Skip to main content

Drying Techniques Applied to Porous Silicon

  • Reference work entry
  • First Online:
Handbook of Porous Silicon
  • 274 Accesses

Abstract

Wet-etched mesoporous silicon is normally dried in the air, but this limits the range of porosities and surface areas achievable, due to capillary force-induced collapse of the silicon skeleton. This updated review discusses the various alternative drying techniques with particular attention paid to supercritical/critical point drying, a powerful technique applicable to all physical forms of porous silicon. Optimized etching and supercritical drying conditions have recently led to the achievement of silicon powder surface areas up to 1125m2/g from anodized p− wafers and pore volumes up to 4.66 ml/g from anodized p + wafers. Supercritical drying has also been used to minimize “bundling” of porous silicon nanowires in closely spaced arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amato G, Brunetto N (1996) Porous silicon via freeze drying. Mater Lett 26(6):295–298

    Article  CAS  Google Scholar 

  • Amato G, Bullara V, Brunetto N, Boarino L (1996) Drying of porous silicon: a Raman, electron microscopy and photoluminescence study. Thin Solid Films 276(1–2):204–207

    Article  CAS  Google Scholar 

  • Amato G, Brunetto N, Parisini A (1997) Characterization of freeze-dried porous silicon. Thin Solid Films 297(1–2):73–78

    Article  CAS  Google Scholar 

  • Bellet D (1997) Chapter 1.5: Drying of porous silicon. In: Canham LT (ed) Properties of porous silicon. IEE, London, pp 38–43

    Google Scholar 

  • Bellet D, Canham LT (1998) Controlled drying: the key to better quality porous semiconductors. Adv Mater 10(6):487–490

    Article  CAS  Google Scholar 

  • Belmont O, Bellet D, Brechet Y (1996) Study of the cracking of highly porous p+ type silicon during drying. J Appl Phys 79:7588

    Article  Google Scholar 

  • Bhagat SD, Kim YH, Yi G, Ahn YS, Yeo JG, Choi YT (2008) Mesoporous silica powders with high specific surface area by microwave drying of hydrogels: a facile synthesis. Micro Meso Mater 108:333–339

    Article  CAS  Google Scholar 

  • Canham LT, Cullis AG, Pickering C, Dosser OD, Cox TI, Lynch TP (1994) Luminescent silicon aerocrystal networks prepared by anodisation and supercritical drying. Nature 368:133–135

    Article  CAS  Google Scholar 

  • Cao DT, Anh CT, Ngan LTQ (2016) Formation of mosaic silicon oxide structure during metal assisted electrochemical etching of silicon at high current density. J Electr Mater 45(5):2615–2620

    Article  CAS  Google Scholar 

  • Chamard V, Pichat C, Dolino G (2001) Rinsing and drying studies of porous silicon by high resolution X-ray diffraction. Solid State Commun 118(3):135–139

    Article  CAS  Google Scholar 

  • Chang SW, Chuang VP, Boles ST, Ross CA, Thompson CV (2011) Densely packed arrays of ultra-high aspect ratio silicon nanowires fabricated using block co-polymer lithography and metal assisted etching. Adv Funct Mater 19(15):2495–2500

    Article  CAS  Google Scholar 

  • DiFrancia G, Ferrara V, Lancellotti L, Quercia L (2000) Stress measurement technique to monitor porous silicon processing. J Porous Mater 7:319–321

    Article  CAS  Google Scholar 

  • Dudley ME, Kolasinski KW (2009) Structure and photoluminescence studies of porous silicon formed in ferric ion containing stain etchants. Phys Stat Solidi A6:1240–1244

    Article  CAS  Google Scholar 

  • Frohnhoff S, Arens-Fischer R, Heinrich T, Fricke J, Amtzen M, Theiss W (1995) Characterization of supercritical dried porous silicon. Thin Solid Films 255(1–2):115–118

    Article  CAS  Google Scholar 

  • Gaev DS, Rekhviashvili SS (2012) Kinetics of crack formation in porous silicon. Semiconductors 46(2):137–140

    Article  CAS  Google Scholar 

  • Gruning U, Yelon A (1995) Capillary and van der Waals forces and mechanical stability of porous silicon. Thin Solid Films 256(1–2):135–138

    Article  Google Scholar 

  • Jafri IH, Busta H, Walsh ST (1999) Critical point drying and cleaning for MEMS technology. Proc SPIE 3880. doi:10.1117/12.359371

    Google Scholar 

  • Joo J, Defforge T, Loni A, Kim D, Li ZY, Sailor MJ, Gautier G, Canham LT (2016) Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying. Appl Phys Lett. doi:10.1063/1.4947084

    Article  Google Scholar 

  • Jung DS, Hwang TH, Park SB, Choi JW (2013) Spray drying method for large scale and high performance silicon negative electrodes in Li ion batteries. Nano Lett 13(5):2092–2097

    Article  CAS  Google Scholar 

  • Kim CJ, Kim JY, Sridharan B (1998) Comparative evaluation of drying techniques for surface micromachining. Sens Actuat A64:17–26

    Article  Google Scholar 

  • Koizumi T, Obata K, Tezuka Y, Shin S, Koshida N, Suda Y (1996) Effects of oxidation on electronic states and photoluminescence properties of porous silicon. Jpn J Appl Phys 35:L803–L806

    Article  CAS  Google Scholar 

  • Kolasinski KW, Barnard JC, Ganguly S, Koker L, Wellner A, Aindow M, Palmer RE, Field CN, Hamley PA, Poliakoff M (2000) On the role of the pore filling medium in photoluminescence from photochemically etched porous silicon. J Appl Phys 88(5):2472–2479

    Article  CAS  Google Scholar 

  • Koynov S, Pereira RN, Crnolatac I, Kovalev D, Huygens A, Chirvony V, Stutzmann M, deWitte P (2011) Purification of nanoporous silicon for biomedical applications. Adv Eng Mater 13(6):B225–B233

    Article  CAS  Google Scholar 

  • Lei ZK, Kang YL, Cen H, Hu M (2006) Variability on Raman shift to stress coefficient of porous silicon. Chin Phys Lett 23(6):1623–1626

    Article  CAS  Google Scholar 

  • Lerondel G, Amato G, Porisini A, Boarino L (2000) Porous silicon nanocracking. Mater Sci Eng B 69(70):161–166

    Article  Google Scholar 

  • Linsmeier J, Wust K, Schenk H, Hilpert U, Ossau W, Fricke J, Arens-Fischer R (1997) Chemical surface modification of porous silicon with tetraethoxysilane. Thin Solid Films 297:26–30

    Article  CAS  Google Scholar 

  • Loni A, Canham LT, Defforge T, Gautier G (2015) Supercritically dried porous silicon powders with surface areas exceeding 1000 m2/g. ECS J Solid State Sci Techn 4(8):P289–P292

    Article  CAS  Google Scholar 

  • Mason MD, Sirbuly DJ, Buratto SK (2002) Correlation between bulk morphology and luminescence in porous silicon investigated by pore collapse resulting from drying. Thin Solid Films 406:151–158

    Article  CAS  Google Scholar 

  • Nadarassan DK, Loni A, Shabir Q, Kelly C, O’Brien H, Caffull E, Webb K, Canham LT, Maniruzamman M, Trivoli V, Douroumis D (2015) Ultrahigh drug loading and release from porous silicon aerocrystals. Proc 42nd Ann Contr Rel Soc Meeting July 26–29 Edinburgh Ext Abstr No. 825

    Google Scholar 

  • Namatsu H, Yamazaki K, Kurihara K (1999) Supercritical drying for nanostructure fabrication without pattern collapse. Microelectron Eng 46(1–4):129–132

    Article  CAS  Google Scholar 

  • Oton CJ et al (2002) Scattering rings in optically anisotropic porous silicon. Appl Phys Lett 81(26):4919–4921

    Article  CAS  Google Scholar 

  • Pakowski Z (2007) Modern methods of drying nanomaterials. Dry Porous Mater 66:19–27

    Article  Google Scholar 

  • Pellegrini V, Fuso F, Lorenzi G, Allegrini M, Diligenti A, Nannini A, Pennelli G (1995) Improved optical emission of porous silicon with different postanodization processes. Appl Phys Lett 67:1084

    Article  CAS  Google Scholar 

  • Qiu W, Kang YL, Li Q, Lei ZK, Qin QH (2008) Experimental analysis for the effect of dynamic capillarity on stress transformation in porous silicon. Appl Phys Lett 92:041906

    Article  CAS  Google Scholar 

  • Ratchford D, Yeom J, Long JP, Pehrsson PE (2015) Influence of inhomogeneous porosity on silicon nanowire Raman enhancement and leaky mode modulated photoluminescence. Nanoscale 7:4124–4133

    Article  CAS  Google Scholar 

  • Scherer GW (1990) Theory of drying. J Am Ceram Soc 73(1):3–14

    Article  CAS  Google Scholar 

  • Skryshevsky VA, Vorobey G, Jamois C, Munguia J, Lysenko V (2011) Drying induced self-formation of semi-ordered nano-porous silicon micro-hairs. Phys Status Solidi C8(6):1805–1807

    Article  CAS  Google Scholar 

  • Von Behren J, Chimowitz EH, Fauchet PM (1997) Critical behaviour and the processing of nanoscale porous materials. Adv Mater 9:921

    Article  Google Scholar 

  • Wang B, Zhang W, Mujumdar AS, Huang L (2005) Progress in drying technology for nanomaterials. Dry Technol 23(1–2):7–32

    Article  CAS  Google Scholar 

  • Wang F, Song S, Zhang J (2009) Surface texturing of porous silicon with capillary stress and its superhydrophobicity. Chem Commun 28:4239–4241

    Article  CAS  Google Scholar 

  • Wang D, Ji R, Albrecht A, Schaaf P (2013) Ordered arrays of nanoporous silicon nanopillars and silicon nanopillars with nanoporous shells. Nanoscale Res Lett 8(42):1–9

    Google Scholar 

  • Xu SH, Wang LW (2009) Porous silicon microtube structures induced by anisotropic strain. J Appl Phys 106:073516

    Article  CAS  Google Scholar 

  • Xu D, Guo G, Gui L, Tang Y, Zhang B, Qin G (1998) Preparation and characterisation of freestanding porous silicon films with high porosities. Electrochem Solid State Lett 1(5):227–229

    Article  CAS  Google Scholar 

  • Yeom J, Ratchford D, Field CR, Brintlinger TH (2014) Decoupling diameter and pitch in silicon nanowire arrays made by metal assisted chemical etching. Adv Funct Mater 24:106–116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh Canham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Canham, L. (2018). Drying Techniques Applied to Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-71381-6_57

Download citation

Publish with us

Policies and ethics