Skip to main content

Slip-Cast Fused Silica Radomes for Hypervelocity Vehicles: Advantages, Challenges, and Fabrication Techniques

  • Living reference work entry
  • First Online:
Book cover Handbook of Advanced Ceramics and Composites

Abstract

Today, the development of ceramic radome materials for hyper velocity (> Mach 5) missiles is a top research priority for several countries for the purposes of both surveillance and combat. The ceramic materials with low and stable dielectric properties against frequency and temperature variation among others are especially important. The radome property requirement for missiles launched from surface-to-air, air-to-surface, and air-to-air differs considerably. Moisture absorbing materials despite having desired dielectric and thermal properties are not suitable for radome applications as the dielectric constant of water is considerably huge (80.4). So far no single material has been identified to meet all the requirements of a high-speed radome application. The advantages and disadvantages associated with various ceramic radome materials have been presented and discussed in this chapter together with the information about the radome design with respect to the wall thickness vs. radar frequency (RF) signals, bore-sight error, and the importance as well as generation principle of Ogive radome shape. Among various materials investigated so far, the slip-cast fused silica (SCFS) has been identified to be superior for hypervelocity radome applications. Furthermore, SCFS radomes can be fabricated with near-net shape using aqueous colloidal suspensions. However, SCFS radomes suffer from poor mechanical strength and from low rain and abrasion resistance properties apart from having considerably high internal porosity (up to 18%). Various methods employed so far to improve the properties of SCFS radomes required for hypervelocity applications have been reviewed in this chapter while citing all the important references. Among the various fused-silica composites, the Nitroxyceram (SiO2-BN-Si3N4 composite) exhibits the best combination of properties required for radome applications, and it can be consolidated and densified by following conventional powder processing techniques prevalent at industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Suzdal’tsev EI (2015) Radio-transparent ceramics: yesterday, today, tomorrow. Refract Ind Ceram 55:377–390

    Article  CAS  Google Scholar 

  2. Suzdal'tsev EI (2002) Radio transparent, heat-resistant materials for the 21st century. Refract Ind Ceram 43:103–110

    Article  CAS  Google Scholar 

  3. Joy EB, Huddleston G K. Bassett UL, Gorton CW, Bomar Jr SH (1974) Analysis and evaluation of radome materials and configurations for advanced RF seekers, Final Report Projects E-21-628 & A-1535, Contract No. DAAHO1–73-C-0796, Prepared for RF guidance technology branch, Advanced Sensors Directorate Research, Development, Engineerings and Missile Systems Laboratory, U.S. Army missile command, redstone arsenal, Alabama by Goergia Institute of Technology, Georgia

    Google Scholar 

  4. Welsh EA, Byers SA, Harris, JN. An investigation of fused silica composites for improvement of ablation and rain erosion resistance, and an alternate method for manufacture of fused silica radomes, Final Technical Report – Project A-1381, prepared for U.S. Army Missile Command Redstone Arsenal, Alabama, 35809; Engineering Experiment Section, Georgia Institute of Technology, Atlanta, 30332; 23 April 1973. Contract DAAHO1–72-C-0400

    Google Scholar 

  5. Harris JN, Welsh EA (1973) Fused silica design manual-I. Georgia Institute of Technology, Atlanta, 30332; p 151

    Google Scholar 

  6. Kouroupis JB (1992) Flight capabilities of high-speed-missile radome materials. J Hopkins APL Tech Dig 13:386–392

    Google Scholar 

  7. Caywood CW, Rivello MR, Weckesser LB (1983) Tactical Missile Structures and Matreials Technology 4

    Google Scholar 

  8. Miao X, Qu Y, Ghezzo F, Fang X, Yue Y, Zhao Z, Liu R (2014) Fused silica ceramics and composites for radome applications. Adv Mater Res (Durnten-Zurich, Switz.) 900:123–129:128

    Google Scholar 

  9. Ganesh I (2017) Novel composites of β-SiAlON and radome manufacturing technology developed at ARCI, Hyderabad, for hypervelocity vehicles. Bull Mater Sci 40(4):719–735

