Skip to main content

The Role of Biofilms in Upper Respiratory Tract Infections

  • Chapter
  • First Online:
Infections of the Ears, Nose, Throat, and Sinuses

Abstract

It has been estimated that more than 90% of bacteria live in biofilms. Biofilms represent a serious clinical concern because they are highly resistant to immune activity and conventional antibiotic treatments. Bacterial biofilms appear to be involved in the pathogenesis of various upper respiratory tract infections, including recurrent acute tonsillitis, chronic adenoiditis, chronic or recurrent middle ear inflammation, and chronic rhinosinusitis. In this chapter, we review new insights into biofilm-related upper respiratory tract infections and discuss possible therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Potera C. Forging a link between biofilms and disease. Science. 1999;283(5409):1837, 1839.

    Article  PubMed  Google Scholar 

  2. Alem MA, Douglas LJ. Effects of aspirin and other nonsteroidal anti-inflammatory drugs on biofilms and planktonic cells of Candida albicans. Antimicrob Agents Chemother. 2004;48(1):41–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Jurcisek JA, Bakaletz LO. Biofilms formed by nontypeable Haemophilus influenzae in vivo contain both double-stranded DNA and type IV pilin protein. J Bacteriol. 2007;189(10):3868–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2(2):114–22.

    Article  PubMed  CAS  Google Scholar 

  6. Stoodley P, Wefel J, Gieseke A, Debeer D, von Ohle C. Biofilm plaque and hydrodynamic effects on mass transfer, fluoride delivery and caries. J Am Dent Assoc. 2008;139(9):1182–90.

    Article  PubMed  CAS  Google Scholar 

  7. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135–8.

    Article  PubMed  CAS  Google Scholar 

  8. Jefferson KK, Goldmann DA, Pier GB. Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother. 2005;49(6):2467–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lambe DW Jr, Ferguson KP, Mayberry-Carson KJ, Tober-Meyer B, Costerton JW. Foreign-body-associated experimental osteomyelitis induced with Bacteroides fragilis and Staphylococcus epidermidis in rabbits. Clin Orthop Relat Res. 1991;(266):285–94.

    Google Scholar 

  10. Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol. 2009;11(7):1034–43.

    Article  PubMed  CAS  Google Scholar 

  11. Psaltis AJ, Bruhn MA, Ooi EH, Tan LW, Wormald PJ. Nasal mucosa expression of lactoferrin in patients with chronic rhinosinusitis. Laryngoscope. 2007;117(11):2030–5.

    Article  PubMed  CAS  Google Scholar 

  12. Hannig C, Hannig M, Rehmer O, Braun G, Hellwig E, Al-Ahmad A. Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch Oral Biol. 2007;52(11):1048–56.

    Article  PubMed  CAS  Google Scholar 

  13. Hannig C, Follo M, Hellwig E, Al-Ahmad A. Visualization of adherent micro-organisms using different techniques. J Med Microbiol. 2010;59(Pt 1):1–7.

    Article  PubMed  CAS  Google Scholar 

  14. Post JC, Hiller NL, Nistico L, Stoodley P, Ehrlich GD. The role of biofilms in otolaryngologic infections: update 2007. Curr Opin Otolaryngol Head Neck Surg. 2007;15(5):347–51.

    Article  PubMed  Google Scholar 

  15. Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 1985;22(6):996–1006.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol. 2003;57:677–701.

    Article  PubMed  CAS  Google Scholar 

  17. Nazzari E, Torretta S, Pignataro L, Marchisio P, Esposito S. Role of biofilm in children with recurrent upper respiratory tract infections. Eur J Clin Microbiol Infect Dis. 2015;34(3):421–9.

    Article  PubMed  CAS  Google Scholar 

  18. Chole RA, Faddis BT. Anatomical evidence of microbial biofilms in tonsillar tissues: a possible mechanism to explain chronicity. Arch Otolaryngol Head Neck Surg. 2003;129(6):634–6.

