Skip to main content

The Characterization of the Residence Time Distribution in a Fluid Mixer by Means of the Information Entropy

  • Conference paper
  • First Online:
Practical Aspects of Chemical Engineering

Abstract

The concept of residence time distribution (RTD) is applied to describe a mixing process. The main idea of the proposed approach is the utilization of experimental RTD measurements to determine the information entropy. This paper discusses a method to compute information mixing capacity as a measure of mixing performance for a continuous flow system. The proposed criterion is applied to evaluate a mixing system with motionless inserts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeosun JT, Lawal A (2010) Residence-time distribution as a measure of mixing in T-junction and multilaminated/elongational flow micromixers. Chem Eng Sci 65:1865–1874

    Article  CAS  Google Scholar 

  • Buso A, Giomo M, Boaretto L (1997) New electrochemical reactor for wastewater treatment: mathematical model. Chem Eng Process 36:411–418

    Article  CAS  Google Scholar 

  • Christensen D, Nijenhuis J, van Ommen J et al (2008) Residence times in fluidized beds with secondary gas injection. Powder Technol 180:321–331

    Article  CAS  Google Scholar 

  • Cocero MJ, Garcia J (2001) Mathematical model of supercritical extraction applied to oil seed extraction by CO2+ saturated alcohol—II. Shortcut methods. J Supercrit Fluid 20:245–255

    Article  CAS  Google Scholar 

  • Danckwerts PV (1953) Continuous flow systems. Chem Eng Sci 2:1–13

    Article  CAS  Google Scholar 

  • Danckwerts PV (1958) The effect of incomplete mixing on homogeneous reactions. Chem Eng Sci 8:93–99

    Article  Google Scholar 

  • Gao Y, Vanarase A, Muzzio F et al (2011) Characterizing continuous powder mixing using residence time distribution. Chem Eng Sci 66:417–425

    Article  CAS  Google Scholar 

  • GarcĂ­a-Sera J, GarcĂ­a-Verdugo E, Hyde JR et al (2007) Modelling residence time distribution in chemical reactors: a novel generalised n-laminar model. Application to supercritical CO2 and subcritical water tubular reactors. J Supercrit Fluid 41:82–91

    Article  Google Scholar 

  • Guo Q, Liang Q, Ni J et al (2008) Markov chain model of residence time distribution in a new type entrained-flow gasifier. Chem Eng Process 47:2061–2065

    Article  CAS  Google Scholar 

  • Harris A, Thorpe R, Davidson J (2002) Stochastic modelling of the particle residence time distribution in circulating fluidised bed risers. Chem Eng Sci 57:4779–4796

    Article  CAS  Google Scholar 

  • Hornung C, Mackley M (2009) The measurements and characterisation of residence time distribution for laminar liquid flow in plastic microcapillary arrays. Chem Eng Sci 64:3889–3902

    Article  CAS  Google Scholar 

  • Jafari M, Soltan Mohammadzadeh JS (2005) Mixing time, homogenization energy and residence time distribution in a gas-induced contractor. Trans IChemE Part A 83:452–459

    Article  CAS  Google Scholar 

  • Jones SC (2000) Static mixers for water treatment: a computational fluid dynamics model. Ph.D. thesis. Georgia Institute of Technology, Source DAI-B 61/04, p 2132

    Google Scholar 

  • Jones SC, Sotiropoulos F, Amirtharajah A (2002) Numerical modeling of helical static mixers for water treatment. J Environ Eng 128:431–440

    Article  CAS  Google Scholar 

  • Jones PN, Özcan-TaƟkin NG, Yianneskis M (2009) The use of momentum ration to evaluate the performance of CSTRs. Chem Eng Res Des 87:485–491

    Article  CAS  Google Scholar 

  • Levenspiel O (1998) Chemical reaction engineering. Wiley, New York

    Google Scholar 

  • Lin FB, Sotiropoulos F (1997) Strongly-coupled multigrid method for 3-D incompressible flows using near-wall turbulence closures. J Fluids Eng 119:314–324

    Article  CAS  Google Scholar 

  • Liu M (2012) Age distribution and the degree of mixing in continuous flow stirred tank reactors. Chem Eng Sci 69:382–393

    Article  CAS  Google Scholar 

  • Madhurabthakam C, Pan Q, Rempel G (2009) Residence time distribution and liquid holdup in kenics KMX static mixer with hydrogenated nitrile butadiene rubber solution and hydrogen gas system. Chem Eng Sci 64:3320–3328

    Article  Google Scholar 

  • Martin AD (2000) Interpretation of residence time distribution. Chem Eng Sci 55:5907–5917

    Article  CAS  Google Scholar 

  • Masiuk M, SzymaƄski E (1997) Polish Patent No. 324,150. Polish Patent and Trademark Office, Warszawa

    Google Scholar 

  • Melo PA, Carlos Pinto J, Jr Biscaia E (2001) Characterization of the residence time distribution in loop reactors. Chem Eng Sci 56:2703–2713

    Article  CAS  Google Scholar 

  • Mizonov V, Berthiaux H, Gatumel C et al (2009) Influence of crosswise non-homogenity of particulate flow on residence time distribution in a continuous mixer. Powder Technol 190:6–9

    Article  CAS  Google Scholar 

  • Nikitine C, Rodier E, Sauceau M et al (2009) Residence time distribution of a pharmaceutical grade polymer melt in a single screw extrusion process. Chem Eng Res Des 87:809–816

    Article  CAS  Google Scholar 

  • Ogawa K (2007) Chemical engineering. A new perspective. Elsevier

    Google Scholar 

  • Peng SH, Davidson L, Holmberg S (1996) The two-equations turbulence k-omega model applied to recirculating ventilation flows. Rept. 96/13, Thermo and Fluid Dynamics, Chalmers University of Technology, Göteborg

    Google Scholar 

  • Pröll T, Todinca T, ƞuta M et al (2007) Acid gas absorption in trickle flow columns—modelling of the residence time distribution of a pilot plant. Chem Eng Process 46:262–270

    Article  Google Scholar 

  • Rakoczy R, Masiuk S (2010) Influence of transverse rotating magnetic field on enhancement of solid dissolution process. AIChE J 56:1416–1433

    Article  CAS  Google Scholar 

  • Rakoczy R, Kordas M, Grądzik P et al (2013) Experimental study and mathematical modeling of the residence time distribution in magnetic mixer. Polish J Chem Technol 15:53–61

    Article  CAS  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Techn J 27:379–423 and 623–656

    Article  Google Scholar 

  • Stringer RM, Zang J, Hillis AJ (2014) Unsteady RANS computations of flow around a circular cylinder for a wide range of Reynolds numbers. Ocean Eng 87:1–9

    Article  Google Scholar 

  • Thakur RK, Vial C, Nigam KDP et al (2003) Static mixers in the process industries—a review. Institution of Chemical Engineers

    Google Scholar 

  • Togun H, Safaei MR, Sadri R et al (2014) Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step. Appl Math Comput 239:153–170

    Google Scholar 

  • Wilcox DC (1988) Reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26:1299–1310

    Article  Google Scholar 

  • Yablonsky GS, Constales D, Marin GB (2009) A new approach to diagnostics of ideal and non-ideal flow patterns: I. The concept of reactive-mixing index (REMI) analysis. Chem Eng Sci 64:4875–4883

    Article  CAS  Google Scholar 

  • Yianatos JB, Bergh LG, DĂ­az F et al (2005) Mixing characteristics of industrial flotation equipment. Chem Eng Sci 60:2273–2282

    Article  CAS  Google Scholar 

  • Zhang T, Wang T, Wang J (2005) Mathematical modelling of the residence time distribution in loop reactors. Chem Eng Process 44:1221–1227

    Article  CAS  Google Scholar 

  • Znad H, BĂĄleĆĄ V, Kawase Y (2004) Modeling and scale up of airlift bioreactor. Comput Chem Eng 28:2765–2777

    Article  CAS  Google Scholar 

  • Zwietering TN (1959) The degree of mixing in continuous flow system. Chem Eng Sci 11:1–15

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RafaƂ Rakoczy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kordas, M., Pluskota, D., Rakoczy, R. (2018). The Characterization of the Residence Time Distribution in a Fluid Mixer by Means of the Information Entropy. In: Ochowiak, M., Woziwodzki, S., Doligalski, M., Mitkowski, P. (eds) Practical Aspects of Chemical Engineering. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73978-6_14

Download citation

Publish with us

Policies and ethics