fish and their prey. J Exp Mar Biol Ecol 184:99–110

    Article  Google Scholar 

  • Connolly RM (1994c) The role of seagrass as preferred habitat for juvenile Sillaginodes-punctata (cuv and val) (Sillaginidae, Pisces)—habitat selection of feeding. J Exp Mar Biol Ecol 180:39–47

    Article  Google Scholar 

  • Connolly RM, Guest MA, Melville AJ, Oakes JM (2004) Sulfur stable isotopes separate producers in marine food-web analysis. Oecologia 138:161–167

    Article  PubMed  Google Scholar 

  • Connolly RM, Hindell JS (2006) Review of nekton patterns and ecological processes in seagrass landscapes. Estuar Coast Shelf Sci 68:433–444

    Article  Google Scholar 

  • Connolly RM, Hindell JS, Gorman D (2005) Seagrass and epiphytic algae support nutrition of a fisheries species, Sillago schomburgkii, in adjacent intertidal habitats. Mar Ecol Prog Ser 286:69–79

    Article  Google Scholar 

  • Connolly R, Jenkins G, Loneragan N (1999b) Seagrass dynamics and fisheries sustainability. Seagrass in Australia. CSIRO Publishing, Collingwood, pp 23–64

    Google Scholar 

  • Cook K, Vanderklift MA, Poore AGB (2011) Strong effects of herbivorous amphipods on epiphyte biomass in a temperate seagrass meadow. Mar Ecol Prog Ser 442:263–269

    Article  Google Scholar 

  • Crawley KR, Hyndes GA, Ayvazian SG (2006) Influence of different volumes and types of detached macrophytes on fish community structure in surf zones of sandy beaches. Mari Ecol Prog Ser 307:233–246

    Article  Google Scholar 

  • Crowder LB, Cooper WE (1982) Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63:1802–1813

    Google Scholar 

  • Curley BG, Jordan AR, Figueira WF, Valenzuela VC (2013) A review of the biology and ecology of key fishes targeted by coastal fisheries in south-east Australia: identifying critical knowledge gaps required to improve spatial management. Rev Fish Biol Fish 23:435–458

    Article  Google Scholar 

  • Dahlgren CP, Kellison GT, Adams AJ, Gillanders BM, Kendall MS, Layman CA, Ley JA, Nagelkerken I, Serafy JE (2006) Marine nurseries and effective juvenile habitats: concepts and applications. Mar Ecol Prog Ser 312:291–295

    Article  Google Scholar 

  • Davis JP, Pitt KA, Fry B, Olds AD, Connolly RM (2014) Seascape-scale trophic links for fish on inshore coral reefs. Coral Reefs 33:897–907

    Article  Google Scholar 

  • Delgado O, Grau A, Pou S, Riera F, Massuti C, Zabala M, Ballesteros E (1997) Seagrass regression caused by fish cultures in Fornells Bay (Menorca, Western Mediterranean). Oceanol Acta 20:557–563

    Google Scholar 

  • Den Hartog C (1970) Seagrasses of the World. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Dorenbosch M, Grol MGG, Christianen MJA, Nagelkerken I, van der Velde G (2005) Indo-Pacific seagrass beds and mangroves contribute to fish density and diversity on adjacent coral reefs. Mar Ecol Prog Ser 302:63–76

    Article  Google Scholar 

  • Duarte CM (2002) The future of seagrass meadows. Environ Conserv 29:192–206

    Article  Google Scholar 

  • Ebrahim A, Olds AD, Maxwell PS, Pitt KA, Burfeind D, Connolly RM (2014) Herbivory in a subtropical seagrass ecosystem: separating the functional role of different grazers. Mar Ecol Prog Ser 511:83–91

    Article  Google Scholar 

  • Edgar GJ, Shaw C (1993) Inter-relationships between sediments, seagrasses, benthic invertebrates and fishes in shallow marine habitats off south-western Australia. In: Wells FE, Walker DI, Kirkman H, Lethbridge R (eds) Proceedings of the fifth international marine biological workshop: the marine flora and fauna of Rottnest Island, Western Australia. Western Australian Museum, Perth

    Google Scholar 

  • Edgar GJ, Shaw C (1995) The production and trophic ecology of shallow-water fish assemblages in southern Australia. II. Diets of fishes and trophic relationships between fishes and benthos at Western Port, Victoria. J Exp Mar Biol Ecol 194:83–106

    Article  Google Scholar 

  • Ferrell DJ, Bell JD (1991) Differences among assemblages of fish associated with Zostera capricorni and bare sand over a large spatial scale. Mar Ecol Prog Ser 72:15–24

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fletcher WJ, Shaw J, Metcalf SJ, Gaughan DJ (2010) An ecosystem based fisheries management framework: the efficient, regional-level planning tool for management agencies. Marine Policy 34:1226–1238

    Article  Google Scholar 

  • Floeter SR, Behrens MD, Ferreira CEL, Paddack MJ, Horn MH (2005) Geographical gradients of marine herbivorous fishes: patterns and processes. Mar Biol 147:1435–1447

    Article  Google Scholar 

  • Fonseca MS, Uhrin AV (2009) The status of eelgrass, Zostera marina, as bay scallop habitat: consequences for the fishery in the western Atlantic. Marine Fish Rev 71:20–33

    Google Scholar 

  • Ford JR, Williams RJ, Fowler AM, Cox DR, Suthers IM (2010) Identifying critical estuarine seagrass habitat for settlement of coastally spawned fish. Mar Ecol Prog Ser 408:181–193

    Article  Google Scholar 

  • Fowler AJ, Short DA (1996) Temporal variation in the early life-history characteristics of the King George whiting (Sillaginodes punctata) from analysis of otolith microstructure. Mar Freshw Res 47:809–818

    Article  Google Scholar 

  • Franco A, Franzoi P, Malavasi S, Riccato F, Torricelli P (2006) Fish assemblages in different shallow water habitats of the Venice Lagoon. Hydrobiologia 555:159–174