    Article  PubMed  Google Scholar 

  19. Galli J, Calò L, Ardito F, Imperiali M, Bassotti E, Fadda G, et al. Biofilm formation by Haemophilus influenzae isolated from adeno-tonsil tissue samples, and its role in recurrent adenotonsillitis. Acta Otorhinolaryngol Ital. 2007;27(3):134–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Al-Mazrou KA, Al-Khattaf AS. Adherent biofilms in adenotonsillar diseases in children. Arch Otolaryngol Head Neck Surg. 2008;134(1):20–3.

    Article  PubMed  Google Scholar 

  21. Torretta S, Drago L, Marchisio P, Cappadona M, Rinaldi V, Nazzari E, et al. Recurrences in chronic tonsillitis sustained by tonsillar biofilm-producing bacteria in children. Relationship with the grade of tonsillar hyperplasy. Int J Pediatr Otorhinolaryngol. 2013;77(2):200–4.

    Article  PubMed  Google Scholar 

  22. Stoodley P, Debeer D, Longwell M, Nistico L, Hall-Stoodley L, Wenig B, et al. Tonsillolith: not just a stone but a living biofilm. Otolaryngol Head Neck Surg. 2009;141(3):316–21.

    Article  PubMed  Google Scholar 

  23. Neville BW, Damm DD, Allen CM, Bouquot JE. Oral and maxillofacial pathology. Philadelphia, PA: WB Saunders; 2002.

    Google Scholar 

  24. Diaz RR, Picciafuoco S, Paraje MG, Villegas NA, Miranda JA, Albesa I, et al. Relevance of biofilms in pediatric tonsillar disease. Eur J Clin Microbiol Infect Dis. 2011;30(12):1503–9.

    Article  PubMed  CAS  Google Scholar 

  25. Woo JH, Kim ST, Kang IG, Lee JH, Cha HE, Kim DY. Comparison of tonsillar biofilms between patients with recurrent tonsillitis and a control group. Acta Otolaryngol. 2012;132(10):1115–20.

    Article  PubMed  Google Scholar 

  26. Starner TD, Zhang N, Kim G, Apicella MA, McCray PB Jr. Haemophilus influenzae forms biofilms on airway epithelia: implications in cystic fibrosis. Am J Respir Crit Care Med. 2006;174(2):213–20.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Torretta S, Marchisio P, Drago L, Capaccio P, Baggi E, Pignataro L. The presence of biofilm-producing bacteria on tonsils is associated with increased exhaled nitric oxide levels: preliminary data in children who experience recurrent exacerbations of chronic tonsillitis. J Laryngol Otol. 2015;129(3):267–72.

    Article  PubMed  CAS  Google Scholar 

  28. Kasperska-Zajac A, Czecior E, Namyslowski G. Effect of tonsillectomy on the level of exhaled nitric oxide (NO) in patients with recurrent tonsillitis. Respir Med. 2010;104(11):1757–9.

    Article  PubMed  CAS  Google Scholar 

  29. Torretta S, Marchisio P, Esposito S, Garavello W, Cappadona M, Clemente IA, et al. Exhaled nitric oxide levels in children with chronic adenotonsillar disease. Int J Immunopathol Pharmacol. 2011;24(2):471–80.

    Article  PubMed  CAS  Google Scholar 

  30. Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, et al. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol. 2009;191(23):7333–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Falsetta ML, McEwan AG, Jennings MP, Apicella MA. Anaerobic metabolism occurs in the substratum of gonococcal biofilms and may be sustained in part by nitric oxide. Infect Immun. 2010;78(5):2320–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bulut F, Meric F, Yorgancilar E, Nergiz Y, Akkus M, Nergiz S, et al. Effects of N-acetyl-cysteine and acetylsalicylic acid on the tonsil bacterial biofilm tissues by light and electron microscopy. Eur Rev Med Pharmacol Sci. 2014;18(23):3720–5.

