Skip to main content

Refined Holonomic Summation Algorithms in Particle Physics

  • Conference paper
  • First Online:
Advances in Computer Algebra (WWCA 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 226))

Included in the following conference series:

Abstract

An improved multi-summation approach is introduced and discussed that enables one to simultaneously handle sequences generated by indefinite nested sums and products in the setting of difference rings and holonomic sequences described by linear recurrence systems. Relevant mathematics is reviewed and the underlying advanced difference ring machinery is elaborated upon. The flexibility of this new toolbox contributed substantially to evaluating complicated multi-sums coming from particle physics. Illustrative examples of the functionality of the new software package RhoSum are given.

Dedicated to Sergei A. Abramov on the occasion of his 70th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(L(n_1,\dots ,n_l)\) stands for \(z_0+z_1\,n_1+\dots +z_l\,n_l\) for some integers \(z_0,\dots ,z_l\).

  2. 2.

    For a finite set \(L\subseteq \mathbb {A}\) we define \(\text {supp}(L)=\{1\leqslant j\leqslant e\mid t_j\text { occurs in }L\}\).

  3. 3.

    In order to apply our summation algorithms, we must assume that the constant field \(\mathbb {K}=\text {const}_{\sigma }\mathbb {G}\) has certain algorithmic properties [55]; this is guaranteed if we are given, e.g., a rational function field \(\mathbb {K}=\mathbb {K}'(x_1,\dots ,x_l)\) over an algebraic number field \(\mathbb {K}'\).

  4. 4.

    If one is only interested in the telescoping problem with \(d=1\), it might be worthwhile to look for a solution of (14) in a \(\mathbb {G}\)-simple \(R\varPi \varSigma \)-extension; this particular case is neglected in the following.

  5. 5.

    For the rational and q-rational difference fields see also [15, 16, 39].

  6. 6.

    We will make this statement precise in Theorem 2.3 by choosing specific variants of Problem RPT.

  7. 7.

    Also in  [34] coupled systems are constructed to handle multi-sums. Here we restrict to a special form so that the full power of our tools from Sect. 2 can be applied without using any Gröber bases or uncoupling computations. In particular, the recurrences can have inhomogeneous parts which can be represented in \(\varPi \varSigma \)-fields and \(R\varPi \varSigma \)-extensions. Also the coefficients could be represented in general \(\varPi \varSigma \)-fields (see [54]), but we will skip this more exotic case.

  8. 8.

    If there are exceptional points within the summation range, we refer to Sect. 3.2.3. Further, if the upper bound is \(\infty \), limit computations are necessary. For wide classes of indefinite nested sums asymptotic expansions can be computed [1, 10, 12, 13] that can be used for this task.

References

  1. Ablinger, J.: Computer Algebra Algorithms for Special Functions in Particle Physics. Ph.D. thesis, J. Kepler University Linz, April 2012

    Google Scholar 

  2. Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., Hasselhuhn, A., von Manteuffel, A., Round, M., Schneider, C., Wißbrock, F.: The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function \(F_2(x, Q^2)\) and transversity. Nucl. Phys. B 886, 733–823 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., von Manteuffel, A., Schneider, C.: The 3-loop pure singlet heavy flavor contributions to the structure function \(F_2(x, Q^2)\) and the anomalous dimension. Nucl. Phys. B 890, 48–151 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., von Manteuffel, A., Schneider, C.: The three-loop splitting functions \(P_{qg}^{(2)}\) and \(P_{gg}^{(2, N_F)}\). Nucl. Phys. B 922, 1–40 (2017)

    Article  MATH  Google Scholar 

  5. Ablinger, J., Behring, A., Blümlein, J., Freitas, A.D., Hasselhuhn, A., von Manteuffel, A., Round, M., Schneider, C., Wißbrock, F.: Heavy flavour corrections to polarised and unpolarised deep-inelastic scattering at 3-loop order. In: Proceedings of QCD Evolution 2016, vol. PoS(QCDEV2016)052, pp. 1–16 (2016)

    Google Scholar 

  6. Ablinger, J., Blümlein, J., De Freitas, A., Hasselhuhn, A., Schneider, C., Wißbrock, F.: Three loop massive operator matrix elements and asymptotic Wilson coefficients with two different masses. Nucl. Phys. B 921, 585–688 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ablinger, J., Blümlein, J., De Freitas, A., Hasselhuhn, A., von Manteuffel, A., et al.: The transition matrix element \(A_{gq}(N)\) of the variable flavor number scheme at \(O(\alpha _s^3)\). Nucl. Phys. B 882, 263–288 (2014)