    Article  Google Scholar 

  • Francour P (1994) Pluriannual analysis of the reserve effect on Ichthyofauna in the Scandola Natural Reserve (Corsica, Northwestern Mediterranean). Oceanol Acta 17:309–317

    Google Scholar 

  • Francour P (1997) Fish assemblages of Posidonia oceanica beds at Port Cros (France, NW Mediterranean): assessment of composition and long-term fluctuations by visual census. Mar Ecol 18:157–173

    Article  Google Scholar 

  • Francour P, Le Direach L (1994) Recrutement de l’ichtyofaune dans l’herbier superficiel à Posidonia oceanica de la réserve naturelle de Scandola (Corse, Méditerranée nord-occidentale): données préliminaires. Travaux scientifiques du Parc Naturel Régional et des Réserves Naturelles de Corse 46:71–91

    Google Scholar 

  • Francour P, Le Direach L (1998) Recrutement de Diplodus annularis (Sparidae) dans la réserve naturelle de Scandola (Corse). Travaux scientifiques du Parc Naturel Régional et des Réserves Naturelles de Corse 57:42–75

    Google Scholar 

  • Gianni F, Bartolini F, Airoldi L, Ballesteros E, Francour P, Meinesz A, Thibaut T, Mangialajo L (2013) Conservation and restoration of marine forests in the Mediterranean Sea and the potential role of Marine Protected Areas. Adv Oceanogr Limnol 4:83–101

    Article  Google Scholar 

  • Gillanders BM (2002) Connectivity between juvenile and adult fish populations: do adults remain near their recruitment estuaries? Mar Ecol Prog Ser 240:215–223

    Article  Google Scholar 

  • Gillanders BM (2005) Seagrasses, fish, and fisheries. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology, and their conservation. Springer, Berlin

    Google Scholar 

  • Gillanders BM (2006) Seagrasses, fish and fisheries. In: Larkum A, Orth R, Duarte C (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin

    Google Scholar 

  • Gillanders BM, Able KW, Brown JA, Eggleston DB, Sheridan PF (2003) Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries. Mar Ecol Prog Ser 247:281–295

    Article  Google Scholar 

  • Gillanders BM, Kingsford MJ (1996) Elements in otoliths may elucidate the contribution of estuarine recruitment to sustaining coastal reef populations of a temperate reef fish. Mar Ecol Prog Ser 141:13–20

    Article  Google Scholar 

  • Gobert S, Cambridge M, Velimirov B, Pergent G, Bouquegneau M, Dauby P, Pergent-Martini C, Walker D (2006) Biology of posidonia. In: Larkum A, Orth R, Duarte C (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht

    Google Scholar 

  • Goecker M, Heck K, Valentine J (2005) Effects of nitrogen concentrations in turtlegrass Thalassia testudinum on consumption by the bucktooth parrotfish Sparisoma radians. Mar Ecol Prog Ser 286:239–248

    Article  Google Scholar 

  • González-Bergonzoni I, Meerhoff M, Davidson TA, Mello FT, Baattrup-Pedersen A, Jeppesen E (2012) Meta-analysis shows a consistent and strong latitudinal pattern in fish omnivory across ecosystems. Ecosystems 15:492–503

    Article  Google Scholar 

  • Gray CA, Chick RC, Mcelligott DJ (1998) Diel changes in assemblages of fishes associated with shallow seagrass and bare sand. Estuar Coast Shelf Sci 46:849–859

    Article  Google Scholar 

  • Gray CA, Rotherham D, Johnson DD (2011) Consistency of temporal and habitat-related differences among assemblages of fish in coastal lagoons. Estuar Coast Shelf Sci 95:401–414

    Article  Google Scholar 

  • Green EP, Short FT (2003) World atlas of seagrasses. University of California Press, Berkeley

    Google Scholar 

  • Grober-Dunsmore R, Frazer TK, Beets JP, Lindberg WJ, Zwick P, Funicelli NA (2008) Influence of landscape structure on reef fish assemblages. Landscape Ecol 23:37–53

    Article  Google Scholar 

  • Grober-Dunsmore R, Pittman SJ, Caldow C, Kendall MS, Frazer TK (2009) A landscape ecology approach for the study of ecological connectivity across tropical marine seascapes. In: Nagelkerken I (ed) Ecological connectivity among tropical coastal ecosystems. Springer, Netherlands

    Google Scholar 

  • Grol MGG, Rypel AL, Nagelkerken I (2014) Growth potential and predation risk drive ontogenetic shifts among nursery habitats in a coral reef fish. Mar Ecol Prog Ser 502:229–244

    Article  Google Scholar 

  • Guidetti P (2000) Differences among fish assemblages associated with nearshore Posidonia oceanica seagrass beds, rocky-algal reefs and unvegetated sand habitats in the Adriatic Sea. Estuar Coast Shelf Sci 50:515–529

    Article  Google Scholar 

  • Guidetti P, Bussotti S (1997) Recruitment of Diplodus annularus and Spodyliosoma cantharus (Sparidae) in shallow seagrass beds along the Italian coasts (Mediterranean Sea). Marine Life 7:47–52

    Google Scholar 

  • Guidetti P, Bussotti S (1998) Juveniles of littoral fish species in shallow seagrass beds: preliminary quail-quantitative data. Biol Marina Mediterr 5:1–10

    Google Scholar 

  • Guidetti P, Bussotti S (2000) Fish fauna of a mixed meadow composed by the seagrasses Cymodocea nodosa and Zostera noltii in the Western Mediterranean. Oceanol Acta 23:759–770

    Article  Google Scholar 

  • Guidetti P, Beck MW, Bussotti S, Ciccolella A, D’Ambrosio P, Lembo G, Spedicato MT, Boero F (2009) Nuersery habitats for Mediterranean coastal fishes: the need for a quantitative approach. Biol Mar Mediterr 16:197–200

    Google Scholar 

  • Guidetti P, Lorenti M, Buia MC, Mazzella L (2002) Temporal dynamics and biomass partitioning in three Adriatic seagrass species: Posidonia oceanica, Cymodocea nodosa, Zostera marina. PSZN Marine Ecol 23:51–67

    Article  Google Scholar 

  • Gullström M, Bodin M, Nilsson PG, Öhman MC (2008) Seagrass structural complexity and landscape configuration as determinants of tropical fish assemblage composition. Mar Ecol Prog Ser 363:241–255

    Article  Google Scholar 

  • Harmelin-Vivien ML (1982) Ichtyofaune des herbiers de posidonies du Parc National de Port-Cros: I. composition et variations spatio-temporelles. Trav Sci Parc Nation Port-Cros 8:69–92

    Google Scholar 

  • Harmelin-Viven ML (1984) Ichtyofaune des herbiers de Posidonies du Parc Naturel Regional De Corse. In: Jeudy De Grissac A, Olivier J (eds) International workshop Posidonia oceanica Beds, 1984 Boudouresque. GIS Posidonie, pp 291–301

    Google Scholar 

  • Havelange S, Lepoint G, Dauby P, Bouquegneau JM (1997) Feeding of the sparid fish Sarpa salpa in a seagrass ecosystem: diet and carbon flux. Marine Ecology-Pubblicazioni Della Stazione Zoologica Di Napoli I 18:289–297

    Article  Google Scholar 

  • Haywood MDE, Kenyon RA (2009) Habitat shifts by decapods-an example of connectivity across tropical coastal ecosystems. Ecological Connectivity among Tropical Coastal Ecosystems

    Google Scholar 

  • Haywood MDE, Vance DJ, Loneragan NR (1995) Seagrass and algal beds as nursery habitats for tiger prawns (Penaeus semisulcatus and P. esculentus) in a tropical Australian estuary. Mar Biol 122:213–223

    Google Scholar 

  • Heck KL, Able KW, Fahay MP, Roman CT (1989) Fishes and decapod crustaceans of Cape Cod eelgrass meadows: species composition, seasonal abundance patterns and comparison with unvegetated substrates. Estuaries 12:59–65

    Article  Google Scholar 

  • Heck KL, Carruthers TJB, Duarte CM, Hughes AR, Kendrick G, Orth RJ, Williams SW (2008) Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems 11:1198–1210

    Article  Google Scholar 

  • Heck KL, Coen LD (1995) Predation and the abundance of juvenile blue crabs: a comparison of selected east and gulf coast (USA) studies. Bull Mar Sci 57:877–883

    Google Scholar 

  • Heck KL, Hays G, Orth RJ (2003) Critical evaluation of the nursery role hypothesis for seagrass meadows [Review]. Mar Ecol Prog Ser 253:123–136

    Article  Google Scholar 

  • Heck KL, Orth RJ (1980) Seagrass habitats: the roles of habitat complexity, competition and predation in structuring associated fish and motile macroinvertebrate assemblages. In: Kennedy VS (ed) Estuarine Perspective. Academic Press, New York

    Google Scholar 

  • Heck KL, Thoman TA (1984) The nursery role of seagrass meadows in the upper and lower reaches of the Chesapeake Bay. Estuaries 7:70–92

    Google Scholar 

  • Heck KL, Valentine JF (2006) Plant-herbivore interactions in seagrass meadows. J Exp Mar Biol Ecol 330:420–436

    Article  Google Scholar 

  • Heck KL, Fodrie FJ, Madsen S, Baillie CJ, Byron DA (2015) Seagrass consumption by native and a tropically associated fish species: potential impacts of the tropicalization of the northern Gulf of Mexico. Mar Ecol Prog Ser 520:165–173

    Google Scholar 

  • Hemminga M, Duarte C (2000) Seagrass ecology. Cambridge University Press

    Google Scholar 

  • Hindell JS, Jenkins GP, Keough MJ (2002) Variability in the numbers of post-settlement King George whiting (Sillaginidae: Sillaginodes punctata, Cuvier) in relation to predation, habitat complexity and artificial cage structure. J Exp Mar Biol Ecol 268:13–31

    Article  Google Scholar 

  • Hobday AJ, Smith ADM, Stobutzki IC, Bulman C, Daley R, Dambacher JM, Deng RA, Dowdney J, Fuller M, Furlani D, Griffiths SP, Johnson D, Kenyon R, Knuckey IA, Ling SD, Pitcher R, Sainsbury KJ, Sporcic M, Smith T, Turnbull C, Walker TI, Wayte SE, Webb H, Williams A, Wise BS, Zhou S (2011) Ecological risk assessment for the effects of fishing. Fish Res 108:372–384

    Article  Google Scholar 

  • Horinouchi M (2007) Distribution patterns of benthic juvenile gobies in and around seagrass habitats: Effectiveness of seagrass shelter against predators. Estuar Coast Shelf Sci 72:657–664

    Article  Google Scholar 

  • Huijbers CM, Nagelkerken I, Debrot AO, Jongejans E (2013) Geographic coupling of juvenile and adult habitat shapes spatial population dynamics of a coral reef fish. Ecology 94:1859–1870

    Article  PubMed  Google Scholar 

  • Huijbers CM, Nagelkerken I, Layman CA (2015) Fish movement from nursery bays to coral reefs: a matter of size? Hydrobiologia 750:89–101

    Article  Google Scholar 

  • Humphries P, Potter IC (1992) The fish community in the shallows of a temperate australian estuary: Relationships with the aquatic macrophyte Ruppia megacarpaand environmental variables. Est Cstl Shelf Sci 34:325–346

    Article  Google Scholar 

  • Hyndes GA, Heck KL, Vergés A, Kendrick G, Orth RJ, Pearce A, Mcmahon KW, Lavery PS, Whiting S, Wilson S, Wernberg T, Vanderklift MA, Harvey ES (2016) Accelerating tropicalization and the transformation of temperate seagrass meadows. Bioscience 66:938–948

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyndes GA, Kendrick AJ, Macarthur LD, Stewart E (2003) Differences in the species- and size-composition of fish assemblages in three distinct seagrass habitats with differing plant and meadow structure. Mar Biol 142:1195–1206

    Article  Google Scholar 

  • Hyndes GA, Nagelkerken I, Mcleod RJ, Connolly RM, Lavery PS, Vanderklift MA (2014) Mechanisms and ecological role of carbon transfer within coastal seascapes. Biol Rev Camb Philos Soc 89:232–254

    Article  PubMed  Google Scholar 

  • Hyndes GA, Platell ME, Potter IC, Lenanton RCJ (1998) Age composition, growth, reproductive biology, and recruitment of King George whiting, Sillaginodes punctata, in coastal waters of southwestern Australia. Fish Bull 96:258–270

    Google Scholar 

  • Hyndes GA, Potter IC, Platell M (1997) Relationships between diet and body size, mouth morphology, habitat and movements of six sillaginid species in coastal waters: implications for resource partitioning. Mar Biol 128:585–598

    Article  Google Scholar 

  • Jackson EL, Rees SE, Wilding C, Attrill MJ (2015) Use of a seagrass residency index to apportion commercial fishery landing values and recreation fisheries expenditure to seagrass habitat service. Conserv Biol 29:899–909

    Article  PubMed  Google Scholar 

  • Jackson EL, Rowden AA, Attrill MJ, Bossey SJ, Jones MB (2001) The importance of seagrass beds as a habitat for fishery species. Oceanogr Mar Biol Annu Rev 39:269–303

    Google Scholar 

  • Jelbart JE, Ross PM, Connolly RM (2007) Fish assemblages in seagrass beds are influenced by the proximity of mangrove forests. Mar Biol 150:993–1002

    Article  Google Scholar 

  • Jenkins GP, Black KP, Hamer PA (2000) Determination of spawning areas and larval advection pathways for King George whiting in southeastern Australia using otolith microstructure and hydrodynamic modelling. I. Victoria. Mar Ecol Prog Ser 199:231–242

    Article  Google Scholar 

  • Jenkins GP, Edgar GJ, May HMA, Shaw C (1993) Ecological basis for parallel declines in seagrass habitat and catches of commercial fish in Western Port Bay, Victoria. In: Hancock DA (ed) Sustainable fisheries through sustaining fish habitat. Australian Society for Fish Biology Workshop, Victor Harbour, SA, 12–13 August, Bureau of Resource Sciences Proceedings. AGPS, Canberra

    Google Scholar 

  • Jenkins GP, Hamer PA (2001) Spatial variation in the use of seagrass and unvegetated habitats by post-settlement King George whiting (Percoidei: Sillaginidae) in relation to meiofaunal distribution and macrophyte structure. Mar Ecol Prog Ser 224:219–229

    Article  Google Scholar 

  • Jenkins GP, Kenner T, Brown A, Coleman R (2015) Fish assemblages in locations with alternative structured habitats in an eelgrass, Zostera, dominated bay: Biodiversity value and potential for refuge. Estuar Coast Shelf Sci 161:25–37

    Article  Google Scholar 

  • Jenkins GP, Keough MJ, Hamer PA (1998) The contributions of habitat structure and larval supply to broad-scale recruitment variability in a temperate zone, seagrass-associated fish. J Exp Mar Biol Ecol 226:259–278

    Article  Google Scholar 

  • Jenkins GP, May HMA, Wheatley MJ, Holloway MG (1997) Comparison of fish assemblages associated with seagrass and adjacent unvegetated habitats of Port Phillip Bay and Corner Inlet, Victoria, Australia, with emphasis on commercial species. Estuar Coast Shelf Sci 44:569–588

    Article  Google Scholar 

  • Jenkins GP, Wheatley MJ (1998) The influence of habitat structure on nearshore fish assemblages in a southern Australian embayment: comparison of shallow seagrass, reef algal, and unvegetated habitats, with emphasis on their importance to recruitment. J Exp Mar Biol Ecol 221:147–172

    Article  Google Scholar 

  • Jenkins GP, Wheatley MJ, Poore AGB (1996) Spatial variation in recruitment, growth and feeding of post-settlement King George whiting, Sillaginodes punctata, associated with seagrass beds of Port Phillip Bay, Australia. Can J Fish Aquat Sci 53:96–105

    Article  Google Scholar 

  • Jernakoff P, Nielsen J (1998) Plant-animal associations in two species of seagrasses in Western Australia. Aquat Bot 60:359–376

    Article  Google Scholar 

  • Johnson MP, Hanley ME, Frost NJ, Mosley MWJ, Hawkins SJ (2008) The persistent spatial patchiness of limpet grazing. J Exp Mar Biol Ecol 365:136–141

    Article  Google Scholar 

  • Jones CM (2014) Can we predict the future: Juvenile finfish and their seagrass nurseries in the Chesapeake Bay. ICES J Mar Sci 71:681–688

    Article  Google Scholar 

  • Kendrick AJ, Hyndes GA (2003) Patterns in the abundance and size-distribution of syngnathid fishes among habitats in a seagrass-dominated marine environment. Estuar Coast Shelf Sci 57:631–640

    Article  Google Scholar 

  • Kikuchi T (1974) Japanese contributions on consumer ecology in eelgrass (Zostera marina L.) beds, with special reference to trophic relationships and resources in inshore fisheries. Aquaculture 4:145–160

    Article  Google Scholar 

  • Kirsch KD, Valentine JF, Heck KL (2002) Parrotfish grazing on turtlegrass Thalassia testudinum: evidence for the importance of seagrass consumption in food web dynamics of the Florida Keys National Marine Sanctuary. Mar Ecol Prog Ser 227:71–85

    Article  Google Scholar 

  • Klumpp DW, Nichols PD (1983a) Nutrition of the southern sea garfish Hyporhamphus melanochir: gut passage rate and daily consumption of two food types and assimilation of seagrass components. Mar Ecol Prog Ser 12:207–216

