Skip to main content

Abstract

In this chapter, we apply some of the likelihood-free algorithms discussed in previous chapters in a tutorial fashion with an application to the Minerva 2 model, a global matching model of recognition memory. First, we will briefly describe the model. Then, we will fit the Minerva 2 model to simulated data using three different likelihood-free algorithms and compare how well each technique provides fits to the data. Finally, we will fit a hierarchical version of the Minerva 2 model to real-world data using a combination of the probability density approximation method and the Gibbs ABC algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The responses are arbitrarily coded as either a one for an “old” response, or a zero for a “new” response.

  2. 2.

    In our simulations, we tested a few different values of δ ABC until we arrived at the smallest value that still produced good mixing behavior across the chains.

  3. 3.

    Dennis et al. [4] also used words of different frequency (high and low) to construct their study and test lists. Because Minerva 2 lacks a mechanism for explaining word frequency effects in recognition memory, for the purposes of this demonstration we collapsed across both word frequency classes to produce a single hit and false alarm rate for each experimental condition.

  4. 4.

    After fitting the model, we noticed that no marginal distribution for η i went below four, so while our choice was made out of convenience, it had little effect on the posterior estimates.

References

  1. S. Dennis, M. Lee, A. Kinnell, J. Math. Psychol. 59, 361 (2008)

    Google Scholar 

  2. M.D. Lee, Psychon. Bull. Rev. 15, 1 (2008)

    Article  PubMed  Google Scholar 

  3. R.M. Shiffrin, M.D. Lee, W. Kim, E.J. Wagenmakers, Cogn. Sci. 32, 1248 (2008)

    Article  PubMed  Google Scholar 

  4. M.D. Lee, E.J. Wagenmakers, Bayesian Modeling for Cognitive Science: A Practical Course (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  5. D.L. Hintzman, Behav. Res. Methods Instrum. Comput. 16, 96–101 (1984)

    Article  Google Scholar 

  6. C.F. Sheu, J. Math. Psychol. 36, 592 (1992)

    Article  Google Scholar 

  7. B.M. Turner, P.B. Sederberg, Psychon. Bull. Rev. 21, 227 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  8. B.M. Turner, T. Van Zandt, J. Math. Psychol. 56, 69 (2012)

    Article  Google Scholar 

  9. B.M. Turner, P.B. Sederberg, J. Math. Psychol. 56, 375 (2012)

    Article  Google Scholar 

  10. B.M. Turner, P.B. Sederberg, S. Brown, M. Steyvers, Psychol. Methods 18, 368 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  11. B.M. Turner, T. Van Zandt, Psychometrika 79, 185 (2014)

    Article  PubMed  Google Scholar 

  12. D.M. Green, J.A. Swets, Signal Detection Theory and Psychophysics (Wiley, New York, 1966)

    Google Scholar 

  13. J.P. Egan, Recognition memory and the operating characteristic. Technical Report, AFCRC-TN-58-51, Hearing and Communication Laboratory, Indiana University, Bloomington, IN (1958)

    Google Scholar 

  14. B.B. Murdock, Psychol. Rev. 89, 609 (1982)

    Article  Google Scholar 

  15. G. Gillund, R.M. Shiffrin, Psychol. Rev. 91, 1 (1984)

    Article  PubMed  Google Scholar 

  16. M.S. Humphreys, J.D. Bain, R. Pike, Psychol. Rev. 96, 208 (1989)

    Article  Google Scholar 

  17. R. Pike, Psychol. Rev. 91, 281 (1984)

    Article  Google Scholar 

  18. S.E. Clark, S.D. Gronlund, Psychon. Bull. Rev. 3, 37 (1996)

    Article  PubMed  Google Scholar 

  19. M.S. Humphreys, R. Pike, J.D. Bain, G. Tehan, J. Math. Psychol. 33, 36 (1989)

    Article  Google Scholar 

  20. D.L. Hintzman, Psychol. Rev. 95, 528 (1988)

    Article  Google Scholar 

  21. R. Ratcliff, C.F. Sheu, S.D. Gronlund, Psychol. Rev. 99, 518 (1992)

    Article  PubMed  Google Scholar 

  22. R. Ratcliff, S.E. Clark, R.M. Shiffrin, J. Exp. Psychol. Learn. Mem. Cogn. 16, 163 (1990)

    Article  PubMed  Google Scholar 

  23. M. Glanzer, J.K. Adams, Mem. Cogn. 13, 8 (1985)

    Article  Google Scholar 

  24. R.M. Shiffrin, M. Steyvers, Psychon. Bull. Rev. 4, 145 (1997)

    Article  PubMed  Google Scholar 

  25. J. McClelland, M. Chappell, Psychol. Rev. 105, 724 (1998)

    Article  PubMed  Google Scholar 

  26. S. Dennis, M.S. Humphreys, Psychol. Rev. 108, 452 (2001)

    Article  PubMed  Google Scholar 

  27. J. Arndt, E. Hirshman, J. Mem. Lang. 39, 371 (1998)

    Article  Google Scholar 

  28. A.S. Benjamin, Psychol. Rev. 117(4), 1055 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  29. M.R.P. Dougherty, C.F. Gettys, E.E. Ogden, Psychol. Rev. 106(1), 180 (1999)

    Article  Google Scholar 

  30. R.P. Thomas, M.R.P. Dougherty, A.M. Sprenger, J.I. Harbison, Psychol. Rev. 115(1), 155 (2008)

    Article  PubMed  Google Scholar 

  31. P.J. Kwantes, D.J.K. Mewhort, Can. J. Exp. Psychol. 53(4), 306 (1999)

    Article  PubMed  Google Scholar 

  32. P.J. Kwantes, Psychon. Bull. Rev. 12(4), 703 (2005)

    Article  PubMed  Google Scholar 

  33. B.M. Turner, S. Dennis, T. Van Zandt, Psychol. Rev. 120, 667 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  34. S.E. Clark, R.M. Shiffrin, Mem. Cogn. 20, 580 (1992)

    Article  Google Scholar 

  35. J. Annis, J.G. Lenes, H.A. Westfall, A.H. Criss, K.J. Malmberg, Genetics 85, 27 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palestro, J.J., Sederberg, P.B., Osth, A.F., Zandt, T.V., Turner, B.M. (2018). A Tutorial. In: Likelihood-Free Methods for Cognitive Science. Computational Approaches to Cognition and Perception. Springer, Cham. https://doi.org/10.1007/978-3-319-72425-6_3

Download citation

Publish with us

Policies and ethics