    Article  MATH  Google Scholar 

  8. Ablinger, J., Blümlein, J., De Freitas, A., Hasselhuhn, A., von Manteuffel, A., Round, M., Schneider, C.: The \(O(\alpha _s^3 T_F^2)\) contributions to the gluonic operator matrix element. Nucl. Phys. B 885, 280–317 (2014)

    Article  MATH  Google Scholar 

  9. Ablinger, J., Blümlein, J., Klein, S., Schneider, C., Wißbrock, F.: The \(O(\alpha _s^3)\) massive operator matrix elements of \(O(n_f)\) for the structure function \(F_2(x, Q^2)\) and transversity. Nucl. Phys. B 844, 26–54 (2011)

    Article  MATH  Google Scholar 

  10. Ablinger, J., Blümlein, J., Raab, C.G., Schneider, C.: Iterated binomial sums and their associated iterated integrals. J. Math. Phys. 55(112301), 112301 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ablinger, J., Blümlein, J., Round, M., Schneider, C.: Advanced computer algebra algorithms for the expansion of Feynman integrals (2012). [PoSLL2012,050(2012)]

    Google Scholar 

  12. Ablinger, J., Blümlein, J., Schneider, C.: Harmonic sums and polylogarithms generated by cyclotomic polynomials. J. Math. Phys. 52, 102301 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ablinger, J., Blümlein, J., Schneider, C.: Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms. J. Math. Phys. 54, 082301 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Abramov, S., van Hoeij, M.: Integration of solutions of linear functional equations. Integral Transform. Spec. Funct. 8(1–2), 3–12 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Abramov, S.A.: Rational solutions of linear differential and difference equations with polynomial coefficients. U.S.S.R Comput. Math. Math. Phys. 29(6), 7–12 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Abramov, S.A.: Rational solutions of linear difference and \(q\)-difference equations with polynomial coefficients. Program. Comput. Softw., 21(6):273–278 (1995). Translated from Russian

    Google Scholar 

  17. Abramov, S.A., Bronstein, M., Petkovšek, M., Schneider, C.: In preparation (2017)

    Google Scholar 

  18. Abramov, S.A., Petkovšek, M.: D’Alembertian solutions of linear differential and difference equations. In: von zur Gathen, J. (ed.) Proceedings of ISSAC 1994, pp. 169–174. ACM Press (1994)

    Google Scholar 

  19. Abramov, S.A., Zima, E.V.: D’Alembertian solutions of inhomogeneous linear equations (differential, difference, and some other). In: Proceedings of ISSAC 1996, pp. 232–240. ACM Press (1996)

    Google Scholar 

  20. Andrews, G.E., Paule, P., Schneider, C.: Plane Partitions VI: Stembridge’s TSPP Theorem. Adv. Appl. Math. 34(4):709–739 (2005) . Special Issue Dedicated to Dr. David P. Robbins. Edited by D. Bressoud

    Google Scholar 

  21. Apagodu, M., Zeilberger, D.: Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory. Adv. Appl. Math. 37, 139–152 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bauer, A., Petkovšek, M.: Multibasic and mixed hypergeometric gosper-type algorithms. J. Symb. Comput. 28(4), 711–736 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Becirovic, A., Paule, P., Pillwein, V., Riese, A., Schneider, C., Schoeberl, J.: Hypergeometric summation algorithms for high order finite elements. Computing 78(3), 235–249 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Behring, A., Bierenbaum, I., Blümlein, J., De Freitas, A., Klein, S., Wißbrock, F.: The logarithmic contributions to the \(O(\alpha ^3_s)\) asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering. Eur. Phys. J. C 74(9), 3033 (2014)

    Article  Google Scholar 

  25. Behring, A., Blümlein, J., De Freitas, A., Hasselhuhn, A., von Manteuffel, A., Schneider, C.: \(O(\alpha _s^3)\) heavy flavor contributions to the charged current structure function \(xF_3(x, Q^2)\) at large momentum transfer. Phys. Rev. D 92(11), 114005 (2015)

    Article  Google Scholar 

  26. Behring, A., Blümlein, J., De Freitas, A., Pfoh, T., Raab, C., Round, M., Ablinger, J., Hasselhuhn, A., Schneider, C., Wißbrock, F., von Manteuffel, A.: New Results on the 3-Loop Heavy Flavor Corrections in Deep-Inelastic Scattering. PoS, RADCOR2013:058 (2013)

    Google Scholar 

  27. Behring, A., Blümlein, J., De Freitas, A., von Manteuffel, A., Schneider, C.: The 3-loop non-singlet heavy flavor contributions to the structure function \(g_1(x, Q^2)\) at large momentum transfer. Nucl. Phys. B 897, 612–644 (2015)

    Article  MATH  Google Scholar 

  28. Behring, A., Blümlein, J., Falcioni, G., De Freitas, A., von Manteuffel, A., Schneider, C.: Asymptotic 3-loop heavy flavor corrections to the charged current structure functions \(F_L^{W^+-W^-}(x, Q^2)\) and \(F_2^{W^+-W^-}(x, Q^2)\). Phys. Rev. D 94(11), 114006 (2016)

    Article  Google Scholar 

  29. Blümlein, J.: The theory of deeply inelastic scattering. Prog. Part. Nucl. Phys. 69, 28–84 (2013)

    Article  Google Scholar 

  30. Blümlein, J., Klein, S., Schneider, C., Stan, F.: A symbolic summation approach to Feynman integral calculus. J. Symb. Comput. 47, 1267–1289 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Blümlein, J., Kurth, S.: Harmonic sums and Mellin transforms up to two loop order. Phys. Rev. D 60, 014018 (1999)

    Article  Google Scholar 

  32. Bostan, A., Chyzak, F., de Panafieu, É.: Complexity estimates for two uncoupling algorithms. In: Proceedings of ISSAC 2013, Boston, June 2013

    Google Scholar 

  33. Bronstein, M.: On solutions of linear ordinary difference equations in their coefficient field. J. Symbolic Comput. 29(6), 841–877 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chyzak, F.: An extension of Zeilberger’s fast algorithm to general holonomic functions. Discrete Math. 217(1), 115–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chyzak, F., Salvy, B.: Non-commutative elimination in ore algebras proves multivariate identities. J. Symb. Comput. 26(2), 187–227 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cohn, R.M.: Difference Algebra. Interscience Publishers Wiley, New York (1965)

    MATH  Google Scholar 

  37. Gosper, R.W.: Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci. USA 75(1):40–42 (1978). 16592483[pmid]

    Google Scholar 

  38. Hendriks, P.A., Singer, M.F.: Solving difference equations in finite terms. J. Symbolic Comput. 27(3), 239–259 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hoeij, M.: Rational solutions of linear difference equations. In: Proceedings of ISSAC 1998, pp. 120–123 (1998)

    Google Scholar 

  40. Karr, M.: Summation in finite terms. J. Association Comput. Mach. 28(2), 305–350 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  41. Karr, M.: Theory of summation in finite terms. J. Symbolic Comput. 1(3), 303–315 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kauers, M., Koutschan, C.: A Mathematica package for \(q\)-holonomic sequences and power series. Ramanujan J. 19(2), 137–150 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kauers, M., Paule, P.: The Concrete Tetrahedron. Texts and Monographs in Symbolic Computation. Springer, New York (2011)

    MATH  Google Scholar 

  44. Koutschan, C.: A fast approach to creative telescoping. Math. Comput. Sci. 4(2–3), 259–266 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mallinger, C.: Algorithmic manipulations and transformations of univariate holonomic functions and sequences. Master’s thesis, RISC, J. Kepler University, Linz, August 1996

    Google Scholar 

  46. Ocansey, E., Schneider, C.: Representing (q-)hypergeometric products and mixed versions in difference rings. In: This Proceeding (2018). arXiv:1705.01368 [cs.SC]

  47. Paule, P., Riese, A.: A Mathematica q-analogue of Zeilberger’s algorithm based on an algebraically motivated approach to q-hypergeometric telescoping. In: Ismail, M., Rahman, M. (eds.) Special Functions, q-Series and Related Topics, vol. 14 of Fields Institute Communication, pp. 179–210 (1997). Amer. Math. Soc

    Google Scholar 

  48. Paule, P., Schorn, M.: A Mathematica version of Zeilberger’s algorithm for proving binomial coefficient identities. J. Symb. Comput. 20, pp. 673–698

    Google Scholar 

  49. Petkovšek, M.: Hypergeometric solutions of linear recurrences with polynomial coefficients. J. Symbolic Comput. 14(2–3), 243–264 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  50. Petkovšek, M., Wilf, H., Zeilberger, D.: A \(=\) B. Ak Peters Series. Taylor & Francis (1996)

    Google Scholar 

  51. Petkovšek, M., Zakrajšek, H.: Solving linear recurrence equations with polynomial coefficients. In: Schneider, C., Blümlein, J. (eds.) Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, Texts and Monographs in Symbolic Computation, pp. 259–284. Springer, Vienna (2013)

    Google Scholar 

  52. Salvy, B., Zimmermann, P.: GFUN: a package for the manipulation of generating and holonomic functions in one variable. ACM Trans. Math. Softw. 20, 163–177 (1994)

    Article  MATH  Google Scholar 

  53. Schneider, C.: Symbolic Summation in Difference Fields. Ph.D. thesis, RISC, J. Kepler University Linz, May 2001. (published as Technical report no. 01–17 in RISC Report Series.)

    Google Scholar 

  54. Schneider, C.: A new Sigma approach to multi-summation. Adv. Appl. Math. 34(4):740–767 (2005). (Special Issue Dedicated to Dr. David P. Robbins. Edited by D. Bressoud. Preliminary version online)

    Google Scholar 

  55. Schneider, C.: Product representations in \({\Pi }{\Sigma }\)-fields. Ann. Comb. 9(1), 75–99 (2005)

    Article  MathSciNet  Google Scholar 

  56. Schneider, C.: Solving parameterized linear difference equations in terms of indefinite nested sums and products. J. Differ. Equations Appl. 11(9), 799–821 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  57. Schneider, C.: Symbolic summation assists combinatorics. Sem. Lothar. Combin. 56:1–36 (2007). Article B56b

    Google Scholar 

  58. Schneider, C.: A Refined Difference Field Theory for Symbolic Summation. J. Symb. Comput. 43(9), 611–644 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. Schneider, C.: Fast algorithms for refined parameterized telescoping in difference fields. In:  Guitierrez, M.W.J., Schicho, J. (eds.) Computer Algebra and Polynomials, Lecture Notes in Computer Science (LNCS) 8942, pp. 157–191 (2015)

    Google Scholar 

  60. Schneider, C.: Modern summation methods for loop integrals in Quantum Field Theory: the packages Sigma, EvaluateMultiSums and SumProduction. In: Proceedings of ACAT 2013, Journal of Physics Conference Series, vol. 523, pp. 1–17 (2014)

    Google Scholar 

  61. Schneider, C.: A difference ring theory for symbolic summation. J. Symb. Comput. 72, 82–127 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  62. Schneider, C.: Symbolic summation in difference rings and applications. In: Rosenkranz, M. (ed.) Proceedings of ISSAC 2016, pp. 9–12 (2016)

    Google Scholar 

  63. Schneider, C.: Summation theory II: characterizations of \(R\Pi \Sigma \)-extensions and algorithmic aspects. J. Symb. Comput. 80(3), 616–664 (2017)

    Article  MathSciNet  Google Scholar 

  64. Stembridge, J.: The enumeration of totally symmetric plane partitions. Adv. Math. 111(2), 227–243 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  65. Vermaseren, J.A.M.: Harmonic sums, Mellin transforms and integrals. Int. J. Mod. Phys. A 14, 2037–2976 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  66. Wegschaider, K.: Computer generated proofs of binomial multi-sum identities. Master’s thesis, RISC, J. Kepler University, May 1997

    Google Scholar 

  67. Wilf, H.S., Zeilberger, D.: An algorithmic proof theory for hypergeometric (ordinary and "\(q\)") multisum/integral identities. Invent. Math. 108(3), 575–633 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  68. Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32, 321–368 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  69. Zeilberger, D.: The method of creative telescoping. J. Symb. Comput. 11(3), 195–204 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  70. Zürcher, B.: Rationale Normalformen von pseudo-linearen Abbildungen. Ph.D. thesis, Mathematik, ETH Zürich (1994)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the guest programme of Kolleg Mathematik-Physik Berlin (KMPB), the European Commission through contract PITN-GA-2012-316704 (HIGGSTOOLS), and by the Austrian Science Fund (FWF) grant SFB F50 (F5009-N15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Blümlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blümlein, J., Round, M., Schneider, C. (2018). Refined Holonomic Summation Algorithms in Particle Physics. In: Schneider, C., Zima, E. (eds) Advances in Computer Algebra. WWCA 2016. Springer Proceedings in Mathematics & Statistics, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-73232-9_3

Download citation

Publish with us

Policies and ethics