    Article  Google Scholar 

  • Klumpp DW, Nichols PD (1983b) A study of food chains in seagrass communities II. Food of the rock flathead, Platycephalus laevigatus Cuvier, a major predator in a Posidonia australis seagrass bed. Aust J Mar Freshw Res 34:745–754

    Article  Google Scholar 

  • Kneib RT (1997) The role of tidal marshes in the ecology of estuarine nekton. Oceanogr Mar Biol Annu Rev 35:163–220

    Google Scholar 

  • Krumme U (2009) Diel and tidal movements by fish and decapods linking tropical coastal ecosystems. Ecological Connectivity among Tropical Coastal Ecosystems

    Google Scholar 

  • Kwak SN, Klumpp DW, Park JM (2015) Feeding relationships among juveniles of abundant fish species inhabiting tropical seagrass beds in Cockle Bay, North Queensland, Australia. NZ J Mar Freshwat Res 49:205–223

    Article  CAS  Google Scholar 

  • Lenanton RCJ (1982) Alternative non-estuarine nursery habitats for some commercially and recreationally important fish species of south-western Australia. Aust J Mar Freshw Res 33:881–900

    Article  Google Scholar 

  • Lepoint G, Nyssen F, Gobert S, Dauby P, Bouquegneau JM (2000) Relative impact of a seagrass bed and its adjacent epilithic algal community in consumer diets. Mar Biol 136:513–518

    Article  CAS  Google Scholar 

  • Lim IE, Wilson SK, Holmes TH, Noble MM, Fulton CJ (2016) Specialization within a shifting habitat mosaic underpins the seasonal abundance of a tropical fish. Ecosphere 7

    Google Scholar 

  • Lilley RJ, Unsworth RKF (2014) Atlantic Cod (Gadus morhua) benefits from the availability of seagrass (Zostera marina) nursery habitat. Global Ecol Conserv 2:367–377

    Article  Google Scholar 

  • Loneragan NR, Bunn SE, Kellaway DM (1997) Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable-isotope study. Mar Biol 130:289–300

    Article  Google Scholar 

  • Loneragan NR, Kenyon RA, Staples DJ, Poiner IR, Conacher CA (1998) The influence of seagrass type on the distribution and abundance of postlarval and juvenile tiger prawns (Penaeus esculentus and P. semisulcatus) in the western Gulf of Carpentaria, Australia. J Exp Mar Biol Ecol 228:175–195

    Google Scholar 

  • Macarthur LD, Hyndes GA (2007) Varying foraging strategies of Labridae in seagrass habitats: herbivory in temperate seagrass meadows? J Exp Mar Biol Ecol 340:247–258

    Article  Google Scholar 

  • Macarthur LD, Hyndes GA, Babcock RC, Vanderklift MA (2008) Nocturnally active western rock lobsters Panulirus cygnus forage close to shallow coastal reefs. Aquat Biol 4:201–210

    Article  Google Scholar 

  • Macarthur L, Phillips D, Hyndes G, Hansen C, Vanderklift M (2011) Habitat surrounding patch reefs influences the diet, nutrition and trophic linkages of western rock lobsters, Panulirus cygnus. Mar Ecol Prog Ser 436:191–205

    Google Scholar 

  • Macdonald CM (1992) Fluctuations in seagrass habitats and commercial fish catches in Westernport Bay and the Gippsland Lakes, Victoria. In: Hancock DA (ed) Recruitment processes. Australian Society for Fish Biology Workshop, Hobart, 21 August 1991, Bureau of Rural Resources Proceedings No. 16. AGPS, Canberra

    Google Scholar 

  • Macreadie PI, Hindell JS, Jenkins GP, Connolly RM, Keough MJ (2009) Fish responses to experimental fragmentation of seagrass habitat. Conserv Biol 23:644–652

    Article  PubMed  Google Scholar 

  • Macreadie PI, Hindell JS, Keough MJ, Jenkins GP, Connolly RM (2010) Resource distribution influences positive edge effects in a seagrass fish. Ecology 91:2013–2021

    Article  PubMed  Google Scholar 

  • Mattila J, Heck KL, Millstein E, Miller E, Gustafsson C, Williams S, Byron D (2008) Increased habitat structure does not always provide increased refuge from predation. Mar Ecol Prog Ser 361:15–20

    Article  Google Scholar 

  • Mcarthur LC, Boland JW (2006) The economic contribution of seagrass to secondary production in South Australia. Ecol Model 196:163–172

    Article  Google Scholar 

  • McDevitt-Irwin JM, Iacarella JC, Baum JK (2016) Reassessing the nursery role of seagrass habitats from temperate to tropical regions: a meta-analysis. Mar Ecol Prog Ser 557:133–143

    Article  Google Scholar 

  • Mcmahon KW, Berumen ML, Thorrold SR (2012) Linking habitat mosaics and connectivity in a coral reef seascape. Proc Natl Acad Sci USA 109:15372–15376

    Article  PubMed  PubMed Central  Google Scholar 

  • Mcneill SE, Worthington DG, Ferrell DJ, Bell JD (1992) Consistently outstanding recruitment of five species of fish to a seagrass bed in Botany Bay, NSW. Aust J Ecol 17:359–365

    Article  Google Scholar 

  • Middleton MJ, Bell JD, Burchmore JJ, Pollard DA, Pease BC (1984) Structural differences in the fish communities of Zostera capricorni and Posidonia australis seagrass meadows in Botany Bay, New South Wales. Aquatic Botany, 18

    Google Scholar 

  • Melia P, Schiavina M, RTossetto M, Gatto M, Fraschetti S, Casagrandi R (2016) Looking for hotspots of marine metacommunity connectivity: a methodological framework. Scientific Reports 6:23705 https://doi.org/10.1038/srep23705

  • Mills LS, Soule ME, Doak DF (1993) The keystone-species concept in ecology and conservation. Bioscience 43:219–224

    Article  Google Scholar 

  • Minello TJ, Able KW, Weinstein MP, Hays CG (2003) Salt marshes as nurseries for nekton: testing hypotheses on density, growth and survival through meta-analysis. Mar Ecol Prog Ser 246:39–59

    Article  Google Scholar 

  • Mizerek T, Regan HM, Hovel KA (2011) Seagrass habitat loss and fragmentation influence management strategies for a blue crab Callinectes sapidus fishery. Mar Ecol Prog Ser 427:247–257

    Article  Google Scholar 

  • Moore KA, Short FT (2006) Biology of Zostera. In: Larkum A, Orth R, Duarte C (eds) Seagrasses, ecology and conservation. Springer, Netherlands

    Google Scholar 

  • Mouillot D, Culioli J-M, Lepretre A, Tomasini J-A (1999) Dispersion statistics and sample size estimates for three fish species (Symphodus ocellatus, Serranus scriba and Diplodus annularis) in the Lavezzi Islands Marine Reserve (South Corsica, Mediterranean Sea). Mar Ecol 20:19–34

    Article  Google Scholar 

  • Myers JA, Heck KL (2013) Amphipod control of epiphyte load and its concomitant effects on shoalgrass Halodule wrightii biomass. Mar Ecol Prog Ser 483:133–142

    Article  Google Scholar 

  • Nagelkerken I (2009) Evaluation of nursery function of mangroves and seagrass beds for tropical decapods and reef fishes: patterns and underlying mechanisms. Ecological Connectivity among Tropical Coastal Ecosystems

    Google Scholar 

  • Nagelkerken I, Bothwell J, Nemeth RS, Pitt JM, Van Der Velde G (2008) Interlinkage between Caribbean coral reefs and seagrass beds through feeding migrations by grunts (Haemulidae) depends on habitat accessibility. Mar Ecol Prog Ser 368:155–164

    Article  Google Scholar 

  • Nagelkerken I, Sheaves M, Baker R, Connolly RM (2015) The seascape nursery: a novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish Fish 16:362–371

    Article  Google Scholar 

  • Nakamura Y, Sano M (2004) Overlaps in habitat use of fishes between a seagrass bed and adjacent coral and sand areas at Amitori Bay, Iriomote Island, Japan: importance of the seagrass bed as juvenile habitat. Fish Sci 70:788–803

    Article  CAS  Google Scholar 

  • Nanjo K, Kohno H, Nakamura Y, Horinouchi M, Sano M (2014) Differences in fish assemblage structure between vegetated and unvegetated microhabitats in relation to food abundance patterns in a mangrove creek. Fish Sci 80:21–41

    Article  CAS  Google Scholar 

  • Nelson JA, Stallings CD, Landing WM, Chanton J (2013) Biomass transfer subsidizes nitrogen to offshore food webs. Ecosystems 16:1130–1138

    Article  CAS  Google Scholar 

  • Nemeth RS (2009) Dynamics of reef fish and decapod crustacean spawning aggregations: underlying mechanisms, habitat linkages, and trophic interactions. Ecological Connectivity among Tropical Coastal Ecosystems

    Google Scholar 

  • Nichols PD, Klumpp DW, Johns RB (1986) Lipid components and utilization in consumers of a seagrass community: an indication of carbon source. Comp Biochem Physiol Part B 83:103–113

    Article  Google Scholar 

  • Ogden JC (1977) Carbonate-sediment production by Parrot Fish and Sea Urchins on Caribbean Reefs In: Frost S, Weiss M, Saunders J (eds) Reefs and related carbonates—ecology and sedimentology AAPG studies in geology. American Association of Petroleum Geologists

    Google Scholar 

  • Ogden JC (1980) Faunal relationships in Caribbean seagrass beds. In: Phillips RC, Mcroy CP (eds) Handbook of seagrass biology: an ecosystem perspective. Garland Publishing Inc, New York

    Google Scholar 

  • Olds AD, Connolly RM, Pitt KA, Maxwell PS (2012) Primacy of seascape connectivity effects in structuring coral reef fish assemblages. Mar Ecol Prog Ser 462:191–203

    Article  Google Scholar 

  • Olds AD, Connolly RM, Pitt KA, Maxwell PS, Aswani S, Albert S (2014) Incorporating surrogate species and seascape connectivity to improve marine conservation outcomes. Conserv Biol 28:982–991

    Article  PubMed  Google Scholar 

  • Olds AD, Connolly RM, Pitt KA, Pittman SJ, Maxwell PS, Huijbers CM, Moore BR, Albert S, Rissik D, Babcock RC, Schlacher TA (2016) Quantifying the conservation value of seascape connectivity: a global synthesis. Glob Ecol Biogeogr 25:3–15

    Article  Google Scholar 

  • Pardieck RA, Orth RJ, Diaz RJ, Lipcius RN (1999) Ontogenetic changes in habitat use by postlarvae and young juveniles of the blue crab. Mar Ecol Prog Ser 186:227–238

    Article  Google Scholar 

  • Patzer RA (2008) Fish reproduction. CRC Press, Boca Raton

    Google Scholar 

  • Pecl GT, Tracey SR, Semmens JM, Jackson GD (2006) Use of acoustic telemetry for spatial management of southern calamary Sepioteuthis australis, a highly mobile inshore squid species. Mar Ecol Prog Ser 328:1–15

    Article  Google Scholar 

  • Pogoreutz C, Kneer D, Litaay M, Asmus H, Ahnelt H (2012) The influence of canopy structure and tidal level on fish assemblages in tropical Southeast Asian seagrass meadows. Estuar Coast Shelf Sci 107:58–68

    Article  Google Scholar 

  • Potter IC, Tweedley JR, Elliott M, Whitfield AK (2015) The ways in which fish use estuaries: a refinement and expansion of the guild approach. Fish Fish 16:230–239

    Article  Google Scholar 

  • Randall JE (1965) Grazing effect on seagrasses by herbivorous reef fishes in the West Indies. Ecology 46:255–260

    Article  Google Scholar 

  • Ray BR, Johnson MW, Cammarata K, Smee DL (2014) Changes in seagrass species composition in northwestern Gulf of Mexico estuaries: effects on associated seagrass fauna. PLoS One 9:e107751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robertson AI (1977) Ecology of juvenile King George whiting Sillaginodes punctatus (Cuvier and Valenciennes) (Pisces: Perciformes) in Western Port, Victoria. Aust J Mar Freshw Res 28:35–43

    Article  Google Scholar 

  • Robertson AI (1980) The structure and organization of an eelgrass fish fauna. Oecologia 47:76–82

    Article  PubMed  Google Scholar 

  • Robertson AI, Klumpp DW (1983) Feeding habits of the southern Australian garfish Hyporhamphus melanochir: a diurnal herbivore and nocturnal carnivore. Mar Biol 10:197–201

    Google Scholar 

  • Rotherham D, West RJ (2002) Do different seagrass species support distinct fish communities in south-eastern Australia? Fish Manage Ecol 9:235–248

    Article  Google Scholar 

  • Ruiz GM, Hines AH, Posey MH (1993) Shallow water as a refuge habitat for fish and crustaceans in non-vegetated estuaries: an example from Chesapeake Bay. Mar Ecol Prog Ser 99:1–16

    Article  Google Scholar 

  • Scheinin M, Scyphers SB, Kauppi L, Heck KL, Mattila J (2012) The relationship between vegetation density and its protective value depends on the densities and traits of prey and predators. Oikos 121:1093–1102

    Article  Google Scholar 

  • Seitz RD, Wennhage H, Bergström U, Lipcius RN, Ysebaert T (2014) Ecological value of coastal habitats for commercially and ecologically important species. ICES J Mar Sci 71:648–665

    Article  Google Scholar 

  • Sheridan P, Mcmahan G, Conley G, Williams A, Thayer G (1997) Nekton use of macrophyte patches following mortality of turtlegrass, Thalassia testudinum, in shallow waters of Florida Bay (Florida, USA). Bull Mar Sci 61:801–820

    Google Scholar 

  • Sheridan PF, Hays CG (2003) Aare mangroves nursery habitat for transient fishes and decapods? Wetlands 23:449–458

    Article  Google Scholar 

  • Short FT, Wyllie-Eciieverria S (1996) Natural and human-induced disturbance of seagrasses. Environ Conserv 23:17–27

    Article  Google Scholar 

  • Smit AJ, Brearley A, Hyndes GA, Lavery PS, Walker DI (2005) Carbon and nitrogen stable isotope analysis of an Amphibolis griffithii seagrass bed. Estuar Coast Shelf Sci 65:545–556

    Article  CAS  Google Scholar 

  • Smit AJ, Brearley A, Hyndes GA, Lavery PS, Walker DI (2006) δ15N and δ13C analysis of a Posidonia sinuosa seagrass bed. Aquat Bot 84:277–282

    Article  CAS  Google Scholar 

  • Smith KA, Sinerchiab M (2004) Timing of recruitment events, residence periods and post-settlement growth of juvenile fish in a seagrass nursery area, south-eastern Australia. Environ Biol Fishes 71:73–84

    Article  Google Scholar 

  • Smith TM, Hindell JS, Jenkins GP, Connolly RM (2008) Edge effects on fish associated with seagrass and sand patches. Mar Ecol Prog Ser 359:203–213

    Article  Google Scholar 

  • Smith TM, Hindell JS, Jenkins GP, Connolly RM (2010) Seagrass patch size affects fish responses to edges. J Anim Ecol 79:275–281

    Article  PubMed  Google Scholar 

  • Smith TM, Hindell JS, Jenkins GP, Connolly RM, Keough MJ (2011) Edge effects in patchy seagrass landscapes: The role of predation in determining fish distribution. J Exp Mar Biol Ecol 399:8–16

    Article  Google Scholar 

  • Smith TM, Jenkins GP, Hutchinson N (2012) Seagrass edge effects on fish assemblages in deep and shallow habitats. Estuar Coast Shelf Sci 115:291–299

    Article  Google Scholar 

  • Sobocinski KL, Latour RJ (2015) Trophic transfer in seagrass systems: estimating seasonal production of an abundant seagrass fish, Bairdiella chrysoura, in lower Chesapeake Bay. Mar Ecol Prog Ser 523:157–174

    Google Scholar 

  • Sogard SM (1992) Variability in growth of juvenile fishes in different estuarine habitats. Mar Ecol Prog Ser 85:35–53

    Article  Google Scholar 

  • Sogard SM, Able KW (1991) A comparison of eelgrass, sea lettuce macroalgae, and marsh creeks as habitats for epibenthic fishes and decapods. Estuar Coast Shelf Sci 33:501–519

    Google Scholar 

  • Steffe AS, Westoby M, Bell JD (1989) Habitat selection and diet in two species of pipefish from seagrass: sex differences. Mar Ecol Prog Ser 55:23–30

    Article  Google Scholar 

  • Tanner JE, Irving AD, Fernandes M, Fotheringham D, Mcardle A, Murray-Jones S (2014) Seagrass rehabilitation off metropolitan Adelaide: a case study of loss, action, failure and success. Ecol Manag Restor 15:168–179

    Article  Google Scholar 

  • Thresher RE, Nichols PD, Gunn JS, Bruce BD, Furlani DM (1992) Seagrass detritus as the basis of a coastal planktonic food chain. Limnol Oceanogr 37:1754–1758

    Article  Google Scholar 

  • Tomas F, Turon X, Romero J (2005) Effects of herbivores on a Posidonia oceanica seagrass meadow: importance of epiphytes. Mar Ecol Prog Ser 287:115–125

    Article  Google Scholar 

  • Travers MJ, Potter IC (2002) Factors influencing the characteristics of fish assemblages in a large subtropical marine embayment. J Fish Biol 61:764–784

    Article  Google Scholar 

  • Unsworth RKF, Bell JJ, Smith DJ (2007a) Tidal fish connectivity of reef and sea grass habitats in the Indo-Pacific. J Mar Biol Assoc United Kingdom 87:1287–1296

    Google Scholar 

  • Unsworth RKF, De León PS, Garrard SL, Jompa J, Smith DJ, Bell JJ (2008) High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Mar Ecol Prog Ser 353:213–224

    Article  Google Scholar 

  • Unsworth RKF, Taylor JD, Powell A, Bell JJ, Smith DJ (2007b) The contribution of scarid herbivory to seagrass ecosystem dynamics in the Indo-Pacific. Estuar Coast Shelf Sci 74:53–62

    Article  Google Scholar 

  • Vega Fernández T, Milazzo M, Badalamenti F, D’Anna G (2005) Comparison of the fish assemblages associated with Posidonia oceanica after the partial loss and consequent fragmentation of the meadow. Estuar Coast Shelf Sci 65:645–653

    Article  Google Scholar 

  • Valentine JF, Duffy JE (2006) The central role of grazing in seagrass ecosystems. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin

    Google Scholar 

  • Valls A, Gascuel D, Guenette S, Francour P (2012) Modeling trophic interactions to assess the effects of a marine protected area: case study in the NW Mediterranean Sea. Mar Ecol Prog Ser 456:201–214

    Article  Google Scholar 

  • Van Tussenbroek BI, Vonk JA, Stapel J, Erftemeijer PLA, Middelburg JJ, Zieman JC (2007) The biology of Thalassia: paradigms and recent advances in research. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation, 1 edn, Springer, Netherlands

    Google Scholar 

  • Velimirov B (1984) Grazing of Sarpa salpa L. on Posidonia oceanica and utilisation of soluble compounds. In: Boudouresque CF, Jeudy De Grissac A, Olivier J (eds) International workshop on Posidonia oceanica beds. GIS Posidonie Publication, France

    Google Scholar 

  • Verges A, Steinberg PD, Hay ME, Poore AG, Campbell AH, Ballesteros E, Heck KL Jr, Booth DJ, Coleman MA, Feary DA, Figueira W, Langlois T, Marzinelli EM, Mizerek T, Mumby PJ, Nakamura Y, Roughan M, Van Sebille E, Gupta AS, Smale DA, Tomas F, Wernberg T, Wilson SK (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc Biol Sci 281:20140846

    Article  PubMed  PubMed Central  Google Scholar 

  • Verlaque M (1990) Relations entre Sarpa salpa (Linnaeus, 1758) (Téléostéen, Sparidae), les autres poissons broteurs et le phytobenthos algal méditerranéen. Oceanol Acta 13:373–388

    Google Scholar 

  • Verweij MC, Nagelkerken I, Hans I, Ruseler SM, Mason PRD (2008) Seagrass nurseries contribute to coral reef fish populations. Limnol Oceanogr 53:1540–1547

    Article  Google Scholar 

  • Vizzini S, Mazzola A (2003) Seasonal variations in the stable carbon and nitrogen isotope ratios (C-13/C-12 and N-15/N-14) of primary producers and consumers in a western Mediterranean coastal lagoon. Mar Biol 142:1009–1018

    Article  CAS  Google Scholar 

  • Vizzini S, Sara G, Michener RH, Mazzola A (2002) The role and contribution of the seagrass Posidonia oceanica (L.) Delile organic matter for secondary consumers as revealed by carbon and nitrogen stable isotope analysis. Acta Oecologica Int J Ecol 23:277–285

    Article  Google Scholar 

  • Walker DI, Denninson W, Edgar GJ (1999) Status of Australian seagrass research and knowledge. In: Butler A, Jernakoff P (eds) Seagrass in Australia: strategic review and development of an R & D plan. CSIRO Publishing, Australia

    Google Scholar 

  • Watson RA, Coles RG, Lee Long WJ (1993) Simulation estimates of annual yield and landed value for commercial penaeid prawns from a tropical seagrass habitat, northern Queensland, Australia. Aust J Mar Freshw Res 44:211–219

    Article  Google Scholar 

  • Warry F, Hindell J, Macreadie P, Jenkins G, Connolly R (2009) Integrating edge effects into studies of habitat fragmentation: a test using meiofauna in seagrass. Oecologia 159:883–892

    Article  PubMed  CAS  Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJ, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106:12377–12381

    Article  PubMed  PubMed Central  Google Scholar 

  • Whalen M, Duffy JE, Grace J (2013) Temporal shifts in top-down vs. bottom-up control of epiphytic algae in a seagrass ecosystem. Ecology 94:510–520

    Article  PubMed  Google Scholar 

  • Whitfield AK, Pattrick P (2015) Habitat type and nursery function for coastal marine fish species, with emphasis on the Eastern Cape region, South Africa. Estuar Coast Shelf Sci 160:49–59

    Article  Google Scholar 

  • Young PC (1981) Temporal changes in the vagile epibenthic fauna of two seagrass meadows (Zostera capricorni and Posidonia australis). Mar Ecol Prog Ser 5:91–102

    Article  Google Scholar 

Download references

Acknowledgements

We thank Paul Lavery and Mathew Vanderklift for their comments on earlier versions of this chapter, and Rob Cole for his comments on a later version. We also thank Lorraine Wyse for her help with compiling the literature, production of Fig. 18.1 and formatting of references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn A. Hyndes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hyndes, G.A., Francour, P., Guidetti, P., Heck, K.L., Jenkins, G. (2018). The Roles of Seagrasses in Structuring Associated Fish Assemblages and Fisheries. In: Larkum, A., Kendrick, G., Ralph, P. (eds) Seagrasses of Australia. Springer, Cham. https://doi.org/10.1007/978-3-319-71354-0_18

Download citation

Publish with us

Policies and ethics