    PubMed  CAS  Google Scholar 

  33. Drago L, Cappelletti L, De Vecchi E, Pignataro L, Torretta S, Mattina R. Antiadhesive and antibiofilm activity of hyaluronic acid against bacteria responsible for respiratory tract infections. APMIS. 2014;122(10):1013–9.

    Article  PubMed  CAS  Google Scholar 

  34. Torretta S, Drago L, Marchisio P, Gaffuri M, Clemente IA, Pignataro L. Topographic distribution of biofilm-producing bacteria in adenoid subsites of children with chronic or recurrent middle ear infections. Ann Otol Rhinol Laryngol. 2013;122(2):109–13.

    Article  PubMed  Google Scholar 

  35. Torretta S, Marchisio P, Drago L, Baggi E, De Vecchi E, Garavello W, et al. Nasopharyngeal biofilm-producing otopathogens in children with nonsevere recurrent acute otitis media. Otolaryngol Head Neck Surg. 2012;146(6):991–6.

    Article  PubMed  Google Scholar 

  36. Galli J, Calò L, Giuliani M, Sergi B, Lucidi D, Meucci D, et al. Biofilm’s role in chronic cholesteatomatous otitis media: a pilot study. Otolaryngol Head Neck Surg. 2016;154(5):914–6.

    Article  PubMed  Google Scholar 

  37. Wessman M, Bjarnsholt T, Eickhardt-Sørensen SR, Johansen HK, Homøe P. Mucosal biofilm detection in chronic otitis media: a study of middle ear biopsies from Greenlandic patients. Eur Arch Otorhinolaryngol. 2015;272(5):1079–85.

    Article  PubMed  Google Scholar 

  38. Bakaletz LO. Bacterial biofilms in the upper airway - evidence for role in pathology and implications for treatment of otitis media. Paediatr Respir Rev. 2012;13(3):154–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Saafan ME, Ibrahim WS, Tomoum MO. Role of adenoid biofilm in chronic otitis media with effusion in children. Eur Arch Otorhinolaryngol. 2013;270(9):2417–25.

    Article  PubMed  Google Scholar 

  40. Zuliani G, Carlisle M, Duberstein A, Haupert M, Syamal M, Berk R, et al. Biofilm density in the pediatric nasopharynx: recurrent acute otitis media versus obstructive sleep apnea. Ann Otol Rhinol Laryngol. 2009;118(7):519–24.

    Article  PubMed  Google Scholar 

  41. Rayner MG, Zhang Y, Gorry MC, Chen Y, Post JC, Ehrlich GD. Evidence of bacterial metabolic activity in culture-negative otitis media with effusion. JAMA. 1998;279(4):296–9.

    Article  PubMed  CAS  Google Scholar 

  42. Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, Hayes J, et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA. 2006;296(2):202–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Daniel M, Imtiaz-Umer S, Fergie N, Birchall JP, Bayston R. Bacterial involvement in otitis media with effusion. Int J Pediatr Otorhinolaryngol. 2012;76(10):1416–22.

    Article  PubMed  CAS  Google Scholar 

  44. Saylam G, Tatar EC, Tatar I, Ozdek A, Korkmaz H. Association of adenoid surface biofilm formation and chronic otitis media with effusion. Arch Otolaryngol Head Neck Surg. 2010;136(6):550–5.

    Article  PubMed  Google Scholar 

  45. Hoa M, Syamal M, Schaeffer MA, Sachdeva L, Berk R, Coticchia J. Biofilms and chronic otitis media: an initial exploration into the role of biofilms in the pathogenesis of chronic otitis media. Am J Otolaryngol. 2010;31(4):241–5.

    Article  PubMed  Google Scholar 

  46. Gu X, Keyoumu Y, Long L, Zhang H. Detection of bacterial biofilms in different types of chronic otitis media. Eur Arch Otorhinolaryngol. 2014;271(11):2877–83.

    Article  PubMed  Google Scholar 

  47. Homøe P, Bjarnsholt T, Wessman M, Sørensen HC, Johansen HK. Morphological evidence of biofilm formation in Greenlanders with chronic suppurative otitis media. Eur Arch Otorhinolaryngol. 2009;266(10):1533–8.

    Article  PubMed  Google Scholar 

  48. Saunders J, Murray M, Alleman A. Biofilms in chronic suppurative otitis media and cholesteatoma: scanning electron microscopy findings. Am J Otolaryngol. 2011;32(1):32–7.

    Article  PubMed  Google Scholar 

  49. Moriyama S, Hotomi M, Shimada J, Billal DS, Fujihara K, Yamanaka N. Formation of biofilm by Haemophilus influenzae isolated from pediatric intractable otitis media. Auris Nasus Larynx. 2009;36(5):525–31.

    Article  PubMed  Google Scholar 

  50. Mizrahi A, Cohen R, Varon E, Bonacorsi S, Bechet S, Poyart C, et al. Non typable-Haemophilus influenzae biofilm formation and acute otitis media. BMC Infect Dis. 2014;14:400.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tatar EÇ, Tatar I, Ocal B, Korkmaz H, Saylam G, Ozdek A, et al. Prevalence of biofilms and their response to medical treatment in chronic rhinosinusitis without polyps. Otolaryngol Head Neck Surg. 2012;146(4):669–75.

    Article  PubMed  Google Scholar 

  52. Danielsen KA, Eskeland O, Fridrich-Aas K, Orszagh VC, Bachmann-Harildstad G, et al. Bacterial biofilms in patients with chronic rhinosinusitis: a confocal scanning laser microscopy study. Rhinology. 2014;52(2):150–5.

    Article  PubMed  CAS  Google Scholar 

  53. Ragab A, Essa N, El-Raghy N, Zahran W, El Borolsy A. Evaluation of bacterial adherence and biofilm arrangements as new targets in treatment of chronic rhinosinusitis. Eur Arch Otorhinolaryngol. 2012;269(2):537–44.

    Article  PubMed  Google Scholar 

  54. Chen HH, Liu X, Ni C, Lu YP, Xiong GY, Lu YY, et al. Bacterial biofilms in chronic rhinosinusitis and their relationship with inflammation severity. Auris Nasus Larynx. 2012;39(2):169–74.

    Article  PubMed  CAS  Google Scholar 

  55. Li H, Wang D, Sun X, Hu L, Yu H, Wang J. Relationship between bacterial biofilm and clinical features of patients with chronic rhinosinusitis. Eur Arch Otorhinolaryngol. 2012;269(1):155–63.

    Article  PubMed  Google Scholar 

  56. Arild Danielsen K, Eskeland Ø, Fridrich-Aas K, Cecilie Orszagh V, Bachmann-Harildstad G, Burum-Auensen E. Bacterial biofilms in chronic rhinosinusitis; distribution and prevalence. Acta Otolaryngol. 2016;136(1):109–12.

    Article  PubMed  Google Scholar 

  57. Coticchia J, Zuliani G, Coleman C, Carron M, Gurrola J II, Haupert M, et al. Biofilm surface area in the pediatric nasopharynx: Chronic rhinosinusitis vs obstructive sleep apnea. Arch Otolaryngol Head Neck Surg. 2007;133(2):110–4.

    Article  PubMed  Google Scholar 

  58. Zuliani G, Carron M, Gurrola J, Coleman C, Haupert M, Berk R, et al. Identification of adenoid biofilms in chronic rhinosinusitis. Int J Pediatr Otorhinolaryngol. 2006;70(9):1613–7.

    Article  PubMed  Google Scholar 

  59. Dlugaszewska J, Leszczynska M, Lenkowski M, Tatarska A, Pastusiak T, Szyfter W. The pathophysiological role of bacterial biofilms in chronic sinusitis. Eur Arch Otorhinolaryngol. 2016;273(8):1989–94.

    Article  PubMed  Google Scholar 

  60. Bezerra TF, Padua FG, Gebrim EM, Saldiva PH, Voegels RL. Biofilms in chronic rhinosinusitis with nasal polyps. Otolaryngol Head Neck Surg. 2011;144(4):612–6.

    Article  PubMed  Google Scholar 

  61. Mladina R, Skitarelić N, Musić S, Ristić M. A biofilm exists on healthy mucosa of the paranasal sinuses: a prospectively performed, blinded, scanning electron microscope study. Clin Otolaryngol. 2010;35(2):104–10.

    Article  PubMed  CAS  Google Scholar 

  62. Sanderson AR, Leid JG, Hunsaker D. Bacterial biofilms on the sinus mucosa of human subjects with chronic rhinosinusitis. Laryngoscope. 2006;116(7):1121–6.

    Article  PubMed  Google Scholar 

  63. Prince AA, Steiger JD, Khalid AN, Dogrhamji L, Reger C, Eau Claire S, et al. Prevalence of biofilm-forming bacteria in chronic rhinosinusitis. Am J Rhinol. 2008;22(3):239–45.

    Article  PubMed  Google Scholar 

  64. Healy DY, Leid JG, Sanderson AR, Hunsaker DH. Biofilms with fungi in chronic rhinosinusitis. Otolaryngol Head Neck Surg. 2008;138(5):641–7.

    Article  PubMed  Google Scholar 

  65. Boase S, Valentine R, Singhal D, Tan LW, Wormald PJ. A sheep model to investigate the role of fungal biofilms in sinusitis: fungal and bacterial synergy. Int Forum Allergy Rhinol. 2011;1(5):340–7.

    Article  PubMed  Google Scholar 

  66. Singhal D, Psaltis AJ, Foreman A, Wormald PJ. The impact of biofilms on outcomes after endoscopic sinus surgery. Am J Rhinol Allergy. 2010;24(3):169–74.

    Article  PubMed  Google Scholar 

  67. Bendouah Z, Barbeau J, Hamad WA, Desrosiers M. Biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa is associated with an unfavorable evolution after surgery for chronic sinusitis and nasal polyposis. Otolaryngol Head Neck Surg. 2006;134(6):991–6.

    Article  PubMed  Google Scholar 

  68. Arjomandi H, Gilde J, Zhu S, Delaney S, Hochstim C, Mazhar K, et al. Relationship of eosinophils and plasma cells to biofilm in chronic rhinosinusitis. Am J Rhinol Allergy. 2013;27(4):e85–90.

    Article  PubMed  Google Scholar 

  69. Foreman A, Holtappels G, Psaltis AJ, Jervis-Bardy J, Field J, Wormald PJ, et al. Adaptive immune responses in Staphylococcus aureus biofilm-associated chronic rhinosinusitis. Allergy. 2011;66(11):1449–56.

    Article  PubMed  CAS  Google Scholar 

  70. Ferguson BJ, Stolz DB. Demonstration of biofilm in human bacterial chronic rhinosinusitis. Am J Rhinol. 2005;19(5):452–7.

    Article  PubMed  Google Scholar 

  71. Mladina R, Poje G, Vuković K, Ristić M, Musić S. Biofilm in nasal polyps. Rhinology. 2008;46(4):302–7.

    PubMed  Google Scholar 

  72. Zernotti ME, Angel Villegas N, Roques Revol M, Baena-Cagnani CE, Arce Miranda JE, Paredes ME, et al. Evidence of bacterial biofilms in nasal polyposis. J Investig Allergol Clin Immunol. 2010;20(5):380–5.

    PubMed  CAS  Google Scholar 

  73. Stewart PS. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother. 1996;40(11):2517–22.

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Mai-Prochnow A, Lucas-Elio P, Egan S, Thomas T, Webb JS, Sanchez-Amat A, et al. Hydrogen peroxide linked to lysine oxidase activity facilitates biofilm differentiation and dispersal in several gram-negative bacteria. J Bacteriol. 2008;190(15):5493–501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Jesaitis AJ, Franklin MJ, Berglund D, Sasaki M, Lord CI, Bleazard JB, Duffy JE, et al. Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol. 2003;171(8):4329–39.

    Article  PubMed  CAS  Google Scholar 

  76. De Beer D, Srinivasan R, Stewart PS. Direct measurement of chlorine penetration into biofilms during disinfection. Appl Environ Microbiol. 1994;60(12):4339–44.

    PubMed  PubMed Central  Google Scholar 

  77. Desrosiers M, Bendouah Z, Barbeau J. Effectiveness of topical antibiotics on Staphylococcus aureus biofilm in vitro. Am J Rhinol. 2007;21(2):149–53.

    Article  PubMed  Google Scholar 

  78. Solares CA, Batra PS, Hall GS, Citardi MJ. Treatment of chronic rhinosinusitis exacerbations due to methicillin-resistant Staphylococcus aureus with mupirocin irrigations. Am J Otolaryngol. 2006;27(3):161–5.

    Article  PubMed  CAS  Google Scholar 

  79. Oxley KS, Thomas JG, Ramadan HH. Effect of ototopical medications on tympanostomy tube biofilms. Laryngoscope. 2007;117(10):1819–24.

    Article  PubMed  CAS  Google Scholar 

  80. Ha KR, Psaltis AJ, Butcher AR, Wormald PJ, Tan LW. In vitro activity of mupirocin on clinical isolates of Staphylococcus aureus and its potential implications in chronic rhinosinusitis. Laryngoscope. 2008;118(3):535–40.

    Article  PubMed  Google Scholar 

  81. Kim SG, Yoon YH, Choi JW, Rha KS, Park YH. Effect of furanone on experimentally induced Pseudomonas aeruginosa biofilm formation: in vitro study. Int J Pediatr Otorhinolaryngol. 2012;76(11):1575–8.

    Article  PubMed  Google Scholar 

  82. Singhal D, Jekle A, Debabov D, Wang L, Khosrovi B, Anderson M, et al. Efficacy of NVC-422 against Staphylococcus aureus biofilms in a sheep biofilm model of sinusitis. Int Forum Allergy Rhinol. 2012;2(4):309–15.

    Article  PubMed  Google Scholar 

  83. Karosi T, Sziklai I, Csomor P. Low-frequency ultrasound for biofilm disruption in chronic rhinosinusitis with nasal polyposis: in vitro pilot study. Laryngoscope. 2013;123(1):17–23.

    Article  PubMed  Google Scholar 

  84. Chiu AG, Palmer JN, Woodworth BA, Doghramji L, Cohen MB, Prince A, et al. Baby shampoo nasal irrigations for the symptomatic post-functional endoscopic sinus surgery patient. Am J Rhinol. 2008;22(1):34–7.

    Article  PubMed  Google Scholar 

  85. Valentine R, Jervis-Bardy J, Psaltis A, Tan LW, Wormald PJ. Efficacy of using a hydrodebrider and of citric acid/zwitterionic surfactant on a Staphylococcus aureus bacterial biofilm in the sheep model of rhinosinusitis. Am J Rhinol Allergy. 2011;25(5):323–6.

    Article  PubMed  Google Scholar 

  86. Free RH, Van der Mei HC, Elving GJ, Van Weissenbruch R, Albers FW, Busscher HJ. Influence of the Provox Flush, blowing and imitated coughing on voice prosthetic biofilms in vitro. Acta Otolaryngol. 2003;123(4):547–51.

    Article  PubMed  CAS  Google Scholar 

  87. Krespi YP, Kizhner V, Nistico L, Hall-Stoodley L, Stoodley P. Laser disruption and killing of methicillin-resistant Staphylococcus aureus biofilms. Am J Otolaryngol. 2011;32(3):198–202.

    Article  PubMed  Google Scholar 

  88. Kilty SJ, Duval M, Chan FT, Ferris W, Slinger R. Methylglyoxal: (active agent of manuka honey) in vitro activity against bacterial biofilms. Int Forum Allergy Rhinol. 2011;1(5):348–50.

    Article  PubMed  Google Scholar 

  89. Lee VS, Humphreys IM, Purcell PL, Davis GE. Manuka honey sinus irrigation for the treatment of chronic rhinosinusitis. A randomized controlled-trial. Int Forum Allergy Rhinol. 2016;7:365.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Schwandt LQ, van Weissenbruch R, van der Mei HC, Busscher HJ, Albers FW. Effect of dairy products on the lifetime of Provox2 voice prosthesis in vitro and in vivo. Head Neck. 2005;27(6):471–7.

    Article  PubMed  Google Scholar 

  91. van der Mei HC, Free RH, Elving GJ, Van Weissenbruch R, Albers FW, Busscher HJ. Effect of probiotic bacteria on prevalence of yeasts in oropharyngeal biofilms on silicone rubber voice prostheses in vitro. J Med Microbiol. 2000;49(8):713–8.

    Article  Google Scholar 

  92. Norizan SN, Yin WF, Chan KG. Caffeine as a potential quorum sensing inhibitor. Sensor (Basel). 2013;13(4):5117–29.

    Article  CAS  Google Scholar 

  93. Mouchrek Junior JC, Nunes LH, Arruda CS, Rizzi Cde C, Mouchrek AQ, Tavarez RR, Tonetto MR, Bandeca MC, Maia Filho EM. Effectiveness of oral antiseptics on tooth biofilm: a study in vivo. J Contempt Dent Pract. 2015;16(8):674–8.

    Article  Google Scholar 

  94. Cross JL, Ramadan HH, Thomas JG. The impact of cationic channel blocker (furosemide) on Pseudomonas Aeruginosa PAO1 biofilm. Otolaryngol Head Neck Surg. 2007;137(1):21–6.

    Article  PubMed  Google Scholar 

  95. Wang EW, Agostini G, Olomu O, Runco D, Jung JY, Chole RA. Gentian violet and ferrum ammonium citrate disrupt Pseudomonas aeruginosas biofilm. Laryngoscope. 2008;118(11):2050–6.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Macchi A, Ardito F, Marchese A, Schito GC, Fadda G. Efficacy of N-acetyl-cysteine in combination with thiamphenicol in sequential (intramuscular/aerosol) therapy of upper respiratory tract infections even when sustained by bacterial biofilms. J Chemother. 2006;18(5):507–13.

    Article  PubMed  CAS  Google Scholar 

  97. Le T, Psaltis A, Tan LW, Wormald PJ. The efficacy of topical antibiofilm agents in a sheep model of rhinosinusitis. Am J Rhinol. 2008;22(6):560–7.

    Article  PubMed  Google Scholar 

  98. Nazik H, Penner JC, Ferreira JA, Haagensen JA, Cohen K, Spormann AM, Martinez M, Chen V, Hsu JL, Clemons KV, Stevens DA. Effects of iron chelators on the formation and development of aspergillus fumigatus biofilm. Antimicrob Agents Chemother. 2015;59(10):6514–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Waryah CB, Wells K, Ulluwishewa D, Chen-Tan N, Gogoi-Tiwari J, Ravensdale J, Costantino P, Gökçen A, Vilcinskas A, Wiesner J, Mukkur T. In vitro antimicrobial efficacy of tobramycin against staphylococcus aureus biofilms in combination with or without DNase I and/or dispersin B: a preliminary investigation. Microb Drug Resist. 2017;23:384.

    Article  PubMed  CAS  Google Scholar 

  100. Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol. 2006;188(21):7344–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Torretta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torretta, S., Pignataro, L. (2018). The Role of Biofilms in Upper Respiratory Tract Infections. In: Durand, M., Deschler, D. (eds) Infections of the Ears, Nose, Throat, and Sinuses. Springer, Cham. https://doi.org/10.1007/978-3-319-74835-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74835-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74834-4

  • Online ISBN: 978-3-319-74835-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics