Skip to main content

Molecular Markers in Salvia L.: Past, Present and Future

  • Chapter
  • First Online:
Salvia Biotechnology

Abstract

Sage (Salvia L.) is one of the largest genera in the family Lamiaceae. Species in the genus are used to preserve foods and a spice for flavoring, ornamental plants in parks and gardens. In addition, several species of this genus are utilized in medicine and fragrance industries. The utilization of molecular markers in Salvia lags behind many other plant species. Molecular markers are proteins/isozymes, secondary metabolites, deoxyribonucleic acid or ribonucleic acid (DNA/RNA) sequences that could be thought as signs or marks differentiation one locus or an individual from others. DNA markers (DMs) define the location of traits, genes or indicate differences within and between genomes of individuals. The earlier application of DMs was the fingerprinting studies and later on DMs were extensively used in plant genetic mapping and gene identification studies. Currently DMs are routinely used in plant variety identification, protection, conservation, genetic stock development, marker-assisted breeding, association and ecological studies. Genotyping by sequencing (GBS), high-throughput marker systems based on next generation sequencing (NGS), makes DMs more effective. Future technologies of molecular markers would not only detect and locate the genome-wide genetic differences at the single nucleotide level, but also will detect the epigenetic differences in the whole genome. DMs will be extensively used in genome mapping and genome selection research in next generation breeding studies. In this chapter, the technical aspects, types and principles of traditional and NGS based DMs used in plant research are briefly introduced. DMs are technically classified as traditional PCR-based, hybridization-based, PCR-restriction enzyme based, PCR-hybridization based and NGS-based GBS markers. DMs are also classified as genetic and genic (functional) markers. Furthermore, DMs could be classified as low-throughput and high-throughput markers. In some other resources, molecular markers are classified as the first, second, third, fourth and next generation marker systems. DMs could be classified as nuclear, plastid (chloroplast), mitochondrial markers, or in silico based markers. In this chapter, DMs are reclassified based on their technical principles and will be revisited emphasizing on their use in Salvia. This chapter also deals with genome-wide genetic markers and molecular markers for secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2b-RAD-Seq:

Type IIB restriction enzyme digestion restriction site associated DNA sequencing

2-D PAGE:

Two-dimensional polyacrylamide gel electrophoresis

6-PGD:

6-phosphogluconate dehydrogenase

AAT:

Aspartate aminotransferase

ABI:

Applied biosystem instruments

ABS:

Amplicon based sequencing

AFLP:

Amplified fragment length polymorphism

AMP:

Adenosine monophosphate

AMP-PCR:

Anchored microsatellite-primed PCR

AP-PCR:

Arbitrarily primed PCR

APS:

Adenosine-5′-phosphosulfate

ASB:

Allele-specific blocker

ASP:

Allele-specific primer

AS-PCR:

Allele-specific PCR

ASSRs:

Anchored simple sequence repeats

ATP:

Adenosine triphosphate

BEAMing:

Beads, emulsions, amplification and magnetics-based cloning

bPCR:

Bridge PCR

BSA:

Bulked segregant analysis

CAPS:

Cleaved amplified polymorphic sequence

CBD:

CAAT box-derived marker

CCD:

Charge-coupled device

CDDP:

Conserved DNA-derived polymorphism

cDNA:

Complementary deoxyribonucleic acid

CE:

Capillary electrophoresis

CFLP:

Cleavase fragment length polymorphism

CMOS:

Complementary metal-oxide-semiconductor

CNV:

Copy numbers variation

CoRAP:

Conserved region amplification polymorphism

COS:

Conserved orthologous set

cPAL:

Combinatorial probe-anchor ligation

CRISPR/Cas9:

Clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9

CRoPS:

Complexity reduction of polymorphic sequences

D/TGGE:

Denaturing/temperature gradient gel electrophoresis

DAF:

DNA amplification fingerprinting

DAMD:

Directed amplification of minisatellite DNA

DAMD-PCR:

Directed amplification of minisatellite DNA-PCR

DArT:

Diversity array technology

dATP:

Deoxyadenosine triphosphate

dATPαS:

Deoxyadenosine α-thiotriphosphate

dCAPS:

Derived cleaved amplified polymorphic sequence

dCTP:

Deoxycytidine triphosphate

ddNTPs:

Dideoxynucleotide triphosphates

ddRAD:

Double-digest restriction site-associated DNA

ddRAD-seq:

Double digestion restriction site associated DNA sequencing

DFDMs:

Direct functional DNA markers

DGGE:

Denaturing gradient gel electrophoresis

dGTP:

Deoxyguanosine triphosphate

dHPLC:

Denaturing high-performance liquid chromatography

DMs:

DNA markers

DNA:

Deoxyribonucleic acid

DNBS:

DNA nanoball sequencing

dNTPs:

Deoxyribonucleotide triphosphates

dRAMPs:

Digested random amplified microsatellite polymorphism markers

dsDNA:

Double-stranded DNA

dTTP:

Deoxythymidine triphosphate

dXTP:

Deoxynucleoside triphosphate

EDTA:

Ethylenediaminetetraacetic acid

ELIDA:

Enzymatic luminometric inorganic pyrophosphate detection assay

emPCR:

Emulsion PCR

eSSRs:

Expressed simple sequence repeats

EST:

Expressed sequence tag

EST-SSRs:

Expressed sequence tag based simple sequence repeat markers

ezRAD:

Standard Illumina TruSeq library preparation kits restriction site associated DNA sequencing

FDMs:

Functional DNA markers

FEN:

Flap endonuclease

FGS:

First generation sequencing

FRET:

Fluorescence resonance energy transfer

GAB:

Genomics-assisted breeding

GBS:

Genotyping by sequencing

GC:

Gas chromatography

GS:

Genome sequencer

GT-seq:

Genotyping-in-thousands by sequencing

HGP:

Human genome project

HPLC:

High performance liquid chromatography

HRM:

High resolution melting analysis

IBM:

International business machines

IDH:

Isocitrate dehydrogenase

IFDMs:

Indirect functional DNA markers

IMP:

Inter-MITE polymorphism

InDels:

Insertions/deletions

IRAP:

Inter-retrotransposon amplified polymorphism

iRRL:

Improved reduced-representation librarys

ISA:

Inter-simple sequence repeats amplification

ISSR:

Inter simple sequence repeats

ISTR:

Inverse sequence tagged repeat

ITP:

Intron-targeting polymorphism

ITS:

Internal transcribed spacer

KASP:

Kompetitive allele specific PCR

KASPar:

Competitive allele specific PCR

LTRs:

Long terminal repeats

MAAP:

Multiple arbitrary amplicon profiling

MALDI-TOF MS:

Matrix assisted laser desorption ionization time of flight mass spectrometry

MAS:

Marker-assisted selection

MDH:

Malate dehydrogenase

MEGA-AFLP:

Multiplex-endonuclease genotyping approach amplified fragment length polymorphism

MIPs:

Molecular inversion probes

MITE-AFLP:

Miniature inverted repeat transposable elements-amplified fragment length polymorphism

MITEs:

Miniature inverted repeat transposable elements

MLP:

Major latex-like protein

MNR:

Menadione reductase

MP-PCR:

Microsatellite-primed PCR

MPS:

Massively parallel sequencing

MPSS:

Massively parallel signature sequencing

mRNA:

Messenger RNA

MS:

Mass spectrometry

MSG:

Multiplexed shotgun sequencing

NGS:

Next generation sequencing

NIR:

Near infrared spectroscopy

NMR:

Nuclear magnetic resonance

nsSNP:

Non-synonymous single nucleotide polymorphism

OH:

Hydroxyl

OLA:

Oligonucleotide ligation assay

ONT:

Oxford nanopore technologies

ORF:

Open reading frame

PAGE:

Polyacrylamide gel electrophoresis

paired-end RPLs:

paired-end reduced representation libraries

PAV:

Presence/absence variations

PCR:

Polymerase chain reaction

PCR-RFLP:

Polymerase chain reaction-restriction fragment length polymorphism

pERPLs:

Paired-end reduced representation libraries

Pfu:

DNA polymerase from Pyrococcus furiosus

PGI:

Phosphoglucoisomerase

PGM:

Phosphoglucomutase

PPi:

Pyrophosphate

PTP:

Picotiter plate

qPCR:

Quantitative PCR

QTL:

Quantitative trait loci

RAD:

Restriction site associated DNA

RAD-seq:

Restriction site-associated DNA sequencing

RAMPs:

Random amplified microsatellite polymorphisms

RAPD:

Random amplified polymorphic DNA

RBIP:

Retrotransposon-based insertion polymorphism

rDNA:

Ribosomal DNA

REMAP:

Retrotransposon microsatellite amplified polymorphism

RESTseq:

Restriction fragment sequencing

RFEL:

Restriction fragment end labeling

RFLP:

Restriction fragment length polymorphism

RLGS:

Restriction landmark genome scanning

RNA:

Ribonucleic acid

RNA-seq:

RNA sequencing

RRL:

Reduced-representation library

RRS:

Reduced-representation sequencing

RTEs:

Retrotransposons

RT-PCR:

Reverse transcriptase PCR

SAMPL:

Selective amplification of microsatellite polymorphic loci

SBS:

Sequencing-by-synthesis

SCAR:

Sequence characterized amplified regions

SCoT:

Start codon targeted

SFLA:

Selective fragment length amplification

SFPs:

Single feature polymorphisms

sGBS:

Spiked genotyping-by-sequencing

SGS:

Second generation sequencing

SKDH:

Shikimate dehydrogenase

SkimGBS:

Skim genotyping-by-sequencing

SLAF-Seq:

Specific length amplified fragment sequencing

SMRT:

Single molecule real-time

SMS:

Single molecule sequencing

SNP:

Single nucleotide polymorphism

SOLiD:

Sequencing by oligonucleotide ligation and detection

SPARs:

Single primer amplification reactions

SRAP:

Sequence-related amplified polymorphism

SRFA:

Selective restriction fragment amplification

S-SAP:

Sequence-specific amplification polymorphism

SSCP:

Single-strand conformation polymorphism

ssDNA:

Single-stranded DNA

SSRs:

Simple sequence repeats

STMS:

Sequence-tagged microsatellite site

STRs:

Short tandem repeats

STS:

Sequence tagged sites

synSNP:

Synonymous single nucleotide polymorphism

Taq:

DNA polymerase from Thermus aquaticus

TD:

Transposon display

TDFs:

Transcript-derived fragments

TE:

Transposable element

TE-AFLP:

Three-endonuclease amplified fragment length polymorphism

tGBS-seq:

Tunable genotyping by sequencing

TGGE:

Thermal gradient gel electrophoresis

TGS:

Third generation sequencing

TILLING:

Targeting induced local lesions in genomes

Tm:

Melting temperature

TRAP:

Target region amplification polymorphism

UGMs:

Unigene-derived microsatellites

Vent1:

DNA polymerase from Thermococcus litoralis

VNTRs:

Variable number tandem repeats

WGR:

Whole genome resequencing

WGS:

Whole genome sequencing

ZMW:

Zero-mode waveguide

References

  1. Topcu G (2006) Bioactive triterpenoids from Salvia species. J Nat Prod 69:482–487

    Article  CAS  PubMed  Google Scholar 

  2. Walker JB, Sytsma KJ, Treutlein J, Wink M (2004) Salvia (Lamiaceae) is not monophyletic: implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. Am J Bot 91:1115–1125

    Article  PubMed  Google Scholar 

  3. Sudarmono S, Okado H (2007) Speciation process of Salvia isensis (Lamiaceae), a species endemic to serpentine areas in the Ise-Tokai district, Japan, from the viewpoint of the contradictory phylogenetic trees generated from chloroplast and nuclear DNA. J Plant Res 120:483–490

    Article  CAS  PubMed  Google Scholar 

  4. Karaca M, Ince AG, Ay ST, Turgut K, Onus AN (2008) PCR-RFLP and DAMD-PCR genotyping for Salvia species. J Sci Food Agric 88:2508–2516

    Article  CAS  Google Scholar 

  5. Olarte A, Mantri N, Nugent G, Wohlmuth H, Li CG, Xue C, Pang E (2013) A gDNA microarray for genotyping Salvia species. Mol Biotech 54:770–783

    Article  CAS  Google Scholar 

  6. Lopresti A (2016) Salvia (Sage): a review of its potential cognitive-enhancing and protective effects. Drugs R&D. https://doi.org/10.1007/s40268-016-0157-5

  7. Hatipoglu SD, Zorlu N, Dirmenci T, Goren AC, Ozturk T, Topcu G (2016) Determination of volatile organic compounds in fourty five Salvia species by thermal desorption-GC-MS technique. Rec Natl Prod 10:659–700

    CAS  Google Scholar 

  8. Bernotiene G, Nivinskiene O, Butkiene R, Mockute D (2007) Essential oil composition variability in sage (Salvia officinalis L.). Chemija 18:38–43

    CAS  Google Scholar 

  9. Boszormenyi A, Hethelyi E, Farkas A, Horvath G, Papp N, Lemberkovics E, Szoke E (2009) Chemical and genetic relationships among sage (Salvia officinalis L.) cultivars and Judean sage (Salvia judaica Boiss.). J Agric Food Chem 57:4663–4667

    Article  CAS  PubMed  Google Scholar 

  10. Ince AG, Karaca M (2015) E-microsatellite markers for some naturally occurring Salvia species in the Mediterranean region. Turk J Biol 39:69–77

    Article  CAS  Google Scholar 

  11. Cvetkovic I, Stefkov G, Karapandzova M, Kulevanova S, Satovic Z (2015) Essential oils and chemical diversity of Southeast European populations of Salvia officinalis L. Chem Biodivers 12:1025–1039

    Article  CAS  Google Scholar 

  12. Song Z, Guo L, Liu T, Lin C, Wang J, Li X (2017) Comparative RNA-sequence transcriptome analysis of phenolic acid metabolism in Salvia miltiorrhiza, a traditional Chinese medicine model plant. Int J Genom 2017:9364594

    Google Scholar 

  13. Pammi S, Schertz K, Xu G, Hart G, Mullet JE (1994) Random amplified-polymorphic DNA markers in sorghum. Theor Appl Genet 89:80–88

    Article  CAS  PubMed  Google Scholar 

  14. Karaca M, Ince AG (2008) Minisatellites as DNA markers to classify bermudagrasses (Cynodon spp.): confirmation of minisatellite in amplified products. J Genet 87:83–86

    Article  CAS  PubMed  Google Scholar 

  15. Gocer EU, Karaca M (2016) Genetic characterization of some commercial cotton varieties using Td-DAMD-PCR markers. J Sci Eng Res 3:487–494

    Google Scholar 

  16. Utomo HS, Wenefrida I, Linscombe SD (2012) Progression of DNA marker and the next generation of crop development. In: Goyal A (ed) Crop Plant. https://doi.org/10.5772/29674

  17. Jain A, Bhatia S, Banga S, Prakash S (1994) Potential use of random amplified polymorphic DNA (RAPD) technique to study the genetic diversity in Indian mustard (Brassica juncea) and its relationship to heterosis. Theor Appl Genet 88:116–122

    Article  CAS  PubMed  Google Scholar 

  18. Joshi SP, Gupta VS, Aggarwal RK, Ranjekar PK, Brar DS (2000) Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theor Appl Genet 100:1311–1320

    Article  CAS  Google Scholar 

  19. de Vicente MC, Fulton T (2003) Using molecular marker technology in studies on plant genetic diversity. Online. IPGRI, Rome, and Institute for Genetic Diversity, Ithaca

    Google Scholar 

  20. Ince AG, Karaca M, Aydin A (2011) Comparison of multiple DNA alignment algorithms for Labiatae molecular phylogeny inferences. Planta Med 77:1280

    Google Scholar 

  21. Karaca M, Ince AG, Aydin A, Ay ST (2013) Cross-genera transferable e-microsatellite markers for 12 genera of the Lamiaceae family. J Sci Food Agric 93:1869–1879

    Article  CAS  PubMed  Google Scholar 

  22. Borrelli GM, Trono D (2016) Molecular approaches to genetically improve the accumulation of health-promoting secondary metabolites in staple crops-a case study: the lipoxygenase-B1 genes and regulation of the carotenoid content in pasta products. Int J Mol Sci 17:1177–1210

    Article  PubMed Central  CAS  Google Scholar 

  23. Wang H, Hao N, Chen L, Li G (2016) Development of intron polymorphism markers in major latex-like protein gene for locality-level and cultivar identification of Salvia miltiorrhiza. SpringerPlus 5:1919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Anderson MW, Schrijver I (2010) Next generation DNA sequencing and the future of genomic medicine. Genes 1:38–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barabaschia D, Tondellia A, Desiderioa F, Volanteb A, Vaccinoc P, Valeb G, Cattivellia L (2016) Next generation breeding. Plant Sci 242:3–13

    Article  CAS  Google Scholar 

  26. Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, Tyagi A et al (2016) Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front Genet 7:221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Robin JD, Ludlow AT, LaRanger R, Wright WE, Shay WJ (2016) Comparison of DNA quantification methods for next generation sequencing. Sci Rep 6:24067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu T, Guo Y, Pan Y, Zhao Q, Wang J, Song Z (2016) Construction of the first high density genetic linkage map of Salvia miltiorrhiza using specific length amplified fragment (SLAF) sequencing. Sci Rep 6:24070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Nat Acad Sci U S A 101:9915–9920

    Article  CAS  Google Scholar 

  30. Aydin A, Karaca M (2016) An alternative way to assign the chromosome location of genes/markers in cotton. FEBS J 283:335

    Google Scholar 

  31. Will M, Clasen-Bockhoff R (2017) Time to split Salvia (Lamiaceae)-new insights from old world Salvia phylogeny. Mol Phylogenet Evol 109:33–58

    Article  PubMed  Google Scholar 

  32. Hamona P, Grover CE, Davis AP, Rakotomalala JJ, Raharimalala NE, Albert VA et al (2017) Genotyping-by-sequencing provides the first well-resolved phylogeny for coffee (Coffea) and insights into the evolution of caffeine content in its species GBS coffee phylogeny and the evolution of caffeine content. Mol Phylogenet Evol 109:351–361

    Article  CAS  Google Scholar 

  33. Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410

    Article  CAS  PubMed  Google Scholar 

  34. Yu J, Gu WK, Provvidenti R, Weeden NF (1995) Identifying and mapping two DNA markers linked to the gene conferring resistance to pea enation mosaic virus. J Am Soc Hort Sci 120:730–733

    CAS  Google Scholar 

  35. Liu ZJ, Cordes JF (2004) DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238:1–37

    Article  CAS  Google Scholar 

  36. Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18

    Article  CAS  PubMed  Google Scholar 

  37. Chutimanitsakun Y, Nipper RW, Cuesta-Marcos A, Cistue L, Corey A, Filichkina T, Johnson EA, Hayes PM (2011) Construction and application for QTL analysis of a restriction site associated DNA (RAD) linkage map in barley. BMC Genomics 12:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shu Z, Wang Z, Mu X, Liang Z, Guo H (2012) A dominant gene for male sterility in Salvia miltiorrhiza Bunge. PLoS ONE 7:e50903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Truong HT, Ramos AM, Yalcin F, de Ruiter M, van der Poel HJA et al (2012) Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS ONE 7(5): e37565. https://doi.org/10.1371/journal.pone.0037565

  40. Sonah H, Bastien M, Iquira E, Tardivel A, Legare G, Boyle B et al (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8:e54603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bayer PE, Ruperao P, Mason AS, Stiller J, Chan CK, Hayashi S et al (2015) High-resolution skim genotyping by sequencing reveals the distribution of crossovers and gene conversions in Cicer arietinum and Brassica napus. Theor Appl Genet 128:1039–1047

    Article  PubMed  Google Scholar 

  42. Chen J, Wang N, Fang LC, Liang ZC, Li SH, Wu BH (2015) Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biol 15:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lateef DD (2015) DNA marker technologies in plants and applications for crop improvements. J Biosci Med 3:7–18

    Google Scholar 

  44. Kim C, Guo H, Kong W, Chandnani R, Shuang LS, Paterson AH (2016) Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Sci 242:14–22

    Article  CAS  PubMed  Google Scholar 

  45. Robledo D, Palaiokostas C, Bargelloni L, Martinez P, Houston R (2017) Applications of genotyping by sequencing in aquaculture breeding and genetics. Rev Aquac. https://doi.org/10.1111/raq.12193

  46. Corsi G, Bottega S (1999) Glandular hairs of Salvia officinalis: new data on morphology, localization and histochemistry in relation to function. Ann Bot 84:657–664

    Article  Google Scholar 

  47. Kaya A, Demirci B, Başer KHC (2003) Glandular trichomes and essential oil of Salvia glutinosa L. South Afr J Bot 69:422–427

    Article  CAS  Google Scholar 

  48. Avato P, Fortunato IM, Ruta C, D’Elia R (2005) Glandular hairs and essential oils in micropropageted plants of Salvia officinalis L. Plant Sci 169:29–36

    Article  CAS  Google Scholar 

  49. Baran P, Ozdemir C (2006) The morphological and anatomical characters of Salvia napifolia Jacq. in Turkey. Bangladesh J Bot 35:77–84

    Google Scholar 

  50. Kaya A, Goger F, Başer KHC (2007) Morphological, anatomical and palynological characteristics of Salvia halophia endemic to Turkey. Nord J Bot 25:351–358

    Article  Google Scholar 

  51. Dajic-Stevanovic Z, Sostaric I, Marin PD, Stojanovic D, Ristic M (2008) Population variability in Thymus glabrescens Willd. from Serbia: morphology, anatomy and essential oil composition. Arch Biol Sci 60:475–483

    Article  Google Scholar 

  52. Peng L, Rub M, Wang B, Wang Y, Lia B, Yu J, Liang L (2014) Genetic diversity assessment of a germplasm collection of Salvia miltiorrhiza Bunge. based on morphology, ISSR and SRAP markers. Biochem Syst Ecol 55:84–92

    Article  CAS  Google Scholar 

  53. Ince AG, Karaca M, Elmasulu SY (2014) New microsatellite and CAPS-microsatellite markers for clarifying taxonomic and phylogenetic relationships within Origanum L. Mol Breed 34:643–654

    Article  CAS  Google Scholar 

  54. Karaca M, Ince AG, Aydin A, Elmasulu SY, Turgut K (2015) Microsatellites for genetic and taxonomic research in thyme (Thymus L.). Turk J Biol 39:1406–1420

    Article  Google Scholar 

  55. Karaca M, Ince AG, Elmasulu SY, Onus AN, Turgut K (2005) Coisolation of genomic and organelle DNAs from 15 genera and 31 species of plants. Anal Biochem 343:353–355

    Article  CAS  PubMed  Google Scholar 

  56. Rzepa J, Wojtal T, Staszek D, Grygierczyk G, Labe K, Hajnos M, Kowalska T, Waksmundzka-Hajnos M (2009) Fingerprint of selected Salvia species by HS–GC–MS analysis of their volatile fraction. J Chromatogr Sci 47:575–580

    Article  CAS  PubMed  Google Scholar 

  57. Elansary HO, Mahmoud EA (2015) Basil cultivar identification using chemotyping still favored over genotyping using core barcodes and possible resources of antioxidants. J Essent Oil Res 27:82–87

    Article  CAS  Google Scholar 

  58. Maksimovic M, Vidic D, Milos M, Solic ME, Abadzic S, Siljak-Yakovlev S (2007) Effect of the environmental conditions on essential oil profile in two dinaric Salvia species: S. brachyodon Vandas and S. officinalis L. Biochem Syst Ecol 35:473–478

    Article  CAS  Google Scholar 

  59. Lakusic B, Ristic M, Slavkovska V, Stojanovic D, Lakusic D (2013) Variations in essential oil yields and compositions of Salvia officinalis (Lamiaceae) at different developmental stages. Bot Serbica 37:127–139

    Google Scholar 

  60. Hanlidou E, Karousoua R, Lazari D (2014) Essential oil diversity of Salvia tomentosa Mill. in Greece. Chem Biodivers 11:1205–1215

    Article  CAS  PubMed  Google Scholar 

  61. Kharazian N (2014) Chemotaxonomy and flavonoid diversity of Salvia L. (Lamiaceae) in Iran. Acta Bot Brasilica 28:281–292

    Article  Google Scholar 

  62. Liu Z, Liu Y, Liu C, Song Z, Li Q, Zha Q, Lu C, Wang C, Ning Z, Zhang Y, Tian C, Lu A (2013) The chemotaxonomic classification of Rhodiola plants and its correlation with morphological characteristics and genetic taxonomy. Chem Cent J 7:118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Hadacova V, Ondrej M (1972) Isoenzymy. Biologicke Listy 37:1–25

    CAS  Google Scholar 

  64. Bretting PK, Widrlechner MP (1995) Genetic markers and horticultural germplasm management. HortScience 30:1349–1356

    Google Scholar 

  65. Staub JE, Serquen FC, Gupta M (1996) Genetic markers, map construction, and their application in plant breed. HortScience 31:729–741

    CAS  Google Scholar 

  66. Clevenger J, Chavarro C, Pearl SA, Ozias-Akins P, Jackson SA (2015) Single nucleotide polymorphism identification in polyploids: a review, example, and recommendations. Mol Plant 8:831–846

    Article  CAS  PubMed  Google Scholar 

  67. Fua D, Masonb AS, Xiaoa M, Yanc H (2016) Effects of genome structure variation, homeologous genes and repetitive DNA on polyploid crop research in the age of genomics. Plant Sci 242:37–46

    Article  CAS  Google Scholar 

  68. Tanksley SD, Orton TJ (1983) Isozymes in plant genetic and breeding. (Developments in plant genetics and breeding, 1). Elsevier, Amsterdam

    Google Scholar 

  69. Hamrick JL, Godt JW (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds.) Plant population genetics, breeding and genetic resources, Sinauer, Sunderland, pp 43–63

    Google Scholar 

  70. Kephart SR (1990) Starch gel electrophoresis of plant isozymes: a comparative analysis of techniques. Am J Bot 77:693–712

    Article  CAS  Google Scholar 

  71. Rabilloud T (2002) Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2:3–10

    Article  CAS  PubMed  Google Scholar 

  72. Muller-Starck G (1998) Isozymes. In: Karp A, Isaac PG, Ingram D (eds) Molecular tools for screening biodiversity: plants and animals. Chapmann Hall, London, pp 75–78

    Chapter  Google Scholar 

  73. Sudarmono S, Okada H (2008) Genetic differentiations among the populations of Salvia japonica (Lamiaceae) and its related species. Hayati J Biosci 15:18–26

    Article  Google Scholar 

  74. Bostein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–333

    Google Scholar 

  75. Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable “minisatellite” regions in human DNA. Nature 314:67–73

    Article  CAS  PubMed  Google Scholar 

  76. Karaca M (2001) Characterization of Cynodon spp. and Gossypium spp. genomes using molecular and cytological techniques (PhD dissertation). Mississippi State University, Mississippi State

    Google Scholar 

  77. Jonah PM, Bello LL, Lucky O, Midau A, Moruppa SM (2011) Review: the importance of molecular markers in plant breeding programs. Glob J Sci Front Res 11:0975–5896

    Google Scholar 

  78. Ince AG, Karaca M (2011) Genetic variation in common bean landraces efficiently revealed by Td-DAMD-PCR markers. Plant Omics J 4:220–227

    CAS  Google Scholar 

  79. Zhang Y, Deng K, Xie L, Li X, Wang B, Chen L (2009) Genetic diversity analysis and conservation of the Chinese herb Salvia miltiorrhiza collected from different geographic origins in China. Afr J Biotechnol 8:4849–4855

    CAS  Google Scholar 

  80. Al-Gharaibeh MM, Hamasha HR, Rosche C, Lachmuth S, Wesche K, Hensen I (2011) Environmental gradients shape the genetic structure of two medicinal Salvia species in Jordan. Plant Biosyst 145:274–277

    Article  Google Scholar 

  81. Ince AG, Karaca M (2012) Species-specific touch-down DAMD PCR markers for Salvia species. J Med Plants Res 6:1590–1595

    CAS  Google Scholar 

  82. Saebnazar A, Rahmani F (2013) Genetic variation among Salvia species based on sequence-related amplified polymorphism (SRAP) marker. J Plant Physiol Breed 3:71–78

    Google Scholar 

  83. Will M, Clasen-Bockhoff R (2014) Why Africa matters: evolution of old world Salvia L. (Lamiaceae) in Africa. Ann Bot Lond 114:61–83

    Article  Google Scholar 

  84. Will M, Schmalz N, Classen Bockhoff R (2015) Towards a new classification of Salvia s.l.: (re)establishing the genus Pleudia Raf. Turk J Bot 39:693–707

    Article  CAS  Google Scholar 

  85. Erbano M, Schuhli GSE, Santos EPD (2015) Genetic variability and population structure of Salvia lachnostachys: implications for breeding and conservation programs. Int J Mol Sci 16:7839–7850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. van Steenbergen TJM, Collomstt SD, Hermans PWM, De Graaff J, Plasterk RHA (1995) Genomic DNA fingerprinting by restriction fragment end labeling. Proc Natl Acad Sci U S A 92:5572–5576

    Article  PubMed  PubMed Central  Google Scholar 

  87. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  88. Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392

    Article  CAS  PubMed  Google Scholar 

  89. Gocer EU, Karaca M (2016) Cleaved minisatellite locus (CML) markers for fingerprinting of cotton cultivars grown in Turkey. FEBS J 283:334

    Google Scholar 

  90. Kojima T, Nagaoka T, Ogihara Y (1998) Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of the RFLP markers. Theor Appl Genet 96:37–45

    Article  CAS  Google Scholar 

  91. Hruba M (2007) dCAPS method: advantages, troubles and solution. Plant Soil Environ 53:417–420

    Article  CAS  Google Scholar 

  92. Ince AG, Karaca M, Onus AN (2010) CAPS-microsatellites: use of CAPS method to convert non-polymorphic microsatellites into useful markers. Mol Breed 25:491–499

    Article  CAS  Google Scholar 

  93. Karaca M, Ince AG (2011) New non-redundant microsatellite and CAPS-microsatellite markers for cotton (Gossypium L.). Turk J Field Crops 16:172–178

    Google Scholar 

  94. Papa S, Bacu A (2016) RFLP analysis of cpDNA of Salvia officinalis L. of Northern Albania can serve to elucidate genetic diversity among close natural populations. Eur J Biotechnol Genet Eng 3:65–74

    Google Scholar 

  95. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  CAS  PubMed  Google Scholar 

  96. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  CAS  PubMed  Google Scholar 

  97. de Vienne D, Santoni S, Falque M (2003) Principal sources of molecular markers. In: Vienne DD (eds) Molecular markers in plant genetics and biotechnology. Science Publishers Inc., Plymouth, pp 3–41

    Google Scholar 

  98. Williams MNV, Pande N, Nair M, Mohan M, Bennet J (1991) Restriction fragment length polymorphism analysis of polymerase chain reaction products amplified from mapped loci of rice (Oryza sativa L.) genomic DNA. Theor Appl Genet 82:489–498

    Article  CAS  PubMed  Google Scholar 

  99. Maeda M, Uryu N, Murayama N, Ishii H, Ota M, Tsuji K, Inoko H (1990) A simple and rapid method for HLA-DP genotying by digestion of PCR-amplified DNA with allele specific restriction endonucleases. Hum Immunol 27:111–121

    Article  CAS  PubMed  Google Scholar 

  100. Ince AG, Karaca M (2011) Early determination of sex in jojoba plant by CAPS assay J Agric Sci 149:327–336

    Google Scholar 

  101. Heath DD, Iwama GK, Devlin RH (1993) PCR primed with VNTR core sequence yields species specific patterns and hypervariable probes. Nucl Acids Res 21:5782–5785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F et al (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed 3:381–390

    Article  CAS  Google Scholar 

  103. Ince AG, Karaca M (2015) Td-DAMD-PCR assays for fingerprinting of commercial carnations. Turk J Bot 39:147–159

    Google Scholar 

  104. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Caetano-Anolles G (1994) MAAP—a versatile and universal tool for genome analysis. Plant Mol Biol 25:1011–1026

    Article  CAS  PubMed  Google Scholar 

  106. Li G, Park Y-J (2012) SCAR Markers for discriminating species of two genera of medicinal plants, Liriope and Ophiopogon. Genet Mol Res 11:2987–2995

    Article  CAS  PubMed  Google Scholar 

  107. Jogaiah S, Sharathchandra RG, Raj N, Vedamurthy AB, Shetty HS (2014) Development of SCAR marker associated with downy mildew disease resistance in pearl millet (Pennisetum glaucum L.). Mol Biol Rep 41:7815–7824

    Article  CAS  PubMed  Google Scholar 

  108. Bhagyawant SS (2016) RAPD-SCAR markers: an interface tool for authentication of traits. J Biosci Med 4:1–9

    Google Scholar 

  109. Caetano-Anolles G, Bassam BJ, Gresshoff PM (1991) High resolution DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Nat Biotechnol 9:553–557

    Article  CAS  Google Scholar 

  110. Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucl Acids Res 18:7213–7218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ince AG, Karaca M, Onus AN (2010) A reliable gender diagnostic PCR assay for jojoba (Simmondsia chinensis (Link) Schneider). Genet Res Crop Evol 57:773–779

    Google Scholar 

  112. Micheli MR, Bova R, Calissano P, Dambrosio E (1993) Randomly amplified polymorphic DNA fingerprinting using combinations of oligonucleotide primers. Biotechniques 15:388–390

    CAS  PubMed  Google Scholar 

  113. Caetano-Anolles G, Bassam BJ, Gresshoff PM (1993) Enhanced detection of polymorphic DNA by multiple arbitrary amplicons profiling of endonuclease digested DNA: identification of markers linked to the super nodulation locus in soybean. Mol Gen Genet 241:57–64

    Article  CAS  PubMed  Google Scholar 

  114. Huff DR, Peakall R, Smouse PE (1993) RAPD variation within and among natural populations of outcrossing buffalograss (Buchloe dactyloides (Nutt.) Engelm. Theor Appl Genet 86:927–934

    Article  CAS  PubMed  Google Scholar 

  115. Vejl P (1997) Identification of genotypes in hop (Humulus lupulus L.) by RAPD analysis using program Gel Manager for Windows. Rostlinna Vyroba 43:325–331

    CAS  Google Scholar 

  116. Hollingsworth WO, Christie CB, Nichols MA, Neilson HF (1998) Detection of variation among and within asparagus hybrids using random amplified DNA (RAPD) markers. N Z J Crop Hort Sci 26:1–9

    Article  CAS  Google Scholar 

  117. Corley Smith GE, Lim CJ, Kalmar GB, Brandhorst BP (1997) Efficient detection of DNA polymorphisms by fluorescent RAPD analysis. Biotechniques 22:690–692

    CAS  PubMed  Google Scholar 

  118. Weller JW, Reddy A (1997) Fluorescent detection and analysis of RAPD amplicons using the ABI PRISM DNA sequencers. In: Micheli MR, Bova R (eds) Fingerprinting methods based on arbitrarily primed PCR. Springer Lab Manual, Berlin, pp 81–92

    Google Scholar 

  119. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc Nat Acad Sci U S A 88:9828–9832

    Article  CAS  Google Scholar 

  120. Martin GB, Williams JGK, Tanksley SD (1991) Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Nat Acad Sci U S A 88:2336–2340

    Article  CAS  Google Scholar 

  121. Paran I, Michelmore RW (1993) Development of reliable PCR based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    Article  CAS  PubMed  Google Scholar 

  122. Alonso C, Perez R, Bazaga P, Medrano M, Herrera CM (2016) MSAP markers and global cytosine methylation in plants: a literature survey and comparative analysis for a wild-growing species. Mol Ecol Resour 16:80–90

    Article  CAS  PubMed  Google Scholar 

  123. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M et al (1995) AFLP: a new concept for DNA fingerprinting. Nucl Acids Res 21:4407–4414

    Article  Google Scholar 

  124. Li A, Hu BQ, Xue ZY, Chen L, Wang WX, Song WQ, Chen CB, Wa CG (2011) DNA methylation in genomes of several annual herbaceous and woody perennial plants of varying ploidy as detected by MSAP. Plant Mol Biol Rep 29:784–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang Y, Guo L, Shu Z, Sun Y, Chen Y, Liang Z, Guo H (2013) Identification of amplified fragment length polymorphism (AFLP) markers tightly associated with drought stress gene in male sterile and fertile Salvia miltiorrhiza Bunge. Int J Mol Sci 14:6518–6528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Velasco-Ramirez AP, Torres-Moran MI, Molina-Moret S, Sanchez-Gonzalez JJ, Santacruz-Ruvalcaba F (2014) Efficiency of RAPD, ISSR, AFLP and ISTR markers for the detection of polymorphisms and genetic relationships in camote de cerro (Dioscorea spp.). Elec J Biotech 17:65–71

    Article  CAS  Google Scholar 

  127. Russell RJ, Fuller JD, Macaulay M, Hats BG, Jahoor A, Powell W, Waugh R (1997) Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95:714–722

    Article  CAS  Google Scholar 

  128. Alonso-Blanco C, Peeters AJM, Koornneef M, Lister C, Dean C, van den Bosch N, Pot J, Kuiper MTR (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J Cell Mol Biol 14:259–271

    Article  CAS  Google Scholar 

  129. Young WP, Schupp JM, Keim P (1999) DNA methylation and AFLP marker distribution in the soybean genome. Theor Appl Genet 99:785–790

    Article  CAS  Google Scholar 

  130. Saal B, Wricke G (2002) Clustering of amplified fragment length polymorphism markers in a linkage map of rye. Plant Breed 121:117–123

    Article  CAS  Google Scholar 

  131. Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G et al (2006) Diversity arrays technology (DArT) for high- throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  CAS  PubMed  Google Scholar 

  132. Yang D, Ma P, Liang X, Liang Z, Zhang M, Shen S, Liu H, Liu Y (2012) Metabolic profiles and cDNA-AFLP analysis of Salvia miltiorrhiza and Salvia castanea Diel f. tomentosa Stib. PLoS ONE 7:e29678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Olsen M, Hood L, Cantor C, Botstein D (1989) A common language for physical mapping of human genome. Science 245:1434–1435

    Article  Google Scholar 

  134. Blake TK, Kadyrzhanova D, Shepherd KW, Islam AKMR, Langridge PL et al (1996) STSPCR markers appropriate for wheat-barley introgression. Theor Appl Genet 82:715–721

    Google Scholar 

  135. Naik S, Gill KS, Prakasa Rao VS, Gupta VS, Tamhankar SA, Pujar S, Gill BS, Ranjekar PK (1998) Identification of a STS marker linked to the Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Theor Appl Genet 97:535–540

    Article  CAS  Google Scholar 

  136. Reamon-Buttner SM, Jung C (2000) AFLP derived STS markers for the identification of sex in Asparagus officinalis L. Theor Appl Genet 100:432–438

    Article  CAS  Google Scholar 

  137. Waugh R, Bonar N, Baird E, Thomas B, Graner A, Hayes P, Powell W (1997) Homology of AFLP products in three mapping populations of barley. Mol Gen Genet 255:311321

    Article  Google Scholar 

  138. van der Broeck D, Maes T, Sauer M, Zethoff J, de Keukeleire P, Hauw MD, van Montagu M, Gerats T (1998) Transposon display identifies individual transposable elements in high copy number lines. Plant J 13:121–129

    Google Scholar 

  139. Van der Wurff AWG, Chan YL, van Straalen NM, Schouten J (2000) TE-AFLP: combining rapidity and robustness in DNA fingerprinting. Nucl Acids Res 28:e105

    Article  PubMed Central  Google Scholar 

  140. Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397–401

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Vartia S, Villanueva-Canas JL, Finarelli J, Farrell ED, Collins PC et al (2016) A novel method of microsatellite genotyping-by-sequencing using individual combinatorial barcoding. Royal Soc Open Sci 3:150565

    Article  CAS  Google Scholar 

  142. Beckmann JS, Soller M (1990) Toward a unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite sites. Biotech 8:930–932

    CAS  Google Scholar 

  143. Senan S, Kizhakayil D, Sasikumar B, Sheeja TE (2014) Methods for development of microsatellite markers. Not Sci Biol 6:1

    Article  CAS  Google Scholar 

  144. Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390

    Article  CAS  Google Scholar 

  145. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Nat Acad Sci U S A 99:6080–6084

    Article  CAS  Google Scholar 

  146. Squirrell J, Hollingsworth PM, Woodhead M, Russell J, Lowe AJ, Gibby M, Powell W (2003) How much effort is required to isolate nuclear microsatellites from plants? Mol Ecol 12:1339–1348

    Article  CAS  PubMed  Google Scholar 

  147. Eisen JA (1999) Mechanistic basis for microsatellilte instability. In: Goldstein DB, Schlotterer C (eds) Microsatellites: evolution and applications. Oxford University Press, Oxford, pp 34–48

    Google Scholar 

  148. Ghislain M, Spooner DM, Rodriguez F, Villamon F, Nunez J, Vasquez C, Waugh R, Bonierbale M (2004) Selection of highly informative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato. Theor Appl Genet 108:881–890

    Article  CAS  PubMed  Google Scholar 

  149. Mitchell SE, Kresovich S, Jester CA, Hernandez CJ, Szewc-McFadden AK (1997) Application of multiplex-PCR and fluorescence-based, semi-automated allele sizing technology for genotyping plant genetic resources. Crop Sci 37:617–624

    Article  CAS  Google Scholar 

  150. Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize. II. Yield components and marker assisted selection strategies. Theor Appl Genet 94:887–896

    Article  Google Scholar 

  151. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  152. Ince AG, Karaca M, Bilgen M, Onus AN (2008) Digital differential display tools for mining microsatellite containing organism, organ and tissue. Plant Cell Tiss Organ Cult 94:281–290

    Article  CAS  Google Scholar 

  153. Ince AG, Karaca M, Onus AN (2010) Polymorphic microsatellite markers transferable across Capsicum species. Plant Mol Biol Rep 28:285–291

    Article  CAS  Google Scholar 

  154. Ince AG, Karaca M, Onus AN (2010) Differential expression patterns of genes containing microsatellites in Capsicum annuum L. Mol Breed 25:645–658

    Article  CAS  Google Scholar 

  155. Polat E, Ince AG, Karaca M, Onus AN (2010) Mining and utilization of mushroom ESTs for microsatellites. Conserv Genet 11:1123–1126

    Article  Google Scholar 

  156. Ince AG, Karaca M, Onus AN (2011) Exact microsatellite density differences among Capsicum tissues and development stages. J Agric Sci 17:291–299

    Google Scholar 

  157. Ince AG (2012) A contig-based microsatellite marker approach and its application in Cichorium ESTs. Rom Biotech Lett 17:7177–7186

    CAS  Google Scholar 

  158. Kota R, Varshney RK, Thiel T, Dehmer KJ, Graner A (2001) Generation and comparison of EST-derived SSRs and SNPs in barley (Hordeum vulgare L.). Hereditas 135:145–151

    Article  CAS  PubMed  Google Scholar 

  159. Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48:501–510

    Article  CAS  PubMed  Google Scholar 

  160. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotech 23:48–55

    Article  CAS  Google Scholar 

  161. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

  162. Bornet B, Branchard M (2001) Nonanchored inter simple sequence repeat (ISSR) markers: reproducible and polymorphic tools for genome fingerprinting. Plant Mol Biol Rep 19:209–215

    Article  CAS  Google Scholar 

  163. Sarrou E, Ganopoulos I, Xanthopoulou A, Masuero D, Martens S, Madesis P, Mavromatis A, Chatzopoulou P (2017) Genetic diversity and metabolic profile of Salvia officinalis populations: implications for advanced breeding strategies. Planta. https://doi.org/10.1007/s00425-017-2666-z

  164. Safaei M, Sheidai M, Alijanpoor B, Noormohammadi Z (2016) Species delimitation and genetic diversity analysis in Salvia with the use of ISSR molecular markers. Acta Bot Croat 75:45–52

    CAS  Google Scholar 

  165. Yousefiazarkhanian M, Asghari A, Ahmadi J, Asghari B, Jafari AA (2016) Genetic diversity of Salvia species assessed by ISSR and RAPD markers. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 44:431–436

    Article  Google Scholar 

  166. Caldeira RL, Carvalho OS, Lage RCG, Cardoso PCM, Oliveira GC (2002) Sequencing of simple sequence repeat anchored polymerase chain reaction amplification products of Biomphalaria glabrata. Mem Inst Oswaldo Cruz 97:23–26

    Article  CAS  PubMed  Google Scholar 

  167. Becker J, Heun M (1995) Barley microsatellites: alleles variation and mapping. Plant Mol Biol 27:835–845

    Article  CAS  PubMed  Google Scholar 

  168. Witsenboer H, Vogel J, Michelmore RW (1997) Identification, genetic localization, and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactuca spp.). Genome 40:923–936

    Article  CAS  PubMed  Google Scholar 

  169. Heikrujam M, Kumar J, Agrawal V (2015) Genetic diversity analysis among male and female Jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers. Meta Gene 16:90–97

    Google Scholar 

  170. Collard BCY, Mackill DJ (2009) Conserved DNA-derived polymorphism (CDDP): a simple and novel method for generating DNA markers in plants. Plant Mol Biol Report 27:558–562

    Article  CAS  Google Scholar 

  171. Singh AK, Rana MK, Singh S, Kumar S, Kumar R, Singh R (2014) CAAT box-derived polymorphism (CBDP): a novel promoter-targeted molecular marker for plants. J Plant Biochem Biotech 23:175–183

    Article  CAS  Google Scholar 

  172. Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA et al (2013) The genome of pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  174. Kumar LS (1999) DNA markers in plant improvement: an overview. Biotechnol Adv 17:143–182

    Article  CAS  PubMed  Google Scholar 

  175. Bargish TA, Rahmani F (2016) SRAP markers based genetic analysis of Silene species. J Trop Biol Conserv 13:57–70

    Google Scholar 

  176. Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JPT, Hyvönen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Song Z, Li X, Wang H, Wang H (2010) Genetic diversity and population structure of Salvia miltiorrhiza Bge in China revealed by ISSR and SRAP. Genetica 138:241–249

    Article  CAS  PubMed  Google Scholar 

  178. Aghaei Z, Talebi M, Rahimmalek M (2017) Assessment of genetic diversity within and among sage (Salvia) species using SRAP markers. Plant Genet Res 15:279–282

    Article  Google Scholar 

  179. Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Reporter 21:289–294

    Article  CAS  Google Scholar 

  180. Hatada I, Hayashizaki Y, Hirotsune S, Komatsubara H, Mukai T (1999) A genomic scanning method for higher organisms using restriction sites as landmarks. Proc Nat Acad Sci 88:9523–9527

    Article  Google Scholar 

  181. Wang Q, Zhang B, Lu Q (2009) Conserved region amplification polymorphism (CoRAP), a novel marker technique for plant genotyping in Salvia miltiorrhiza. Plant Mol Biol Rep 27:139–143

    Article  CAS  Google Scholar 

  182. Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun JH, Kalo P, Penmetsa RV, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR (2004) A sequence-based genetic map of Medicago trunculata and comparison of marker colinearity with M. sativa. Genetics 166:1463–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Minghetti PP, Dugaiczyk A (1993) The emergence of new DNA repeats and the divergence of primates. Proc Nat Acad Sci U S A 90:1872–1876

    Article  CAS  Google Scholar 

  185. Shimamura M, Yasue H, Ohshima K, Abe H, Kato K, Kishiro T, Goto M, Munechika I, Okada N (1997) Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388:666–670

    Article  CAS  PubMed  Google Scholar 

  186. Rohde W (1996) Inverse sequence-tagged repeat (ISTR) analysis: a novel and universal PCR-based technique for genome analysis in the plant and animal kingdom. J Genet Breed 50:249–261

    CAS  Google Scholar 

  187. Flavell AJ, Knox MR, Pearce SR, Ellis TH (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–650

    Article  CAS  PubMed  Google Scholar 

  188. Kalendar R, Grob T, Regina M, Suoniemi A, Schulman AH (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  189. Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631

    Article  CAS  PubMed  Google Scholar 

  190. Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, Schulman AH (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106:520–530

    Article  CAS  PubMed  Google Scholar 

  191. Oldenburg MC, Siebert M (2000) New cleavase fragment length polymorphism method improves the mutation detection assay. Biotechniques 28:351–357

    CAS  PubMed  Google Scholar 

  192. van Tassell CP, Smith TP, Matukumalli LK, Taylor JF, Schnabel RD, Lawley CT et al (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods 5:247–252

    Article  PubMed  CAS  Google Scholar 

  193. Boutet G, Carvalho SA, Falque M, Peterlongo P, Lhuillier E, Bouchez O, Lavaud C, Pilet-Nayel ML, Rivière N, Baranger A (2016) SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population. BMC Genomics 17:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Miller S, Bartlett W, Chandrasekaran S, Simpson S, Edwards M, Booth IR (2003) Domain organization of the MscS mechanosensitive channel of Escherichia coli. EMBO J 22:36–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Coles ND, Coleman CE, Christensen SA, Jellen EN, Stevens MR, Bonifacio A, Rojas-Beltran JA, Fairbanks DJ, Maughan PJ (2005) Development and use of an expressed sequenced tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. Plant Sci 168:439–447

    Article  CAS  Google Scholar 

  196. Foster JT, Allan GJ, Chan AP, Rabinowicz PD et al (2010) Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biol 10:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Zou XL, Shi C, Austin RS, Merico D, Munholland S, Marsolais F et al (2014) Genome-wide single nucleotide polymorphism and insertion-deletion discovery through next-generation sequencing of reduced representation libraries in common bean. Mol Breed 33:769–778

    Article  CAS  Google Scholar 

  198. Jalili V, Matteucci M, Masseroli M, Ceri S (2016) Indexing next-generation sequencing data. Inf Sci 20:1–20

    Google Scholar 

  199. Hayashi K (1992) PCR-SSCP: a method for detection of mutations. Genet Anal Tech App 9:73–79

    Article  CAS  Google Scholar 

  200. Orita M, Iwahana H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Nat Acad Sci U S A 86:2766–2770

    Article  CAS  Google Scholar 

  201. Yu B, Sawyer NA, Chiu C, Oefner PJ, Underhill PA (2006) DNA mutation detection using denaturing high-performance liquid chromatography (DHPLC). Curr Protoc Hum Genet. https://doi.org/10.1002/0471142905.hg0710s48

  202. Campbell NR, Stephanie AH, Shawn RN (2015) Genotyping-in-thousands by sequencing (GT-seq): a costeffective SNP genotyping method based on custom amplicon sequencing. Mol Ecol Resour 15:855–867

    Article  CAS  PubMed  Google Scholar 

  203. Podini D, Vallone PM (2009) SNP genotyping using multiplex single base primer extension assays. Methods Mol Biol 578:379–391

    Article  CAS  PubMed  Google Scholar 

  204. Singhal N, Kumar M, Kanaujia PK, Virdi JS (2015) MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 6:791

    Article  PubMed  PubMed Central  Google Scholar 

  205. Okayama H, Curiel DT, Brantly ML, Holmes MD, Crystal RG (1989) Rapid, nonradioactive detection of mutations in the human genome by allele-specific amplification. J Lab Clin Med 114:105–113

    CAS  PubMed  Google Scholar 

  206. Tyagi S, Marras SA, Kramer FR (2000) Wavelength-shifting molecular beacons. Nat Biotechnol 18:1191–1196

    Article  CAS  PubMed  Google Scholar 

  207. Vet JA, van der Rijt BJ, Blom HJ (2002) Molecular beacons: colorful analysis of nucleic acids. Expert Rev Mol Diagn 2:77–86

    Article  CAS  PubMed  Google Scholar 

  208. Schlachter S, Chan K, Marras SAE, Parveen N (2017) Detection and differentiation of lyme spirochetes and other tick-borne pathogens from blood using real-time PCR with molecular beacons. Methods Mol Biol 1616:155–170

    Article  PubMed  Google Scholar 

  209. Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Biochemistry 88:7276–7280

    CAS  Google Scholar 

  210. Suzuki N, Yoshida A, Nakano Y (2005) Quantitative analysis of multi species oral biofilms by TaqMan Real-Time PCR. Clin Med Res 3:176–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Gibson NJ (2006) The use of real-time PCR methods in DNA sequence variation analysis. Clin Chim Acta 363:32–47

    Article  CAS  PubMed  Google Scholar 

  212. Bosmali I, Ganopoulos I, Madesis P, Tsaftaris A (2012) Microsatellite and DNA-barcode regions typing combined with High Resolution Melting (HRM) analysis for food forensic uses: a case study on lentils (Lens culinaris). Food Res Int 46:141–147

    Article  CAS  Google Scholar 

  213. Tong YR, Jiang C, Huang LQ, Cui ZH, Yuan Y (2014) Molecular identification of Radix Notoginseng powder by DNA melt curve analysis. Chin J Pharm Anal 34:1384–1390

    CAS  Google Scholar 

  214. Osathanunkul M, Suwannapoom C, Osathanunkul K, Madesis P, de Boer H (2016) Evaluation of DNA barcoding coupled high resolution melting for discrimination of closely related species in phytopharmaceuticals. Phytomedicine 23:156–165

    Article  CAS  PubMed  Google Scholar 

  215. Bui MH, Stone GG, Nilius AM, Almer L, Flamm RK (2003) PCR-oligonucleotide ligation assay for detection of point mutations associated with quinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 47:1456–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Deng JY, Zhang XE, Mang Y, Zhang ZP, Zhou YF, Liu Q, Lu HB, Fu ZJ (2004) Oligonucleotide ligation assay-based DNA chip for multiplex detection of single nucleotide polymorphism. Biosens Bioelectron 19:1277–1283

    Article  CAS  PubMed  Google Scholar 

  217. Olivier M (2005) The Invader assay for SNP genotyping. Mutat Res 3:103–110

    Article  CAS  Google Scholar 

  218. Neelam K, Brown-Guedira G, Huang L (2013) Development and validation of a breeder friendly KASPar marker for wheat leaf rust resistance locus Lr21. Mol Breed 31:233–237

    Article  CAS  Google Scholar 

  219. Zhao S, Li A, Li C, Xia H, Zhao C, Zhang Y, Hou L, Wang X (2017) Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut. Electron J Biotechnol 25:9–12

    Article  CAS  Google Scholar 

  220. Cui G, Huang L, Tang X, Zhao J (2011) Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray. Mol Biol Rep 38:2471–2478

    Article  CAS  PubMed  Google Scholar 

  221. Srivastava A, Sawant SV, Jena SN (2015) Microarray-based large scale detection of single feature polymorphism in Gossypium hirsutum L. J Genet 94:669–676

    Article  CAS  PubMed  Google Scholar 

  222. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nuc Acids Res 29:e25

    Article  CAS  Google Scholar 

  223. Xia L, Peng K, Yang S, Wenzl P, Carmen M, De Vicente MC, Fregene M, Kilian A (2005) DArT for high-throughput genotyping of cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet 110:1092–1098

    Article  CAS  PubMed  Google Scholar 

  224. Lu X, Xiao B, Li Y, Gui Y, Wang Y, Fan L (2013) Diversity arrays technology (DArT) for studying the genetic polymorphism of flue-cured tobacco (Nicotiana tabacum). J Zhejiang Univ Sci B 14:570–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Sanchez-Sevilla JF, Horvath A, Botella MA, Gaston A, Folta K, Kilian A, Denoyes B, Amaya I (2015) Diversity arrays technology (DArT) marker platforms for diversity analysis and linkage mapping in a complex crop, the octoploid cultivated strawberry (Fragaria x ananassa). PLoS ONE 10(12): e0144960. https://doi.org/10.1371/journal.pone.0144960

  226. Lezar S, Myburg AA, Berger DK, Wingfield MJ, Wingfield BD (2004) Development and assessment of microarray-based DNA fingerprinting in Eucalyptus grandis. Theor Appl Genet 109:1329–1336

    Article  CAS  PubMed  Google Scholar 

  227. Winzeler EA, Richards DR, Conway AR, Goldstein AL, Kalman S, McCullough MJ, McCusker JH, Stevens DA, Wodicka L, Lockhart DJ, Davis RW (1998) Direct allelic variation scanning of the yeast genome. Science 21:1194–1197

    Article  Google Scholar 

  228. Saxena RK, Cui X, Thakur V, Walter B, Close TJ, Varshney RK (2011) Single feature polymorphisms (SFPs) for drought tolerance in pigeonpea (Cajanus spp.). Funct Integr Genomics 11:651–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Hill TA, Ashrai H, Reyes-Chin-Wo S, Yao J, Stoffel K et al (2013) Characterization of Capsicum annuum genetic S. diversity and population structure based on parallel polymorphism discovery with a 30 k unigene pepper GeneChip. PLoS ONE 8(2): e56200. https://doi.org/10.1371/journal.pone.0056200

  230. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10): e3376. https://doi.org/10.1371/journal.pone.0003376

  231. Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Pfender WF, Saha MC, Johnson EA, Slabaugh MB (2011) Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor Appl Genet 122:1467–1480

    Article  CAS  PubMed  Google Scholar 

  233. Davey JW, Blaxter ML (2010) RADSeq: next-generation population genetics. Brief Funct Genomics 9:416–423

    Article  CAS  PubMed  Google Scholar 

  234. Wang S, Meyer E, McKay JK, Matz MV (2012) 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Methods 9:808–810

    Article  CAS  PubMed  Google Scholar 

  235. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7(5): e37135. https://doi.org/10.1371/journal.pone.0037135

  236. Toonen RJ, Puritz JB, Forsman ZH, Whitney JL, Fernandez-Silva I, Andrews KR, Bird CE (2013) ezRAD: a simplified method for genomic genotyping in non-model organisms. PeerJ 1:e203

    Article  PubMed  PubMed Central  Google Scholar 

  237. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74:560–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  PubMed  Google Scholar 

  240. Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 15:121–132

    Article  CAS  PubMed  Google Scholar 

  241. Franca LTC, Carrilho E, Kist TBL (2002) A review of DNA sequencing techniques. Q Rev Biophys 35:169–200

    Article  CAS  PubMed  Google Scholar 

  242. Buermans HPJ, den Dunnen JT (2014) Next generation sequencing technology: advances and applications. Biochim Biophys Acta 1842:1932–1941

    Article  CAS  PubMed  Google Scholar 

  243. Van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30:418–426

    Article  PubMed  CAS  Google Scholar 

  244. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek JA, Costa G, McKernan K, Sidow A, Fire A, Johnson SM (2008) A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18:1051–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Kozarewa I, Kozarewa I, Ning Z, Sanders MJ, Berriman M, Turner DJ (2009) Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+ C)-biased genomes. Nat Methods 6:291–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Mascher M, Wu S, Amand PS, Stein N, Poland J (2013) Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS ONE 8(10): e76925. https://doi.org/10.1371/journal.pone.0076925

  249. Jiang Z, Zhou X, Li R, Michal JJ, Zhang S, Dodson MV, Zhang Z, Harland RM (2015) Whole transcriptome analysis with sequencing: methods, challenges and potential solutions. Cell Mol Life Sci 72:3425–3439

    Article  CAS  PubMed  Google Scholar 

  250. Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC, McCombie WR (2015) Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res 25:1750–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Korlach J, Marks PJ, Cicero RL, Gray JJ, Murphy DL, Roitman DB, Pham TT et al (2008) Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc Natl Acad Sci U S A 105:1176–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352

    Article  CAS  PubMed  Google Scholar 

  253. Quail MA, Smith M, Coupland P, Otto TD, Harris SR et al (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30:434–439

    Article  CAS  PubMed  Google Scholar 

  255. Schneider GF, Dekker C (2012) DNA sequencing with nanopores. Nat Biotechnol 30:326–328

    Article  CAS  PubMed  Google Scholar 

  256. Bragg LM, Stone G, Butler MK, Hugenholtz P, Tyson GW (2013) Shining a light on dark sequencing: characterising errors in Ion Torrent PGM Data. PLoS Comput Biol 9:e1003031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Balasubramanian S (2015) Solexa sequencing: decoding genomes on a population scale. Clin Chem 61:21–24

    Article  CAS  PubMed  Google Scholar 

  258. Karlsson E, Larkeryd Forsman M, Stenberg P (2015) Scaffolding of a bacterial genome using MinION nanopore sequencing. Sci Rep 5:11996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Tawfik DS, Griffiths AD (1998) Man-made cell-like compartments for molecular evolution. Nat Biotechnol 16:652–656

    Article  CAS  PubMed  Google Scholar 

  260. Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang MD, Zhang K, Mitra RD, Church GM (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732

    Article  CAS  PubMed  Google Scholar 

  261. Yegnasubramanian S (2013) Preparation of fragment libraries for next-generation sequencing on the applied biosystems SOLiD platform. Methods Enzymol 529:185–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Myhrvold C, Baym M, Hanikel N, Ong LL, Gootenberg JS, Yin P (2017) Barcode extension for analysis and reconstruction of structures. Nat Commun 8:14698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Shao K, Ding W, Wang F, Li H, Ma D, Wang H (2011) Emulsion PCR: a high efficient way of PCR amplification of random DNA libraries in aptamer selection. PLoS ONE 6(9):e24910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Khan SA (2005) Plasmid rolling-circle replication: highlights of two decades of research. Plasmid 53:126–136

    Article  CAS  PubMed  Google Scholar 

  265. Ali MM, Li F, Zhang Z, Zhang K, Kang DK, Ankrum JA, Le XC, Zhao W (2014) Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 43:3324–3341

    Article  CAS  PubMed  Google Scholar 

  266. Nakano M, Komatsu J, Matsuura S, Takashima K, Katsura S, Mizuno A (2003) Single-molecule PCR using water-in-oil emulsion. J Biotechnol 24:117–124

    Article  CAS  Google Scholar 

  267. Head SR, Komori HK, LaMere SA, Whisenant T, van Nieuwerburgh F, Salomon DR, Ordoukhanian P (2014) Library construction for next-generation sequencing: overviews and challenges. BioTech 56:61–77

    Article  CAS  Google Scholar 

  268. Williams R, Peisajovich SG, Miller OJ, Magdassi S, Tawfik DS, Griffiths AD (2006) Amplification of complex gene libraries by emulsion PCR. Nat Methods 3:545–550

    Article  CAS  PubMed  Google Scholar 

  269. Fedurco M, Romieu A, Williams S, Lawrence I, Turcatti G (2006) BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucl Acids Res 34:e22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  270. Voelkerding KV, Dames SA, Durtschi JD (2009) Next-generation sequencing: from basic research to diagnostics. Clin Chem 55:641–658

    Article  CAS  PubMed  Google Scholar 

  271. Miles TD, Martin FN, Coffey MD (2015) Development of rapid isothermal amplification assays for detection of Phytophthora spp. in plant tissue. Techniques 105:265–278

    CAS  Google Scholar 

  272. Ju J, Kim DH, Bi L, Meng Q, Bai X, Li Z et al (2006) Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc Natl Acad Sci U S A 103:19635–19640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Bell DC, Thomas WK, Murtagh KM, Dionne CA, Graham AC, Anderson JE, Glover WR (2012) DNA base identification by electron microscopy. Microsc Microanal 18:1049–1053

    Article  CAS  PubMed  Google Scholar 

  274. Mankos M, Shadman K, Persson HH, N’Diaye AT, Schmid AK, Davis RW (2014) A novel low energy electron microscope for DNA sequencing and surface analysis. Ultramicroscopy 145:36–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Wall JD, Tang LF, Zerbe B, Kvale MN, Kwok PY, Schaefer C, Risch N (2014) Estimating genotype error rates from high-coverage next-generation sequence data. Genome Res 24:1734–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Luo C, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT (2012) Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS ONE 7:e30087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  278. Gilles A, Meglecz E, Pech N, Ferreira S, Malausa T, Martin JF (2011) Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics 12:245

    Article  PubMed  PubMed Central  Google Scholar 

  279. Pareek CSP, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Liu L, Li Y, Li S, Hu N, He Y et al (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol.  https://doi.org/10.1155/2012/251364

  281. Guzvic M (2013) The history of DNA sequencing. J Med Biochem 32:301–312

    Google Scholar 

  282. Soon WW, Hariharan M, Snyder MP (2013) High-throughput sequencing for biology and medicine. Mol Syst Biol 9:640

    Article  PubMed  PubMed Central  Google Scholar 

  283. Kulski JK, Suzuki S, Ozaki Y, Mitsunaga S, Inoko H, Shiina T (2014) Phase HLA genotyping by next generation sequencing: a comparison between two massively parallel sequencing bench-top systems, the Roche GS Junior and Ion Torrent PGM. In: Xi Y (ed) HLA and associated important diseases. Croatia Intech 141–181

    Google Scholar 

  284. Turcatti G, Romieu A, Fedurco M, Tairi AP (2008) A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis. Nucleic Acids Res 36:e25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  285. Frey KG, Herrera-Galeano JE, Redden CL, Luu TV, Servetas SL, Mateczun AJ, Mokashi VP, Bishop-Lilly KA (2014) Comparison of three next-generation sequencing platforms for metagenomic sequencing and identification of pathogens in blood. BMC Genomics 15:1–14

    Article  CAS  Google Scholar 

  286. Malapelle U, Vigliar E, Sgariglia R, Bellevicine C, Colarossi L, Vitale D et al (2015) Ion Torrent next-generation sequencing for routine identification of clinically relevant mutations in colorectal cancer patients. J Clin Pathol 68:64–68

    Article  PubMed  Google Scholar 

  287. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genetics 17:333–351

    Article  CAS  PubMed  Google Scholar 

  288. Anderson JP, Reynolds BL, Baum K, Williams JG (2010) Fluorescent structural DNA nanoballs functionalized with phosphate-linked nucleotide triphosphates. Nano Lett 10:788–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Porreca G (2010) Genome sequencing on nanoballs. Nat Biotechnol 28:43–44

    Article  CAS  PubMed  Google Scholar 

  290. Morey M, Fernandez-Marmiesse A, Castineiras D, Fraga JM, Couce MA, Cocho JA (2013) A glimpse into past, present, and future DNA sequencing. Mol Genet Metabol 110:3–24

    Article  CAS  Google Scholar 

  291. Pushkarev D, Neff NF, Quake SR (2009) Single-molecule sequencing of an individual human genome. Nat Biotechnol 27:847–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Hart C, Lipson D, Ozsolak F, Raz T, Steinmann K, Thompson J, Milos PM (2010) Single-molecule sequencing: sequence methods to enable accurate quantitation. Methods Enzymol 472:407–430

    Article  CAS  PubMed  Google Scholar 

  293. Thompson JF, Milos PM (2011) The properties and applications of single-molecule DNA sequencing. Genome Biol 12:217

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Koren S, Harhay GP, Smith TP, Bono JL, Harhay DM, Mcvey SD, Radune D, Bergman NH, Phillippy AM (2013) Reducing assembly complexity of microbial genomes with single-molecule sequencing. Genome Biol 14:R101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  295. Ritz A, Bashir A, Sindi S, Hsu D, Hajirasouliha I, Raphael B (2014) Characterization of structural variants with single molecule and hybrid sequencing approaches. Bioinformatics 30:3458–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Eid J, Fehr A, Gray J, Luong K, Lyle J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  CAS  PubMed  Google Scholar 

  297. Larsen PA, Heilman AM, Yoder AD (2014) The utility of PacBio circular consensus sequencing for characterizing complex gene families in non-model organisms. BMC Genomics 15:720

    Article  PubMed  PubMed Central  Google Scholar 

  298. Mardis ER (2011) A decade’s perspective on DNA sequencing technology. Nature 470:198–203

    Article  CAS  PubMed  Google Scholar 

  299. Harris TD, Buzby PR, Babcock H, Beer E, Bowers J et al (2008) Single-molecule DNA sequencing of a viral genome. Science 320:106–109

    Article  CAS  PubMed  Google Scholar 

  300. Wang Y, Yang Q, Wang Z (2014) The evolution of nanopore sequencing. Front Genet 5:449

    PubMed  Google Scholar 

  301. Wescoe ZL, Schreiber J, Akeson M (2014) Nanopores discriminate among five C5-cytosine variants in DNA. J Am Chem Soc 136:16582–16587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Laver T, Harrison J, O’Neill PA, Moore K, Farbos A, Paszkiewicz K, Studholme DJ (2015) Assessing the performance of the Oxford nanopore technologies MinION. Biomol Detect Quant 3:1–8

    CAS  Google Scholar 

  303. Jain M, Fiddes IT, Miga KH, Olsen HE, Paten B, Akeson M (2015) Improved data analysis for the MinION nanopore sequencer. Nat Meth 12:351–356

    Article  CAS  Google Scholar 

  304. Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W et al (2015) MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol 33:296–300

    Article  CAS  PubMed  Google Scholar 

  305. Stoddart D, Heron A, Mikhailova E, Maglia G, Bayley H (2009) Single nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc Natl Acad Sci U S A 106:7702–7707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686

    Article  CAS  PubMed  Google Scholar 

  307. Carneiro MO, Russ C, Ross MG, Gabriel SB, Nusbaum C, DePristo MA (2012) Pacific biosciences sequencing technology for genotyping and variation discovery in human data. BMC Genomics 13:375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. English AC, Richards S, Han Y, Wang M, Vee V et al (2012) Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE 7(11): e47768. https://doi.org/10.1371/journal.pone.0047768

  309. Cao MD, Ganesamoorthy D, Cooper MA, Coin LJM (2016) Realtime analysis and visualization of MinION sequencing data with npReader. Bioinformatics 32:764–766

    Article  CAS  PubMed  Google Scholar 

  310. Edwards SV (2013) Next-generation QTL mapping: crowdsourcing SNPs, without pedigrees. Mol Ecol 22:3885–3887

    Article  PubMed  Google Scholar 

  311. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Hodkinson BP, Elizabeth A (2015) Grice next-generation sequencing: a review of technologies and tools for wound microbiome research. Adv Wound Care 4:50–58

    Article  Google Scholar 

  313. Zhao Z, Gu H, Sheng X, Yu H, Wang J, Huang L, Wang D (2016) Genome-wide single-nucleotide polymorphisms discovery and high-density genetic map construction in cauliflower using specific-locus amplified fragment sequencing. Front Plant Sci 7:334

    PubMed  PubMed Central  Google Scholar 

  314. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5): e19379. https://doi.org/10.1371/journal.pone.0019379

  315. He J, Zhao X, Laroche A, Lu ZX, Liu HK, Li Z (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Genet Genom 5:1–8

    Google Scholar 

  316. Yang H, Li C, Lam HM, Clements J, Yan G, Zhao S (2015) Sequencing consolidates molecular markers with plant breeding practice. Theor Appl Genet 128:779–795

    Article  CAS  PubMed  Google Scholar 

  317. Voss-Fels K, Rod J (2016) Snowdon understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnol J 14:1086–1094

    Article  CAS  PubMed  Google Scholar 

  318. Zhu F, Cui QQ, Hou ZC (2016) SNP discovery and genotyping using genotyping-by-sequencing in Pekin ducks. Sci Rep 6:36223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Scheben A, Batley J, Edwards D (2017) Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol J 15:149–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Furuta T, Ashikari M, Jena KK, Doi K, Reuscher S (2017) Adapting genotyping-by-sequencing for rice F2 populations. Gene Genom Genet 7:881–893

    Google Scholar 

  321. Stetter MG, Schmid KJ (2017) Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop. Mol Phylogenet Evol 109:80–92

    Article  PubMed  Google Scholar 

  322. Tsai CC, Shih HC, Wang HV, Lin YS, Chang CH, Chiang YC, Chou CH (2015) RNA-Seq SSRs of moth orchid and screening for molecular markers across genus Phalaenopsis (Orchidaceae). PLoS ONE 10(11): e0141761. https://doi.org/10.1371/journal.pone.0141761

  323. Andolfatto P, Davison D, Erezyilmaz D, Hu TT, Mast J, Sunayama-Morita T, Stern DL (2011) Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res 21:610–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Ott A, Liu S, Schnable JC, Yeh CT, Wang C, Schnable PS (2017) Tunable genotyping-by-sequencing (tGBS®) enables reliable genotyping of heterozygous loci. BioRxiv. https://doi.org/10.1101/100461

  325. Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

    Article  CAS  Google Scholar 

  326. Kang YJ, Lee T, Lee J, Shim S, Jeong H, Satyawan D, Kim MY, Lee SH (2016) Translational genomics for plant breeding with the genome sequence explosion. Plant Biotechnol J 14:1057–1069

    Article  CAS  PubMed  Google Scholar 

  327. Pavan S, Marcotrigiano AR, Ciani E, Mazzeo R, Zonno V, Ruggieri V, Lotti C, Ricciardi L (2017) Genotyping-by-sequencing of a melon (Cucumis melo L.) germplasm collection from a secondary center of diversity highlights patterns of genetic variation and genomic features of different gene pools. BMC Genomics. https://doi.org/10.1186/s12864-016-3429-0

  328. Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology. https://doi.org/10.3390/biology5010003

  329. Guo Y, Shi G, Liu Z, Zhao Y, Yang X, Zhu J, Li K, Guo X (2015) Using specific length amplified fragment sequencing to construct the high-density genetic map for vitis (Vitis vinifera L. × Vitis amurensis Rupr.). Front. Plant Sci 6:393

    Google Scholar 

  330. Jiang Z, Wang H, Michal JJ, Zhou X, Liu B, Woods LCS, Fuchs RT (2016) Genome wide sampling sequencing for SNP genotyping: methods, challenges and future development. Int J Biol Sci 12:100–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Ali OA, O’Rourke SM, Amish SJ, Meek MH, Luikart G, Jeffres C, Miller MR (2016) RAD capture (Rapture): flexible and efficient sequence-based genotyping. genetics. Genetics 202:389–400

    Article  CAS  PubMed  Google Scholar 

  332. Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, Linton L, Lander ES (2000) An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407:513–516

    Article  CAS  PubMed  Google Scholar 

  333. Van Orsouw NJ, Hogers RCJ, Janssen A, Yalcin F, Snoeijers S, Verstege E et al (2007) Complexity reduction of polymorphic sequences (CRoPS™): a novel approach for large-ccale polymorphism discovery in complex genomes. PLoS ONE 2(11): e1172. https://doi.org/10.1371/journal.pone.0001172

  334. Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Kerstens HDH, Crooijmans RPMA, Dibbits BW, Vereijken A, Okimoto R, Groenen MAM (2011) Structural variation in the chicken genome identified by paired-end next-generation DNA sequencing of reduced representation libraries. BMC Genomics. https://doi.org/10.1186/1471-2164-12-94

  336. Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang Q (2010) Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Nat Acad Sci U S A 107:10578–10583

    Article  CAS  Google Scholar 

  337. Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology 1:460–483

    Article  PubMed  PubMed Central  Google Scholar 

  338. Stolle E, Moritz RFA (2013) RESTseq efficient benchtop population genomics with RESTriction fragment SEQuencing.  PLoS ONE 8(5): e63960. https://doi.org/10.1371/journal.pone.0063960

  339. Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C et al (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 8(3): e58700. https://doi.org/10.1371/journal.pone.0058700

  340. Chen Q, Ma Y, Yang Y, Chen Z, Liao R, Xie X, Wang Z, He P et al (2013) Genotyping by genome reducing and sequencing for outbred animals. PLoS ONE 8(7): e67500. https://doi.org/10.1371/journal.pone.0067500

  341. Du H, Yu Y, Ma Y, Gao Q, Cao Y, Zhuo Chen Z et al (2017) Sequencing and de novo assembly of a near complete indica rice genome. Nat Commun 8:15324

    Article  PubMed  PubMed Central  Google Scholar 

  342. Beissinger TM, Hirsch CN, Sekhon RS, Foerster JM, Johnson JM et al (2013) Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics 193:1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Heffelfinger C, Fragoso CA, Moreno MA, Overton JD, Mottinger JP, Zhao H, Tohme J, Dellaporta SL (2014) Flexible and scalable genotyping-by-sequencing strategies for population studies. BMC Genomics 15:979

    Article  PubMed  PubMed Central  Google Scholar 

  344. Gardner KM, Brown P, Cooke TF, Cann S, Costa F, Bustamante C, Velasco R, Troggio M, Myles S (2014) Fast and cost-effective genetic mapping in apple using next-generation sequencing. Genes Genomes Genet 4:1681–1687

    Google Scholar 

  345. Greminger MP, Stolting KN, Nater A, Goossens B, Arora N, Bruggmann R et al (2014) Generation of SNP datasets for orangutan population genomics using improved reduced-representation sequencing and direct comparisons of SNP calling algorithms. BMC Genomics 15:16

    Article  PubMed  PubMed Central  Google Scholar 

  346. Rowan BA, Patel V, Weigel D, Schneeberger K (2015) Rapid and inexpensive whole-genome genotyping-by-sequencing for crossover localization and fine-scale genetic mapping. Genes Genomes Genet 5:385–398

    CAS  Google Scholar 

  347. Rife TW, Wu S, Bowden RL, Poland JA (2015) Spiked GBS: a unified, open platform for single marker genotyping and whole-genome profiling. BMC Genomics 16:248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  348. Wei T, Deng K, Zhang Q, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Liu Z, Chen C, Zhang Y (2017) Modulating AtDREB1C expression improves drought tolerance in Salvia miltiorrhiza. Front Plant Sci 8:52

    PubMed  PubMed Central  Google Scholar 

  349. Batovska J, Cogan NOI, Lynch SE, Blacket MJ (2017) Using next-generation sequencing for DNA barcoding: capturing allelic variation in ITS2. Gene Genomes Genet 7:19–29

    Google Scholar 

  350. Waiho K, Fazhan H, Shahreza MS, Moh JHZ, Noorbaiduri S, Wong LL et al (2017) Transcriptome analysis and differential gene expression on the testis of orange mud crab, Scylla olivacea, during sexual maturation. PLoS ONE 12(1): e0171095. https://doi.org/10.1371/journal.pone.0171095

  351. Yan YP, Wang ZZ, Tian W, Zhong MD, David S (2010) Generation and analysis of expressed sequence tags from the medicinal plant Salvia miltiorrhiza. Sci China Life Sci 53:273–285

    Article  CAS  PubMed  Google Scholar 

  352. Li Y, Sun C, Luo HM, Li XW, Niu YY, Chen SL (2010) Transcriptome characterization for Salvia miltiorrhiza using 454 GS FLX. Acta Pharm Sinica 45:524–529

    CAS  Google Scholar 

  353. Hua WP, Zhang Y, Song J, Zhao LJ, Wang ZZ (2011) De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics 98:272–279

    Article  CAS  Google Scholar 

  354. Du Q, Li C, Li D, Lu S (2015) Genome-wide analysis, molecular cloning and expression profiling reveal tissue specifically expressed, feedback-regulated, stress-responsive and alternatively spliced novel genes involved in gibberellin metabolism in Salvia miltiorrhiza. BMC Genomics 16:1087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  355. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  356. Kumar S, You FM, Cloutier S (2012) Genome wide SNP discovery in flax through next generation sequencing of reduced representation libraries. BMC Genomics 13:684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Jia Q, Tan C, Wang J, Zhang XQ, Zhu J, Luo H, Yang J, Westcott S, Broughton S, Moody D, Li C (2016) Marker development using SLAF-seq and whole-genome shotgun strategy to fine map the semi-dwarf gene ari-e in barley. BMC Genomics 17:911

    Article  PubMed  PubMed Central  Google Scholar 

  358. Levy SE, Myers RM (2016) Advancements in next-generation sequencing. Ann Rev Genom Hum Genet 17:95–115

    Article  CAS  Google Scholar 

  359. Bowers J, Mitchell J, Beer E, Buzby PR, Causey M, Efcavitch JW et al (2009) Virtual terminator nucleotides for next-generation DNA sequencing. Nat Methods 6:593–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Michael TP, van Buren R (2015) Progress, challenges and the future of crop genomes. Curr Opin Plant Biol 24:71–81

    Article  CAS  PubMed  Google Scholar 

  361. Kage U, Kumar A, Dhokane D, Karre S, Kushalappa AC (2016) Functional molecular markers for crop improvement. Critic Rev Biotechnol 36:917–930

    Article  CAS  Google Scholar 

  362. Salgotra RK, Gupta BB, Stewart CN Jr (2014) From genomics to functional markers in the era of next-generation sequencing. Biotechnol Lett 36:417–426

    Article  CAS  PubMed  Google Scholar 

  363. Walker JB, Sytsma KJ (2007) Staminal evolution in the genus Salvia (Lamiaceae): molecular phylogenetic evidence for multiple origins of the staminal lever. Ann Bot 100:375–391

    Article  CAS  PubMed  Google Scholar 

  364. Jenks AA, Walker JB, Kim SC (2011) Evolution and origins of the Mazatec hallucinogenic sage, Salvia divinorum (Lamiaceae): a molecular phylogenetic approach. J Plant Res 124:593–600

    Article  PubMed  Google Scholar 

  365. Li QQ, Li MH, Yuan QJ, Cui ZH, Huang LQ, Xiao PG (2013) Phylogenetic relationships of Salvia (Lamiaceae) in China: evidence from DNA sequence datasets. J Syst Evol 51:184–195

    Article  Google Scholar 

  366. Xu Z, Peters RJ, Weirather J, Luo H, Liao B, Zhang X et al (2015) Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J 82:951–961

    Article  CAS  PubMed  Google Scholar 

  367. Danilo Stojanovicv D, Aleksic JA, Jancic I, Jancic R (2015) A Mediterranean medicinal plant in the continental Balkans: a plastid DNA-based phylogeographic survey of Salvia officinalis (Lamiaceae) and its conservation implications. Willdenowia 45:103–118

    Article  Google Scholar 

  368. De Mattia F, Bruni I, Galimberti A, Cattaneo F, Casiraghi M, Labra M (2011) A comparative study of different DNA barcoding markers for the identification of some members of Lamiacaea. Food Res Int 44:693–702

    Article  CAS  Google Scholar 

  369. Skoula M, Hilali IE, Makris AM (1999) Evaluation of the genetic diversity of Salvia fruticosa Mill. clones using RAPD markers and comparison with the essential oil profiles. Biochem Syst Ecol 27:559–568

    Article  CAS  Google Scholar 

  370. Guo BL, Feng YX, Zhao YJ (2002) Review of germplasm resources studies on Salvia miltiorrhiza. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China J Chin Materia Medica 27:492–495

    Google Scholar 

  371. Cahill PJ (2004) Genetic diversity among varieties of Chia (Salvia hispanica L.). Genet Resour Crop Evol 51:773–781

    Google Scholar 

  372. Javan ZS, Rahmani F, Heidari R (2012) Assessment of genetic variation of genus Salvia by RAPD and ISSR markers. Aust J Crop Sci 6:1068–1073

    CAS  Google Scholar 

  373. Kaya EM, Uysal UD, Ozturk N, Cenkci S, Tuncel M (2015) Determination of DNA in certain Salvia species by capillary gel electrophoresis. J Liq Chromatogr Relat Technol 38:1417–1425

    Article  CAS  Google Scholar 

  374. Wang B, Zhang Y, Chen CB, Li XL, Chen RY, Chen L (2007) Analysis on genetic diversity of different Salvia miltiorrhiza geographical populations in China. Chin J Chin Mater Medica 32:1988–1991

    Google Scholar 

  375. Braglia L, Casabianca V, De Benedetti L, Pecchioni N, Mercuri A, Cervelli C, Ruffoni B (2011) Amplified fragment length polymorphism markers for DNA fingerprinting in the genus Salvia. Plant Biosyst 145:274–277

    Article  Google Scholar 

  376. Rapposelli E, Melito S, Barmina GG, Foddai M, Azara E, Scarpa GM (2015) AFLP fingerprinting and essential oil profiling of cultivated and wild populations of Sardinian Salvia desoleana. Genet Resour Crop Evol 62:959–970

    Article  CAS  Google Scholar 

  377. Zhang Y, Li X, Wang Z (2013) Diversity evaluation of Salvia miltiorrhiza using ISSR markers. Biochem Genet 51:707–721

    Article  CAS  PubMed  Google Scholar 

  378. Yousefiazarkhanian M, Asghari A, Ahmadi J, Asghari B, Jafari AA (2015) Genetic diversity assessment of some Salvia sp. ecotypes based on ISSR markers. Biol Forum 7:286–288

    CAS  Google Scholar 

  379. Deng KJ, Zhang Y, Xiong BQ, Peng JH, Zhang T, Zhao XN, Ren ZL (2009) Identification, characterization and utilization of simple sequence repeat markers derived from Salvia miltiorrhiza expressed sequence tags. Acta Pharma Sinica 44:1165–1172

    CAS  Google Scholar 

  380. Radosavljevic I, Satovic Z, Jakse J, Javornik B, Greguras D, Jug-Dujakovic M, Liber Z (2012) Development of new microsatellite markers for Salvia officinalis L. and its potential use in conservation-genetic studies of narrow endemic Salvia brachyodon Vandas. Int J Mol Sci 13:12082–12093

    Google Scholar 

  381. Xu G, Liu C, Huang L, Wang X et al (2013) Development of new EST-derived SSRs in Salvia miltiorrhiza (Labiatae) in China and preliminary analysis of genetic diversity and population structure. Biochem Syst Ecol 51:308–313

    Article  CAS  Google Scholar 

  382. Ge X, Chen H, Wang H, Shi A, Liu K (2014) De novo assembly and annotation of Salvia splendens transcriptome using the Illumina platform. PLoS ONE 9(3): e87693. https://doi.org/10.1371/journal.pone.0087693

  383. Resetnik I, Baricevic D, Batir Rusu D, Carovic-Stanko K, Chatzopoulou P, Dajic-Stevanovic Z et al (2016) Genetic diversity and demographic history of wild and cultivated/naturalised plant populations: evidence from dalmatian dage (Salvia officinalis L., Lamiaceae). PLoS ONE 11(7): e0159545. https://doi.org/10.1371/journal.pone.0159545

  384. Sansaloni CP, Petroli CD, Carling J, Hudson CJ, Steane DA, Myburg AA, Grattapaglia D, Vaillancourt RE, Kilian A (2010) A high-density diversity arrays technology (DArT) microarray for genome-wide genotyping in eucalyptus. Plant Methods. https://doi.org/10.1186/1746-4811-6-16

  385. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  386. Yang L, Ding G, Lin H, Cheng H, Kong Y et al (2013) Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis. PLoS ONE 8:e80464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  387. Wang B, Sun W, Li Q, Li Y, Luo H et al (2014) Genome-wide identification of phenolic acid biosynthetic genes in Salvia miltiorrhiza. Planta 241:711–725

    Article  PubMed  CAS  Google Scholar 

  388. Fu YB (2015) Understanding crop genetic diversity under modern plant breeding. Theor Appl Genet 128:2131–2142

    Article  PubMed  PubMed Central  Google Scholar 

  389. Gao W, Sun HX, Xiao H, Cui G, Hillwig M et al (2014) Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza. BMC Genomics 15:73

    Article  PubMed  PubMed Central  Google Scholar 

  390. Grdisa M, Jug-Dujakovic M, Loncaric M, Carovic-Stanko K et al (2015) Dalmatian sage (Salvia officinalis L.): a review of biochemical contents, medical properties and genetic diversity. Agriculturae Conspectus Scientificus 80:69–78

    Google Scholar 

  391. Xu H, Wang ZT, Cheng KT, Wu T, Gu LH, Hu ZB (2009) Comparison of rDNA ITS sequences and tanshinones between Salvia miltiorrhiza populations and Salvia species. Bot Stud 50:127–135

    CAS  Google Scholar 

  392. Liber Z, Zidovec V, Bogdanovic S, Radosavljevic I, Prusa M, Filipovic M et al (2014) Genetic diversity of dalmatian sage (Salvia officinalis L.) as assessed by RAPD markers. Agriculturae Conspectus Scientificus 79:77–84

    Google Scholar 

  393. Zhang T, Wang J, Wang D, Wang H (2015) Development of an authentication system for genuine radix Salviae Miltiorrhizae (Salvia miltiorrhiza) using SNP markers. Planta Med Lett 2:e65–e68

    Article  Google Scholar 

  394. Mardis ER (2013) Next-generation sequencing platforms. Ann Rev Anal Chem 6:287–303

    Article  CAS  Google Scholar 

  395. Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14:1070–1085

    Article  CAS  PubMed  Google Scholar 

  397. Mader E, Lohwasser U, Borner A, Novak J (2010) Population structures of Genebank accessions of Salvia officinalis L. (Lamiaceae) revealed by high resolution melting analysis. Biochem Syst Ecol 38:178–186

    Article  CAS  Google Scholar 

  398. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK et al (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42:30–35

    Article  CAS  PubMed  Google Scholar 

  399. Ma Y, Yuan L, Wu B, Li X, Chen S, Lu S (2012) Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza. J Exp Bot 63:2809–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  400. Hao G, Shi R, Tao R, Fang Q, Jiang X, Ji H, Feng L, Huang L (2013) Cloning, molecular characterization and functional analysis of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase (HDR) gene for diterpenoid tanshinone biosynthesis in Salvia miltiorrhiza Bge. f. alba. Plant Physiol Biochem 70:21–32

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ph.D. candidates Emine Uygur Gocer and Adnan Aydin for their helps in reference preparation. Finally, we thank our teachers and researchers who contributed and touched our lives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Karaca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karaca, M., Ince, A.G. (2017). Molecular Markers in Salvia L.: Past, Present and Future. In: Georgiev, V., Pavlov, A. (eds) Salvia Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-73900-7_9

Download citation

Publish with us

Policies and ethics