Skip to main content

Denominator Bounds for Systems of Recurrence Equations Using \(\varPi \varSigma \)-Extensions

  • Conference paper
  • First Online:
Advances in Computer Algebra (WWCA 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 226))

Included in the following conference series:

Abstract

We consider linear systems of recurrence equations whose coefficients are given in terms of indefinite nested sums and products covering, e.g., the harmonic numbers, hypergeometric products, q-hypergeometric products or their mixed versions. These linear systems are formulated in the setting of \(\varPi \varSigma \)-extensions and our goal is to find a denominator bound (also known as universal denominator) for the solutions; i.e., a non-zero polynomial d such that the denominator of every solution of the system divides d. This is the first step in computing all rational solutions of such a rather general recurrence system. Once the denominator bound is known, the problem of solving for rational solutions is reduced to the problem of solving for polynomial solutions.

Dedicated to Sergei A. Abramov on the occasion of his 70th birthday.

Supported by the Austrian Science Fund (FWF) grant SFB F50 (F5009-N15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout this article, all fields contain the rational numbers \(\mathbb {Q}\) as subfield.

  2. 2.

    If z is the zero vector, then the assumption \(\gcd (z,d)=1\) implies \(d=1\).

  3. 3.

    Some authors would denote \(\mathbb {F}(t)[\sigma ]\) by the more precise \(\mathbb {F}(t)[\sigma ;\sigma ,0]\).

  4. 4.

    A more rigorous way would be to introduce a new symbol for the variable. However, a lot of authors simply use the same symbol and we decided to join them.

  5. 5.

    The other two rings do not admit determinants since they lack commutativity.

  6. 6.

    Note that the commutation rule \(\sigma ^{-1} a = \sigma ^{-1}(a)\sigma ^{-1}\) follows immediately from the rule \(\sigma a = \sigma (a) \sigma \).

References

  1. Abramov, S.A.: On the summation of rational functions. Zh. vychisl. mat. Fiz. 11, 1071–1074 (1971)

    MathSciNet  MATH  Google Scholar 

  2. Gosper, R.W.: Decision procedures for indefinite hypergeometric summation. Proc. Nat. Acad. Sci. U.S.A. 75, 40–42 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Paule, P.: Greatest factorial factorization and symbolic summation. J. Symb. Comput. 20(3), 235–268 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Petkovšek, M.: Hypergeometric solutions of linear recurrences with polynomial coefficients. J. Symb. Comput. 14(2–3), 243–264 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Petkovšek, M., Wilf, H.S., Zeilberger, D.: \(a = b\). A K Peters (1996). https://www.math.upenn.edu/~wilf/AeqB.html

  6. Zeilberger, D.: The method of creative telescoping. J. Symb. Comput. 11, 195–204 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bronstein, M.: On solutions of linear ordinary difference equations in their coefficient field. J. Symb. Comput. 29(6), 841–877 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karr, M.: Summation in finite terms. J. Assoc. Comput. Mach. 28(2), 305–350 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Schneider, C.: Simplifying multiple sums in difference fields. In: Schneider, C., Blümlein, J. (eds.) Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions. Texts and Monographs in Symbolic Computation, pp. 325–360. Springer, Berlin (2013). arXiv:1304.4134 [cs.SC]

  10. Schneider, C.: A difference ring theory for symbolic summation. J. Symb. Comput. 72, 82–127 (2016). arXiv:1408.2776 [cs.SC]

  11. Schneider, C.: Summation Theory II: Characterizations of \(R\varPi \varSigma \)-extensions and algorithmic aspects. J. Symb. Comput. 80(3), 616–664 (english) (2017). arXiv:1603.04285 [cs.SC]

  12. Chyzak, F.: An extension of Zeilberger’s fast algorithm to general holonomic functions. Discret. Math. 217, 115–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zeilberger, D.: A holonomic systems approach to special functions identities. J. Comput. Appl. Math. 32, 321–368 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ablinger, J., Behring, A., Blümlein, J., De Freitas, A., von Manteuffel, A., Schneider, C.: Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra. Comput. Phys. Comm. 202, 33–112 (english) (2016). arXiv:1509.08324 [hep-ph]

  15. Abramov, S.A., Petkovšek, M.: D’Alembertian solutions of linear differential and difference equations. In: von zur Gathen, J. (ed.) Proceedings of ISSAC’94, pp. 169–174. ACM Press (1994)

    Google Scholar 

  16. Abramov, S.A., Zima, E.V.: D’Alembertian solutions of inhomogeneous linear equations (differential, difference, and some other). In: Proceedings of ISSAC’96, pp. 232–240

    Google Scholar 

  17. Hendriks, P.A., Singer, M.F.: Solving difference equations in finite terms. J. Symb. Comput. 27(3), 239–259 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Petkovšek, M., Zakrajšek, H.: Solving linear recurrence equations with polynomial coefficients. In: Schneider, C., Blümlein, J. (eds.) Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions. Texts and Monographs in Symbolic Computation, pp. 259–284. Springer, Berlin (2013)

    Google Scholar 

  19. Barkatou, M.A.: An algorithm for computing a companion block diagonal form for a system of linear differential equations. Appl. Algebra Eng. Commun. Comput. 4, 185–195 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bostan, A., Chyzak, F., de Panafieu, É.: Complexity estimates for two uncoupling algorithms. In: Proceedings of ISSAC’13 (Boston) (2013)

    Google Scholar 

  21. Middeke, J.: A computational view on normal forms of matrices of Ore polynomials. Ph.D. thesis, Johannes Kepler University, Linz, Research Institute for Symbolic Computation (RISC), July 2011

    Google Scholar 

  22. Zürcher, B.: Rationale Normalformen von pseudo-linearen Abbildungen. Ph.D. thesis, Mathematik, ETH Zürich, 1994

    Google Scholar 

  23. Abramov, S.A.: Rational solutions of linear differential and difference equations with polynomial coefficients. U.S.S.R Comput. Math. Math. Phys. 29(6), 7–12 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Abramov, S.A.: Rational solutions of linear difference and \(q\)-difference equations with polynomial coefficients. Program. Comput. Softw. 21(6), 273–278 (1995). Translated from Russian

    Google Scholar 

  25. Abramov, S.A., Paule, P., Petkovšek, M.: \(q\)-hypergeometric solutions of \(q\)-difference equations. Discret. Math. 180, 3–22 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. van Hoeij, M.: Rational solutions of linear difference equations. In: Proceedings of ISSAC’98, pp. 120–123 (1998)

    Google Scholar 

  27. van Hoeij, M.: Finite singularities and hypergeometric solutions of linear recurrence equations. J. Pure Appl. Algebra 139(1–3), 109–131 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schneider, C.: A collection of denominator bounds to solve parameterized linear difference equations in \({\varPi }{\varSigma }\)-extensions. An. Univ. Timişoara Ser. Mat.-Inform. 42(2), 163–179 (2004). Extended version of Proceedings of SYNASC’04

    Google Scholar 

  29. Schneider, C.: Solving parameterized linear difference equations in terms of indefinite nested sums and products. J. Differ. Equ. Appl. 11(9), 799–821 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schneider, C.: Simplifying sums in \(\varPi \varSigma \)-extensions. J. Algebra Appl. 6(3), 415–441 (2007)

    Article  MathSciNet  Google Scholar 

  31. Schneider, C.: Fast algorithms for refined parameterized telescoping in difference fields. In: Weimann, M., Guitierrez, J., Schicho, J. (eds.) Computer Algebra and Polynomials. Lecture Notes in Computer Science (LNCS), vol. 8942, pp. 157–191. Springer, Berlin (2015). arXiv:1307.7887 [cs.SC]

  32. Abramov, S.A., Barkatou, M.A.: Rational solutions of first order linear difference systems. In: Proceedings of ISSAC’98, Rostock (1998)

    Google Scholar 

  33. Abramov, S.A., Gheffar, A., Khmelnov, D.E.: Rational solutions of linear difference equations: universal denominators and denominator bounds. Program. Comput. Softw. 2, 78–86 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Abramov, S.A.: Rational solutions of first order linear q-difference systems. In: Proceedings of FPSAC 99 (1999)

    Google Scholar 

  35. Abramov, S.A.: A direct algorithm to compute rational solutions of first order linear \(q\)-difference systems. Discret. Math. 246, 3–12 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Abramov, S.A., Khmelnov, D.E.: Denominators of rational solutions of linear difference systems of an arbitrary order. Program. Comput. Softw. 38(2), 84–91 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Abramov, S.A., Barkatou, M.A.: On solution spaces of products of linear differential or difference operators. ACM Commun. Comput. Algebra 48(4), 155–165 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Beckermann, B., Cheng, H., Labahn, G.: Fraction-free row reduction of matrices of Ore polynomials. J. Symb. Comput. 41, 513–543 (2006)

    Google Scholar 

  39. Barkatou, M.A.: Rational solutions of matrix difference equations: problem of equivalence and factorization. In: Proceedings of ISSAC, Vancouver, BC, pp. 277–282 (1999)

    Google Scholar 

  40. Chen, W.Y., Paule, P., Saad, H.L.: Converging to Gosper’s algorithm. Adv. Appl. Math. 41(3), 351–364 (2008). MR2449596

    Google Scholar 

  41. Bauer, A., Petkovšsek, M.: Multibasic and mixed hypergeometric Gosper-type algorithms. J. Symb. Comput. 28(4–5), 711–736 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schneider, C.: A new Sigma approach to multi-summation. Adv. Appl. Math. 34(4), 740–767 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schneider, C.: Symbolic summation in difference fields. Technical report 01–17, RISC-Linz, J. Kepler University. Ph.D. Thesis, November 2001

    Google Scholar 

  44. Schneider, C.: Degree bounds to find polynomial solutions of parameterized linear difference equations in \({\varPi }{\varSigma }\)-fields. Appl. Algebra Engrg. Comm. Comput. 16(1), 1–32 (2005)

    Article  MathSciNet  Google Scholar 

  45. Abramov, S.A., Barkatou, M.A.: Rational solutions of first order linear difference systems. In: ISSAC’98 (1998)

    Google Scholar 

  46. Middeke, J.: Denominator bounds and polynomial solutions for systems of \(q\)-recurrences over \(k(t)\) for constant \(k\). In: Proceedings of ISSAC’17 (2017, to appear)

    Google Scholar 

  47. Kauers, M., Schneider, C.: Indefinite summation with unspecified summands. Discret. Math. 306(17), 2021–2140 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Schneider, C.: Product representations in \({\varPi }{\varSigma }\)-fields. Ann. Comb. 9(1), 75–99 (2005)

    Article  MathSciNet  Google Scholar 

  49. Kauers, M., Schneider, C.: Symbolic summation with radical expressions. In: Brown, C.W. (ed.) Proceedings of ISSAC’07, pp. 219–226 (2007)

    Google Scholar 

  50. Ore, Ø.: Theory of non-commutative polynomials. Ann. Math. 34(3), 480–508 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  51. Bronstein, M., Petkovšek, M.: An introduction to pseudo-linear algebra. Theor. Comput. Sci. 157, 3–33 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  52. Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate identities. J. Symb. Comput. 26(2), 187–227 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  53. Abramov, S.A., Le, H.Q., Li, Z.: Univariate Ore polynomial rings in computer algebra. J. Math. Sci. 131(5), 5885–5903 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. Cohn, P.M.: Introduction to Ring Theory. Springer Undergraduate Mathematics Series. Springer, London (2000)

    Book  MATH  Google Scholar 

  55. Cohn, P.M.: Free Rings and their Relations, 2nd edn, Monographs, no. 19. London Mathematical Society, London (1985)

    Google Scholar 

  56. Middeke, J.: Denominator bounds for higher order recurrence systems over \(\varPi \varSigma ^*\) fields. In: Waterloo Workshop on Computer Algebra (2017, submitted)

    Google Scholar 

  57. Abramov, S.A., Bronstein, M., Petkovšek, M., Schneider, C.: In preparation (2017)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Michael Karr for his valuable remarks to improve the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Middeke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Middeke, J., Schneider, C. (2018). Denominator Bounds for Systems of Recurrence Equations Using \(\varPi \varSigma \)-Extensions. In: Schneider, C., Zima, E. (eds) Advances in Computer Algebra. WWCA 2016. Springer Proceedings in Mathematics & Statistics, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-73232-9_7

Download citation

Publish with us

Policies and ethics