    Article  CAS  Google Scholar 

  10. Ganesh I, Sundararajan G (2010) Hydrolysis-induced aqueous gelcasting of beta-SiAlON-SiO2 ceramic composites: the effect of AlN additive. J Am Ceram Soc 93:3180–3189

    Article  CAS  Google Scholar 

  11. Cary RH. Avionic Radome Materials, DTIC Report, Accession No. ADA007956; Oct. 1974; http://www.dtic.mil/dtic/tr/fulltext/u2/a007956.pdf (17th March 2020)

  12. Crone GAE, Rudge AW, Taylor GN (1981) Design and performance of airborne radomes: a review, IEE proceedings F – communications. Radar Signal Process 128:451–464

    Google Scholar 

  13. Heydari MS, Ghezavati J, Abbasgholipour M, Alasti BM (2017) Various types of ceramics used in radome: a review. Sci Iran Trans B. Mech Eng 24:1136–1147

    Google Scholar 

  14. Kozakoff DJ (2010) Analysis of radome-enclosed antennas, 2 edn. Artech House Inc., Norwood

    Google Scholar 

  15. Kandi KK, Thallapalli N, Chilakalapalli SPR (2015) Development of silicon nitride-based ceramic radomes - a review. Int J Appl Ceram Technol 12:909–920

    Article  CAS  Google Scholar 

  16. Suzdal'tsev EI, Kharitonov DV, Anashkina AA (2010) Analysis of existing radioparent refractory materials, composites and technology for creating high-speed rocket radomes. Part 1. Analysis of the level of property indices and limiting possibilities of radioparent inorganic refractory materials. Refract Ind Ceram 51:202–205

    Article  Google Scholar 

  17. Crowell Sr GA (1996) The descriptive geometry of nose cones. http://www.myweb.cableone.net/cjcrowell/NCEQN2.doc (17th March 2020)

  18. Leggett H, Chatsworth U. Ceramic broadband radome. US Patent No 4358772, 30 Apr 1980

    Google Scholar 

  19. Renuka A, Borkar VG (2005) Computer-aided analysis for tangent ogive airborne radome using physical optics method. In: 2005 Asia-Pacific Microwave Conference Proceedings, 4:1–4

    Google Scholar 

  20. Ganesh I (2012) Hydrolysis-induced aqueous gelcasting: the latest concept for net-shape consolidation of ceramics-a review. Mater Manuf Proc 27:233–241

    Article  CAS  Google Scholar 

  21. Ganesh I (2011) Aqueous slip casting of MgAl2O4 spinel powder. Bull Mater Sci 34:327–335

    Article  CAS  Google Scholar 

  22. Lin S, Ye F, Ma J, Ding J, Yang C, Dong S (2016) Fabrication of multilayer electronic magnetic window material by Si2N2O decomposition. Mater Design 97:51–55

    Article  CAS  Google Scholar 

  23. Chen F, Shen Q, Zhang L (2010) Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure. Prog Electromagn Res 105:445–461

    Article  Google Scholar 

  24. Ziolkowski FP. Lightweight, multiband, high angle sandwich radome structure for millimeter wave frequencies. US Patent No 9,099,782 B2, 4 Aug 2015

    Google Scholar 

  25. Mortensen A, Suresh S (1995) Functionally graded metals and metal-ceramic composites. Part 1. Processing. Int Mater Rev 40:239–265

    Article  CAS  Google Scholar 

  26. Romashin AG, Rusin MY, Borodai FY (2004) Structural ceramic and fibrous materials based on quartz glass. Refract Ind Ceram 45:387–391

    Article  CAS  Google Scholar 

  27. Borkar VG, Renuka A, Ghosh A, Kapoor AK (2001) Simulation method identifies multipath tracking errors - a mathematical model determines how multipath reflections cause errors in tracking radars 40

    Google Scholar 

  28. Waldrop III JC, Driemeyer DE, Riegel LS, Lawton SA. Thermal barrier coated radio-frequency radomes. US Patent 2014/0299712 A1; 9 Oct 2014

    Google Scholar 

  29. Barta J, Manela M, Fischer R (1985) Si3N4 and Si2N2O for high performance radomes. Mater Sci Eng 71:265–272

    Article  CAS  Google Scholar 

  30. Frazer RK. A unified radome limiJations computer program (URLCP). Proceed 12th symp on Electromagnetic Windows, 12–14 June 1974

    Google Scholar 

  31. Ganesh I, Sundararajan G, Olhero SM, Torres PMC, Ferreira JMF (2010) A novel colloidal processing route to alumina ceramics. Ceram Int 36:1357–1364

    Article  CAS  Google Scholar 

  32. Pavlov V (1966) Radome materials. ONTI VIAM (All-Union Institute for Aircraft Materials) 101–5

    Google Scholar 

  33. Hallse RL, Rizley JH 1965 Fused silica as an aerospace material. Symposium on Newer Structural Materials for Aerospace Vehicles, ASTM International

    Google Scholar 

  34. Wan W, Feng Y, Yang J, Bu W, Qiu T (2016) Microstructure, mechanical and high-temperature dielectric properties of zirconia-reinforced fused silica ceramics. Ceram Int 42:6436–6443

    Article  CAS  Google Scholar 

  35. Reynolds S. Quartz vs. fused silica: what’s the difference?. https://www.swiftglass.com/blog/quartz-vs-fused-silica-whats-the-difference/ (17 March 2020)

  36. Walton JD, Poulos NE (1964) Slip-cast fused silica. Technical Documentary Report No. Ml-TDR-64-195; AF Materials Laboratory, Research and Technology Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio Georgia Institute of Technology, Engineering Experiment Station, Atlanta

    Google Scholar 

  37. Suzdal'tsev EI, Lesnikov AK (2005) Amorphous silicon dioxide: preparation techniques and applications. Refract Ind Ceram 46:189–192

    Article  CAS  Google Scholar 

  38. Fleming JD. Fused silica manual – materials for high temperature nuclear engineering applications. Project B-153, Prepared for U. S. Atomic Energy Commission Oak Ridge Operaticns Office Oak Ridge, Tennessee, Contract No. AT-( 40–1)-2483, Engineering Experiment Station, Georgia Insti tute of Technology, Atlanta, 1959–64;1

    Google Scholar 

  39. Borodai FY (2017) Method of producing high density quartz ceramics and articles thereof. AOO "NPP “Tekhnologiya” im. A. G. Romashina", Russia, 1–8

    Google Scholar 

  40. Suzdal’tsev EI (1986) Investigating the “aging” process in quartz ceramics. Refractories 27:33–38

    Article  Google Scholar 

  41. Suzdal'tsev EI (2003) The sintering process of quartz ceramics. Refract Ind Ceram 44:236–241

    Article  CAS  Google Scholar 

  42. Liu HK, Majidi AP (1992) The effect of particle addition in the manufacture of ceramic matrix composites by sol-gel process. Ceram Eng Sci Proc 13:642–649

    Article  CAS  Google Scholar 

  43. Liu HK, Majidi AP (1998) Effect of particle additions on drying stresses and the green density of sol-gel-processed three-dimensional ceramic-matrix composites. J Am Ceram Soc 81:1824–1828

    Article  CAS  Google Scholar 

  44. Du M, Bi JQ, Wang WL, Sun XL, Long NN (2011) Microstructure and properties of SiO2 matrix reinforced by BN nanotubes and nanoparticles. J Alloy Comp 509:9996–10002

    Article  CAS  Google Scholar 

  45. Li Q, Yang Z, Miao Y, Liang B, Cai D, Wang S, Duan X, Jia D, Zhou Y (2017) Effect of the BN content on the thermal shock resistance and properties of BN/SiO2 composites fabricated from mechanically alloyed SiBON powders. RSC Adv 7:48994–49003

    Article  CAS  Google Scholar 

  46. Wen G, Wu GL, Lei TQ, Zhou Y, Guo ZX (2000) Co-enhanced SiO2-BN ceramics for high-temperature dielectric applications. J Eur Ceram Soc 20:1923–1928

    Article  CAS  Google Scholar 

  47. Jia D, Zhou L, Yang Z, Duan X, Zhou Y (2011) Effect of preforming process and starting fused SiO2 particle size on microstructure and mechanical properties of pressurelessly sintered BNp/SiO2 ceramic composites. J Am Ceram Soc 94:3552–3560

    Article  CAS  Google Scholar 

  48. Wang J, Wen GW, Meng QC (2005) Preparation of BN/SiO2 ceramics by PIP method. J Central South Univ Tech 12:31–34

    Article  CAS  Google Scholar 

  49. Sun G, Bi J, Wang W, Zhang J (2018) Enhancing mechanical properties of fused silica composites by introducing well-dispersed boron nitride nanosheets. Ceram Int 44:5002–5009

    Article  CAS  Google Scholar 

  50. Suzdal'tsev EI (2005) Fabrication of high-density quartz ceramics: research and practical aspects. Part 3. Sintering of quartz ceramics. Refract Ind Ceram 46:384–390

    Article  CAS  Google Scholar 

  51. Suzdal'tsev EI (2005) Fabrication of high-density quartz ceramics: research and practical aspects. Part 2. Shaping methods. Refract Ind Ceram 46:371–379

    Article  CAS  Google Scholar 

  52. Suzdal'tsev EI (2005) Fabrication of high-density quartz ceramics: research and practical aspects. Part 4. Properties of mixed quartz glass slips and preforms prepared by casting into porous molds. Refract Ind Ceram 46:391–395

    Article  CAS  Google Scholar 

  53. Suzdal'tsev EI (1982) Rules for shaping quartz ceramic blanks by freezing from water suspensions. Refractories 23:200–202

    Article  Google Scholar 

  54. Borodai FY, Suzdal'tsev EI (1975) The influence of the technological parameters on the properties of quartz ceramic. Refractories 16:648–651

    Article  Google Scholar 

  55. Gutierrez-Mora F, Goretta KC, Singh D, Routbort JL, Sambasivan S, Steiner KA, Adabie J, Rangan KK (2006) High-temperature deformation of amorphous AlPO4-based nano-composites. J Eur Ceram Soc 26:1179–1183

    Article  CAS  Google Scholar 

  56. Wang Y, Liu J (2009) Aluminum phosphate-mullite composites for high-temperature radome applications. Int J Appl Ceram Technol 6:190–194

    Article  CAS  Google Scholar 

  57. Suzdal’tsev EI, Semizorov YP (1978) Effect of processing factors on the erosion resistance of quartz ceramics. Aviats Promst 6:75–76

    Google Scholar 

  58. Solomin NV, Borodai FY, Komissarova NY (1968) Dielectric properties of quartz ceramics. Elektron Tekh Ser 14:25–31

    Google Scholar 

  59. Suzdal’tsev EI, Kharitonov DV, Anashkina AA (2010) Analysis of existing radioparent refractory materials, composites and technology for creating high-speed rocket radomes. Part 3. Manufacturing technology for glass ceramic radomes, problems and future improvement. Refract Ind Ceram 51:289–294

    Article  CAS  Google Scholar 

  60. Podobeda LG, Romashin AG, Borodai FY (1974) High temperature structural radioparent ceramic. Heat-Resistant Inorganic Materials (In Russian) ONTO NITS, Moscow

    Google Scholar 

  61. Andi UK, Selvaraj SK (2011) Method for manufacturing high-density slip-cast fused silica body. CSIR, India:1–8

    Google Scholar 

  62. Wang S, Cui W, Yang X, Yuan X (2007) Forming of large thin walled fused silica shapes by gelcasting. Key Eng Mater 336–338:1005–1008

    Article  Google Scholar 

  63. Sun CG, Niu JY, Li HJ, Luoan Q, Yu HJ, Zhang FF (2012) Gelcasting of fused quartz crucible with large scale. Key Eng Mater 512–515:399–402

    Article  CAS  Google Scholar 

  64. Hao HS, Cui WL, Fu P, Xu LH, Wang SH, Gong L, Song T, Dong F (2007) The comparison of shaping technique of fused silica ceramic. Bull Chinese Ceram Soc 5:1036–1039

    Google Scholar 

  65. Suzdal'tsev EI, Kharitonov DV, Dmitriev AV, Kamenskaya TP (2006) Improving mold sets for large-sized components prepared from aqueous slips. Part 2. Intensified technology for preforms slip-cast into porous molds. Refract Ind Ceram 47:158–164

    Article  CAS  Google Scholar 

  66. Suzdal'tsev EI, Kharitonov DV, Dmitriev AV, Kamenskaya TP (2006) Improving mold sets for large-sized components prepared from aqueous slips. Part 1. Working material for the mold set. Refract Ind Ceram 47:116–120

    Article  Google Scholar 

  67. Tabellion J, Clasen R (2004) Electrophoretic deposition from aqueous suspensions for near-shape manufacturing of advanced ceramics and glasses – applications. J Mater Sci 39:803–811

    Article  CAS  Google Scholar 

  68. Suzdal'tsev EI, Kharitonov DV (2004) Development of a mold equipment for electrophoretic shaping of ceramic products. Refract Ind Ceram 45:58–63

    Article  CAS  Google Scholar 

  69. Borodai FY, Platonov VV, Volkov MA (2011) Molding of conical ceramic articles from aqueous slurry. Refract Ind Ceram 51:447–451

    Article  CAS  Google Scholar 

  70. Hu Y, Wang Z, Lu J (2008) Study on the gel casting of fused silica glass. J Non-Cryst Solids 354:1285–1289

    Article  CAS  Google Scholar 

  71. Janney MA, Ren W, Kirby GH, Nunn SD, Viswanathan S (1998) Gelcast tooling: net shape casting and green machining. Mater Manuf Process 13:389–403

    Article  CAS  Google Scholar 

  72. Janney MA, Walls CA, Kupp DM, Kirby KW (2004) Gelcasting SiAlON radomes. Am Ceram Soc Bull 83:9201–9206

    CAS  Google Scholar 

  73. Kirby KW, Jankiewicz A, Kupp D, Walls C, Janney MA (2001) Gelcasting of ceramic radomes in the Si3N4-Al2O3-AlN-SiO2 system. Mater Technol (Poulton-le-Fylde, U. K.) 16:187–190

    Google Scholar 

  74. Omatete OO, Janney MA, Nunn SD (1997) Gelcasting: from laboratory development toward industrial production. J Eur Ceram Soc 17:407–413

    Article  Google Scholar 

  75. Omatete O, Janney MA, Strehlow RA (1991) Gelcasting – a new ceramic forming process. Am Ceram Soc Bull 70:164–169

    Google Scholar 

  76. Ganesh I (2009) Near-net shape beta-Si4Al2O2N6 parts by hydrolysis induced aqueous gelcasting process. Inter J App Ceram Soc 6(1):89–101

    Article  CAS  Google Scholar 

  77. Cheng CB, Heng CB, Wang CH, Wang HS, Liao R, Wei QH, Zhai P, Zhou CL, Liu FT (2012) Research progress of ceramic radome inorganic coating. Bull Chinese Ceram Soc 31:116–119

    Article  Google Scholar 

  78. Wei M, Teng X, Zhao X, Cheng Z, Li G (2005) Study on enhanced coating of quartz radome. Bull Chinese Ceram Soc 4:3–5

    Google Scholar 

  79. Hu W (2015) Surface densification of silica ceramic. Key Eng Mater 633:69–72

    Article  CAS  Google Scholar 

  80. Chen H, Zhang LM, Jia GY, Luo WH, Yu S (2003) The preparation and characterization of 3D-silica fiber reinforced silica composites. Key Eng Mater 249:159–162

    Article  CAS  Google Scholar 

  81. Purinton DL, Semff LR. Broadband composite structure fabricated from inorganic polymer matrix reinforced with glass or ceramic woven cloth. US Patent 6,037,023, 14 Mar 2000

    Google Scholar 

  82. Wang CH, Wei QH, Wang HS, Li L, Luan Q, Liao R (2012) Dielectric properties of silica fiber reinforced silica composites. Key Eng Mater 512–515:547–550

    Google Scholar 

  83. Jiang YG, Zhang CR, Cao F, Wang SQ, Hu HF, Cao YB (2008) Effects of thermal load on mechanical properties and microstructures of 3D SiO2f/Si3N4–BN composites using polyborosilazane. Mater Sci Eng A 487:597–600

    Article  CAS  Google Scholar 

  84. Jiang YG, Zhang CR, Cao F, Wang SQ, Li B (2008) Ablation performance and surface texture of the nitride composites reinforced by the braided silica fibers. Key Eng Mater 368–372:980–982

    Article  Google Scholar 

  85. Zou C, Zhang C, Li B, Cao F, Wang S (2012) Improved properties and microstructure of porous silicon nitride/silicon oxide composites prepared by sol–gel route. Mater Sci Eng A 556:648–652

    Article  CAS  Google Scholar 

  86. Ding S, Zeng YP, Jiang D (2007) Oxidation bonding of porous silicon nitride ceramics with high strength and low dielectric constant. Mater Lett 61:2277–2280

    Article  CAS  Google Scholar 

  87. Wan W, Yang J, Feng Y, Bu W, Qiu T (2016) Effect of trace alumina on mechanical, dielectric, and ablation properties of fused silica ceramics. J Alloys Comp 675:64–72

    Article  CAS  Google Scholar 

  88. Ganesh I, Thiyagarajan N, Jana DC, Mahajan YR, Sundararajan G (2008) Influence of chemical composition and Y2O3 on sinterability, dielectric constant, and CTE of β-SiAlON. J Am Ceram Soc 91(1):115–120

    Article  CAS  Google Scholar 

  89. Ganesh I, Sundararajan G (2011) Novel route to beta-SiAlON-SiO2 ceramic composites. Adv Appl Ceram 110:87–94

    Article  CAS  Google Scholar 

  90. Suzdal'tsev EI (2006) Fabrication of high-density quartz ceramics: research and practical aspects. Part 6. A comprehensive study of the properties of BN-modified densely sintered ceramics. Refract Ind Ceram 47:101–109

    Article  CAS  Google Scholar 

  91. Zuo KH, Zeng YP, Jiang D (2012) The mechanical and dielectric properties of Si3N4-based sandwich ceramics. Mater Design 35:770–773

    Article  CAS  Google Scholar 

  92. Chen Z, Zhang L, Cheng L, Xu Y (2005) Properties and microstructure of Nextel 720/SiC composites. Ceram Int 31:573–575

    Article  CAS  Google Scholar 

  93. Funayama O, Tashiro Y, Kamo A, Okumura M, Isoda T (1994) Conversion mechanism of perhydropolysilazane into silicon nitride-based ceramics. J Mater Sci 29:4883–4888

    Article  CAS  Google Scholar 

  94. Liu HK, Huang CC (2001) Impact response and mechanical behavior of 3-D ceramic matrix composites. J Eur Ceram Soc 21:251–261

    Article  CAS  Google Scholar 

  95. Manocha LM, Panchal CN, Manocha S (2002) Silica/silica composites through electrophoretic infiltration. Ceram Eng Sci Proc 23:655–661

    Article  CAS  Google Scholar 

  96. Qi GJ, Zhang CR, Hu HF (2006) Continuous silica fiber reinforced silica composites densified by polymer-derived silicon nitride: mechanical properties and microstructures. J Non-Cryst Solids 352:3794–3798

    Article  CAS  Google Scholar 

  97. Qiu J, Cao X, Tian C, Zhang J (2005) Ablation property of ceramics/carbon fibers/resin novel super-hybrid composite. J Mater Sci Technol (Shenyang, China) 21:92–94

    CAS  Google Scholar 

  98. Sawyer LC, Jamieson M, Brikowski D, Haider MI, Chen RT (1987) Strength, structure, and fracture properties of ceramic fibers produced from polymeric precursors: I. base-line studies. J Am Ceram Soc 70:798–810

    Article  CAS  Google Scholar 

  99. Su K, Remsen EE, Zank GA, Sneddon LG (1993) Synthesis, characterization, and ceramic conversion reactions of borazine-modified hydridopolysilazanes: new polymeric precursors to silicon nitride carbide boride (SiNCB) ceramic composites. Chem Mater 5:547–556

    Article  CAS  Google Scholar 

  100. Brochure from Ceradyne Inc. and Bruce Lockhart, Ceradyne Thermo Materials; https://www.linkedin.com/in/bruce-lockhart-a0613447 (17th March 2020)

  101. Faber KT, Shanti NO (2012) Gelcasting of ceramic bodies. In: Bansal NP, Boccaccini AR (eds) Ceramics and composites processing methods. Wiley, pp 199–234,

    Google Scholar 

  102. Janney MA, Kupp DM, Kirby KW, Walls CA (2003) Gelcasting Sialon radomes. Ceram Trans 142:253–260

    CAS  Google Scholar 

  103. Li YS, Bu JL, Li RC (2004) Preparation and research on high temperature performance of composition of SiAlON-bonded SiC. Hebei Ligong Xueyuan Xuebao 26(4):50–53

    CAS  Google Scholar 

  104. Wan W, Luo J, Yang J, Feng Y, Ouyang Y, Chen D, Qiu T (2018) High-temperature ablation properties of nano zirconia reinforced fused silica ceramics. Ceram Int 44:7273–7275

    Article  CAS  Google Scholar 

  105. Jia DC, Zhou Y, Lei TC (2003) Ambient and elevated temperature mechanical properties of hot-pressed fused silica matrix composite. J Euro Ceram Soc 23:801–808

    Article  CAS  Google Scholar 

  106. Inna GT, Curtis AM, Deborah AH, Anh HL. Electromagnetic window. US Patent 5,573,986, 12 Nov 1996

    Google Scholar 

  107. Niu SX, Yang T, Liu SQ (2016) Preparation of waterproof silica gel coatings on porous silica ceramic substrates. Key Eng Mater 680:327–330

    Article  Google Scholar 

  108. Li B, Zhu J, Chen Z, Jiang Y, Hu F (2013) Flexural properties and fracture mechanism of three-dimensional and four-directional braided (SiO2)f/SiO2 composites. Asian J Chem 25:7221–7224

    Article  CAS  Google Scholar 

  109. Han SA, Jiang KH, Tang JW (2009) Studies on preparation and property of 2.5D SiO2f/ SiO2 composites. Adv Mater Res 79–82:1767–1770

    Article  CAS  Google Scholar 

  110. Guo JK, Ning JW, Pan YB (2003) Fabrication and properties of carbon nanotube/SiO2 composites. Key Eng Mater 249:1–4

    Article  CAS  Google Scholar 

  111. https://www.scimagojr.com/journalsearch.php?q=145541&tip=sid&clean=0. (2004) Boeing to build Arrow components, Jane's Missiles and Rockets; (17th March 2020)

  112. Anon (2009) Ceradyne to manufacture combat helmets. Am Ceram Soc Bull 88:5

    Google Scholar 

  113. Anon (2005) Ceradyne opens new manufacturing facility. Am Ceram Soc Bull 84:12

    Google Scholar 

  114. Anon (2001) Global news: Ceradyne expansion. Am Ceram Soc Bull 80:11–12

    Google Scholar 

  115. Ganesh I, Reddy GJ, Sundararajan G, Olhero SM, Torres PMC, Ferreira JMF (2011) Hydrolysis-induced aqueous gelcasting of magnesium aluminate spinel. Inter J Appl Ceram Tech 8:873–884

    Article  CAS  Google Scholar 

  116. Ganesh I (2011) Fabrication of near net shape magnesium aluminate (MgAl2O4) spinel components via aqueous processing. Adv Appl Ceram 110:496–511

    Article  CAS  Google Scholar 

  117. Ganesh I, Olhero SM, Torres PMC, Alves FJ, Ferreira JMF (2009) Hydrolysis-induced aqueous gelcasting for near-net shape forming of ZTA ceramic composites. J Euro Cearm Soc 29:1393–1401

    Article  CAS  Google Scholar 

  118. Suzdal'tsev EI, Kharitonov DV, Anashkina AA (2011) Analysis of existing radioparent refractory materials, composites and technology for creating high-speed rocket radomes. Part 4. Ceramic technology for producing glass ceramic radomes. Advantages and disadvantages. Prospects for modernization. Refract Ind Ceram 51:349–357

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibram Ganesh .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ganesh, I., Mahajan, Y.R. (2020). Slip-Cast Fused Silica Radomes for Hypervelocity Vehicles: Advantages, Challenges, and Fabrication Techniques. In: Mahajan, Y., Roy, J. (eds) Handbook of Advanced Ceramics and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-73255-8_55-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73255-8_55-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73255-8

  • Online ISBN: 978-3-319-73255-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics