Skip to main content

Abstract

The synergic exploitation of electromagnetic fields and nano-components has led, in the last two decades, to the definition of new therapeutic tools for the treatment of cancer. One of these tools is the Magnetic Nanoparticle Hyperthermia, an emerging hyperthermic treatment where the tumor heating is achieved by accumulating into it magnetic nanoparticles and applying a low frequency magnetic field. Magnetic Nanoparticle Hyperthermia is very attractive thanks to the biocompatibility and low toxicity of the employed magnetic nanoparticles and the possibility of their selective accumulation into the tumor by means of minimally invasive administration routes. Moreover, they exhibit high dissipation capability and the transparency of the human tissues to low frequency magnetic fields allows treating tumors deeply located in the body. For these reasons, Magnetic Nanoparticle Hyperthermia has been extensively investigated, and clinical trials on human patients have been performed since 2003, with encouraging results and reduced side effects, especially concerning brain tumors. In this framework, an important topic is the characterization, both theoretical and experimental, of the properties, particularly the losses, of magnetic nanoparticles. The aim is to identify the nanoparticle parameters (size and shape) and the exposure conditions (magnetic field amplitude and frequency) that maximize the dissipation capability of the magnetic nanoparticles, in order to minimize their concentration in the tumor. However, maximizing the magnetic losses is only one face of the coin: one must also avoid overheating of the healthy tissue surrounding the tumor, due to the eddy currents induced by the applied field. Therefore, one should actually face a more complex constrained optimization problem. This explains in part why the setting of the operative parameters is still based on empirical, possibly over-restrictive, criteria, although the individuation of the actual optimal working conditions is a key point to extend its clinical effectiveness. In this chapter we will prevalently address this last aspect of Magnetic Nanoparticle Hyperthermia. We will begin with an overview of the main biological and physiological effects that are at the basis of the use of heating as an oncological treatment and of the main hyperthermia modalities. Next, we will introduce and discuss Magnetic Nanoparticle Hyperthermia, reporting the main results of its feasibility assessment and of the clinical trials performed up to now. Then, after revising the state of the art and current issues concerning the optimization of the magnetic nanoparticle losses, we will present a recently proposed criterion for the optimal choice of the working conditions in Magnetic Nanoparticle Hyperthermia, critically discussing the reliability of the analytical models on which it is based. Numerical results relative to the challenging and clinically relevant case of brain tumors, obtained by exploiting a 3D realistic model of the human head, will be presented, discussing their significance and practical relevance. Then, exploiting these results, the limits of clinical applicability of Magnetic Nanoparticle Hyperthermia for the treatment of brain tumors in adult patients will be estimated. A discussion on the possible future developments will conclude the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As usually done, uniaxial magnetic anisotropy is assumed.

  2. 2.

    They can be analytically evaluated in some canonical cases (canonical geometries and canonical inhomogeneity of the thermal properties), which is surely not the case occurring in the actual application of MNPH.

  3. 3.

    The larger is pe the larger is the product Hf employable, according to Eq. (13), hence the larger is the SAR for a given concentration c. This implies that, for a given SAR, c is a decreasing function of the allowed product Hf, hence of pe.

References

  1. Hoption Cann, S.A., van Netten, J.P., van Netten, C.: Dr. William Coley and tumour regression: a place in history or in the future. Postgrad. Med. J. 79, 672–680 (2003)

    Google Scholar 

  2. Oei, A.L., Vriend, L.E.M., Crezee, J., Framken, N.A.P., Krawczyk, P.M.: Effects of hyperthermia on DNA repair effects of hyperthermia on DNA repair effects of hyperthermia on DNA repair. Radiat. Oncol. 10, 165–177 (2015)

    Article  Google Scholar 

  3. Lewis, P.N.: A thermal denaturation study of chromatin and nuclease-produced chromatin fragments. Can. J. Biochem. 55, 736–746 (1977)

    Article  Google Scholar 

  4. Defer, N., Kitzis, A., Kruh, J., Brahms, S., Brahms, J.: Effect of non-histone proteins on thermal transition of chromatin and of DNA. Nucl. Acids Res. 4, 2293–2306 (1977)

    Article  Google Scholar 

  5. Dewey, W.C., Westra, A., Miller, H.H., Nagasawa, H.: Heat induced lethality and chromosomal damage in synchronized Chinese hamster cells treated with 5-bromodeoxyuridine. Int. J. Radiat. Biol. 20, 505–520 (1971)

    Google Scholar 

  6. Wong, R.S.L., Kapp, L.N., Krishnaswamy, G., Dewey, W.C.: Critical steps for induction of chromosomal aberrations in CHO cells heated in S phase. Radiat. Res. 133, 52–59 (2003)

    Article  Google Scholar 

  7. Berezney, R., Mortillaro, M.J., Ma, H., Wei, X., Samarabandu, J.: The nuclear matrix: a structural milieu for nuclear genomic function. In: Berezney, R., Jeon, K. (eds.) Nuclear Matrix: Structural and Functional Organization. Academic Press, California (1995)

    Google Scholar 

  8. Nickerson, J.A., Blencowe, B.J., Penman, S.: The architectural organization of nuclear metabolism. In: Berezney, R., Jeon, K. (eds.) Nuclear Matrix: Structural and Functional Organization. Academic Press, California (1995)

    Google Scholar 

  9. Jackson, D.A., Cook, P.R.: The structural basis of nuclear function. In: Berezney, R., Jeon, K. (eds.) Nuclear Matrix: Structural and Functional Organization. Academic Press, California (1995)

    Google Scholar 

  10. Agutter, P.S.: Intracellular structure and nucleocytoplasmic transport. In: Berezney, R., Jeon, K. (eds.) Nuclear Matrix: Structural and Functional Organization. Academic Press, California (1995)

    Google Scholar 

  11. Wong, R.S.L., Kapp, L.N., Dewey, W.C.: DNA for displacement rate measurements in heated Chinese hamster ovary cells. Biochim. Biophys. Acta 1007, 224–227 (1989)

    Article  Google Scholar 

  12. Wong, R.S.L., Thompson, L.L., Dewey, W.C.: Recovery from effects of heat on DNA synthesis in Chinese hamster ovary cells. Radiat. Res. 114, 125–137 (1988)

    Article  Google Scholar 

  13. Wang, X.Y., Ostberg, J.R., Repasky, E.A.: Effect of fever-like whole-body hyperthermia on lymphocyte spectrin distribution, protein kinase C activity, and uropod formation. J. Immunol. 162, 3378–3387 (1992)

    Google Scholar 

  14. Warters, R.L., Roti, J.L.: Hyperthermia and the cell nucleus. Radiat. Res. 92, 458–462 (1982)

    Article  Google Scholar 

  15. Sisken, J.E., Morasca, L., Kibby, S.: Effects of temperature on the kinetics of the mitotic cycle of mammalian cells in culture. Exp. Cell Res. 39, 103–116 (1965)

    Article  Google Scholar 

  16. Higashikubo, R., Holland, J.M., Roti Roti, J.L.: Comparative effects of caffeine on radiation- and heat-induced alterations in cell cycle progression. Radiat. Res. 119, 246–260 (1989)

    Article  Google Scholar 

  17. Nishita, M., Inoue, S., Tsuda, M., Tateda, C., Miyashita, T.: Nuclear translocation and increased expression of Bax and disturbance in cell cycle progression without prominent apoptosis induced by hyperthermia. Exp. Cell Res. 244, 357–366 (1998)

    Article  Google Scholar 

  18. Warters, R.L., Stone, O.L.: The effects of hyperthermia on DNA replication in HeLa cells. Radiat. Res. 93, 71–84 (1983)

    Article  Google Scholar 

  19. Wang, Y., Guan, J., Wang, H., Wang, Y., Leeper, D., Iliakis, G.: Regulation of dna replication after heat shock by replication protein a-nucleolin interactions. J. Biol. Chem. 276, 20579–20588 (2001)

    Article  Google Scholar 

  20. Iliakis, G., Krieg, T., Guan, J., Wang, Y., Leeper, D.: Evidence for an S-phase checkpoint regulating DNA replication after heat shock: a review. Int. J. Hyperth. 20, 240–249 (2004)

    Article  Google Scholar 

  21. Dianov, G.L., Hübscher, U.: Mammalian base excision repair: the forgotten archangel. Nucl. Acids Res. 41, 3483–3490 (2013)

    Article  Google Scholar 

  22. Fantini, D., Moritz, E., Auvré, F., Amouroux, R., Campalans, A., Epe, B., et al.: Rapid inactivation and proteasome-mediated degradation of OGG1 contribute to the synergistic effect of hyperthermia on genotoxic treatments. DNA Repair 12, 227–237 (2013)

    Article  Google Scholar 

  23. Lieber, M.R.: The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010)

    Article  Google Scholar 

  24. Burgman, P., Ouyang, H., Peterson, S., Chen, D.J., Li, G.C.: Heat inactivation of Ku autoantigen: possible role in hyperthermic radiosensitization. Cancer Res. 57, 2847–2850 (1997)

    Google Scholar 

  25. Matsumoto, Y., Suzuki, N., Sakai, K., Morimatsu, A., Hirano, K., Murofushi, H.: A possible mechanism for hyperthermic radiosensitization mediated through hyperthermic lability of Ku subunits in DNA-dependent protein kinase. Biochem. Biophys. Res. Commun. 234, 568–572 (1997)

    Article  Google Scholar 

  26. Ihara, M., Suwa, A., Komatsu, K., Shimasaki, T., Okaichi, K., Hendrickson, E.A., et al.: Heat sensitivity of double-stranded DNA-dependent protein kinase (DNA-PK) activity. Int. J. Radiat. Biol. 75, 253–258 (1999)

    Article  Google Scholar 

  27. Beck, B.D., Dynlacht, J.R.: Heat-induced aggregation of XRCC5 (Ku80) in nontolerant and thermotolerant cells. Radiat. Res. 156, 767–774 (2001)

    Article  Google Scholar 

  28. Ihara, M., Takeshita, S., Okaichi, K., Okumura, Y., Ohnishi, T.: Heat exposure enhances radiosensitivity by depressing DNA-PK kinase activity during double strand break repair. Int. J. Hyperth. 30, 102–109 (2014)

    Article  Google Scholar 

  29. Krawczyk, P.M., Eppink, B., Essers, J., Stap, J., Rodermond, H., Odijk, H., et al.: Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proc. Natl. Acad. Sci. U.S.A. 108, 9851–9856 (2001)

    Article  Google Scholar 

  30. Genet, S.C., Fujii, Y., Maeda, J., Kaneko, M., Genet, M.D., Miyagawa, K., et al.: Hyperthermia inhibits homologous recombination repair and sensitizes cells to ionizing radiation in a time- and temperature-dependent manner. J. Cell. Physiol. 228, 1473–1481 (2013)

    Article  Google Scholar 

  31. Zelensky, A., Kanaar, R., Wyman, C.: Mediators of homologous DNA pairing. Cold Spring Harb. Perspect. Biol. 6, a016451 (2014)

    Article  Google Scholar 

  32. Jasin, M., Rothstein, R.: Repair of strand breaks by homologous recombination. Cold Spring Harb. Perspect. Biol. 5, a012740 (2013)

    Article  Google Scholar 

  33. Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., et al.: The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43, 33–56 (2002)

    Article  Google Scholar 

  34. Bertone, V., Barni, S., Silvotti, M.G., Freitas, I., Mathé, G., et al.: Hyperthermic effect on the human metastatic liver: a TEM study. Anticancer Res. 17, 4713–4716 (1997)

    Google Scholar 

  35. Christophi, C., Winkworth, A., Muralihdaran, V.: The treatment of malignancy by hyperthermia. Surg. Oncol. 7, 83–90 (1999)

    Article  Google Scholar 

  36. Lande, M.B., Donovan, J.M., Zeidel, M.L.: The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons. J. Gen. Physiol. 106, 67–84 (1995)

    Article  Google Scholar 

  37. Wallner, K.E., DeGregorio, M.W., Li, G.C.: Hyperthermic potentiation of cis-diamminedichloroplatinum (II) cytotoxicity in Chinese hamster ovary cells resistant to the drug. Cancer Res. 46, 6242–6245 (1986)

    Google Scholar 

  38. Ohtsubo, T., Saito, H., Tanaka, N., Matsumoto, H., Sugimoto, C., Saito, T., et al.: Enhancement of cisplatin sensitivity and platinum uptake by 40 °C hyperthermia in resistant cells. Cancer Lett. 119, 47–52 (1997)

    Article  Google Scholar 

  39. Gabano, E., Colangelo, D., Ghezzi, A.R., Osella, D.: The influence of temperature on antiproliferative effects, cellular uptake and DNA platination of the clinically employed Pt(II)-drugs. J. Inorg. Biochem. 102, 629–635 (2008)

    Article  Google Scholar 

  40. Otte, J.: Hyperthermia in cancer therapy. Eur. J. Pediatr. 147, 560–569 (1988)

    Article  Google Scholar 

  41. Hergt, R., Andrä, W.: In: Magnetism in Medicine. Wiley-VCH Verlag GmbH & Co (2007)

    Google Scholar 

  42. Vernon, C.C., Hand, J.W., Field, S.B., Machin, D., Whaley, J.B., van der Zee, J., et al.: Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from fie randomized controlled trials. International Collaborative Hyperthermia Group. Int. J. Radiat. Oncol. Biol. Phys. 35, 731–744 (1996)

    Article  Google Scholar 

  43. Barker, H.E., Paget, J.T., Khan, A.A., Harrington, K.J.: The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer 15, 409–425 (2015)

    Article  Google Scholar 

  44. Zagar, T.M., Oleson, J.R., Vujaskovic, Z., Dewhirst, M.W., Craciunescu, O.I., Blackwell, K.L., et al.: Hyperthermia combined with radiation therapy for superficial breast cancer and chest wall recurrence: a review of the randomised data. Int. J. Hyperth. 26, 612–617 (2010)

    Article  Google Scholar 

  45. Yoshimura, M., Itasaka, S., Harada, H., Hiraoka, M.: Microenvironment and radiation therapy. Biomed. Res. Int. 2013, 685308 (2013)

    Article  Google Scholar 

  46. Dewey, W.C., Freeman, M.L., Raaphorst, G.: Cell biology of hyperthermia and radiation. In: Meyn, R.E., Withers, H.R. (eds.) Radiation Biology in Cancer Research. Raven Press, New York (1980)

    Google Scholar 

  47. Gerweck, L.E.: Modification of cell lethality at elevated temperatures: the pH effect. Radiat. Res. 70, 224–235 (1977)

    Article  Google Scholar 

  48. van der Zee, J.: Heating the patient: a promising approach? Ann. Oncol. 13, 1173–1184 (2002)

    Article  Google Scholar 

  49. Bicher, H.I., Hetzel, F.W., Sandhu, T.S., Frinak, S., Vaupel, P., O’Hara, M.D., O’Brien, T.: Effects of hyperthermia on normal and tumor microenvironment. Radiology 137, 523–530 (1980)

    Google Scholar 

  50. Vaupel, P., Muller-Klieser, W., Otte, J., Manz, R.: Impact of various thermal doses on the oxygenation and blood flow in malignant tumors upon localized hyperthermia. Adv. Exp. Med. Biol. 169, 621–629 (1984)

    Article  Google Scholar 

  51. Vaupel, P.W.: The influence of tumor blood flow and microenvironmental factors on the efficacy of radiation, drugs and localized hyperthermia. Klin. Padiatr. 209, 243–249 (1997)

    Article  Google Scholar 

  52. Evans, S.S., Repasky, E.A., Fisher, D.T.: Fever and the thermal regulation of immunity: the immune system feels the heat. Nat. Rev. Immunol. 15, 335–349 (2005)

    Article  Google Scholar 

  53. Repasky, E.A., Evans, S.S., Dewhirst, M.W.: Temperature matters! And why it should matter to tumor immunologists. Cancer Immunol. Res. 1, 210–216 (2013)

    Google Scholar 

  54. Zhang, H.G., Mehta, K., Cohen, P., Guha, C.: Hyperthermia on immune regulation: a temperature’s story. Cancer Lett. 271, 191–204 (2008)

    Article  Google Scholar 

  55. Toraya-Brown, S., Fiering, S.: Local tumour hyperthermia as immunotherapy for metastatic cancer. Int. J. Hyperth. 30, 531–539 (2014)

    Article  Google Scholar 

  56. Ito, A., Tanaka, K., Kondo, K., Shinkai, M., Honda, H., Matsumoto, K., et al.: Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci. 94, 308–313 (2003)

    Article  Google Scholar 

  57. Ito, A., Honda, H., Kobayashi, T.: Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunol. Immunother. 55, 320–328 (2006)

    Article  Google Scholar 

  58. Suzue, K., Zhou, X., Eisen, H.N., Young, R.A.: Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc. Natl. Acad. Sci. U.S.A. 94, 13146–13151 (1997)

    Article  Google Scholar 

  59. Todryk, S., Melcher, A., Hardwick, N., Linardakis, E., Bateman, A., Colombo, M., et al.: Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J. Immunol. 163, 1398–1408 (1999)

    Google Scholar 

  60. Noessner, E., Gastpar, R., Milani, V., Brandl, A., Hutzler, P.J.S., Kuppner, M.C., et al.: Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J. Immunol. 169, 5424–5432 (2002)

    Article  Google Scholar 

  61. Toraya-Brown, S., Sheen, M.R., Zhang, P., Chen, L., Baird, J.R., Demidenko, E., et al.: Local hyperthermia treatment of tumors induces CD8 þ T cell-mediated resistance against distal and secondary tumors. Nanomed. Nanotech. Biol. Med. 10, 1273–1285 (2014)

    Article  Google Scholar 

  62. Dewhirst, M.W., Vujaskovic, Z., Jones, E., Thrall, D.: Re-setting the biologic rationale for thermal therapy. Int. J. Hyperth. 21, 779–790 (2005)

    Article  Google Scholar 

  63. Lepock, J.R.: Role of nuclear protein denaturation and aggregation in thermal radiosensitization. Int. J. Hyperth. 20, 115–130 (2004)

    Article  Google Scholar 

  64. Kampinga, H.H.: Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int. J. Hyperth. 22, 191–196 (2006)

    Article  Google Scholar 

  65. Akerfelt, M., Morimoto, R.I., Sistonen, L.: Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11, 545–555 (2010)

    Article  Google Scholar 

  66. Henle, K.J.: Sensitization to hyperthermia below 43 °C. Cancer Inst. 64, 1479–1483 (1980)

    Article  Google Scholar 

  67. Gerner, E.W., Schneider, M.J.: Induced thermal resistance in HeLa cells. Nature 256, 500–502 (1976)

    Article  Google Scholar 

  68. Henle, K.J., Leeper, D.B.: Interaction of hyperthermia and radiation in CHO cells: recovery kinetics. Radiat. Res. 66, 505–518 (1976)

    Article  Google Scholar 

  69. Falk, M.H., Issels, R.D.: Hyperthermia in oncology. Int. J. Hyperth. 17, 1–18 (2001)

    Article  Google Scholar 

  70. Feldman, A.L., Libutti, S.K., Pingpank, J.F., Bartlett, D.L., Beresnev, T.H., Mavroukakis, S.M., et al.: Analysis of factors associated with outcome in patients with malignant peritoneal mesothelioma undergoing surgical debulking and intraperitoneal chemotherapy. J. Clin. Oncol. 21, 4560–4567 (2003)

    Article  Google Scholar 

  71. Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., et al.: Hyperthermia in combined treatment of cancer. Lancet Oncol. 3, 487–497 (2002)

    Article  Google Scholar 

  72. Chichel, A., Skowronek, J., Kubaszewska, M., Kanikowski, M.: Hyperthermia—description of a method and a review of clinical applications. Rep. Pract. Oncol. Radiother. 12, 267–275 (2007)

    Article  Google Scholar 

  73. Kaur, P., Aliru, M.L., Chadha, A.S., Asea, A., Krishnan, S.: Hyperthermia using nanoparticles—promises and pitfalls. Int. J. Hyperth. 32, 76–88 (2016)

    Article  Google Scholar 

  74. Gelvich, E.A., Mazokhin, V.N.: Technical aspects of electromagnetic hyperthermia in medicine. Crit. Rev. Biomed. Eng. 29, 77–97 (2001)

    Article  Google Scholar 

  75. Gilchrist, R.K., Medal, R., Shorey, W.D., Hanselman, R.C., Parrott, J.C., Taylor, C.B.: Selective inductive heating of lymph nodes. Ann. Surg. 146, 596–606 (1957)

    Article  Google Scholar 

  76. Barry, S.E.: Challenges in the development of magnetic particles for therapeutic applications. Int. J. Hyperth. 24, 451–466 (2008)

    Article  Google Scholar 

  77. Tran, P., Tran, T., Vo, T., Lee, B.J.: Promising iron oxide-based magnetic nanoparticles in biomedical engineering. Arch. Pharm. Res. 35, 2045–2061 (2012)

    Article  Google Scholar 

  78. Kafrouni, L., Savadogo, O.: Recent progress on magnetic nanoparticles for magnetic hyperthermia. Prog. Biomater. 5, 147–160 (2016)

    Article  Google Scholar 

  79. Sharifi, S., Behzadi, S., Laurent, S., Forrest, M.L., Stroeve, P., Mahmoudi, M.: Toxicity of nanomaterials. Chem. Soc. Rev. 41, 2323–2343 (2012)

    Article  Google Scholar 

  80. Lévy, M., Lagarde, F., Maraloiu, V.A., Blanchin, M.G., Gendron, F., Wilhelm, C., Gazeau, F.: Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotech 21, 395103 (2010)

    Article  Google Scholar 

  81. Lei, L., Ling-Ling, J., Yun, Z., Gang, L.: Toxicity of superparamagnetic iron oxide nanoparticles: research strategies and implications for nanomedicine. Chin. Phys. B 22, 127503 (2013)

    Article  Google Scholar 

  82. Hilger, I., Fruhauf, S., Linss, W., Hiergeist, R., Andra, W., Hergt, R., et al.: Cytotoxicity of selected magnetic fluids on human adenocarcinoma cells. J. Magn. Magn. Mater. 261, 7–12 (2003)

    Article  Google Scholar 

  83. Sadeghiani, N., Barbosa, L.S., Silva, L.P., Azevedo, R.B., Morais, P.C., Lacava, Z.G.M.: Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid. J. Magn. Magn. Mater. 289, 466–468 (2005)

    Article  Google Scholar 

  84. Wang, M., Thanou, M.: Targeting nanoparticles to cancer. Pharmacol. Res. 62, 90–99 (2010)

    Article  Google Scholar 

  85. Xu, F., Piett, C., Farkas, S., Qazzaz, M., Syed, N.I.: Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons. Mol. Brain 6, 29 (2013)

    Article  Google Scholar 

  86. Panariti, A., Miserocchi, G., Rivolta, I.: The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Nanotechnol. Sci. Appl. 5, 87–100 (2012)

    Google Scholar 

  87. Singh, N., Manshian, B., Jenkins, G.J., Griffiths, S.M., Williams, P.M., Maffeis, T.G., et al.: Nanogenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30, 3891–3914 (2009)

    Article  Google Scholar 

  88. Elsaesser, A., Howard, C.V.: Toxicology of nanoparticles. Adv. Drug Deliv. Rev. 64, 129–137 (2012)

    Article  Google Scholar 

  89. Odenbach, S.: Ferrofluids: Magnetically Controllable Fluids and Their Applications. Springer, New York (2002)

    Book  MATH  Google Scholar 

  90. Giustini, A.J., Ivkov, R., Hoopes, P.J.: Magnetic nanoparticle biodistribution following intratumoral administration. Nanotech 22, 345101 (2011)

    Article  Google Scholar 

  91. Jordan, A., Scholz, R., Wust, P., Fahling, H., Krause, J., Wlodarczyk, W., et al.: Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int. J. Hyperth. 13, 587–605 (1997)

    Article  Google Scholar 

  92. Maier-Hauff, K., Ulrich, F., Nestler, D., Niehoff, H., Wust, P., Thiesen, B., et al.: Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 103, 317–324 (2011)

    Article  Google Scholar 

  93. van Landeghem, F.K., Maier-Hauff, K., Jordan, A., Hoffmann, K.T., Gneveckow, U., Scholz, R., et al.: Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30, 52–57 (2009)

    Article  Google Scholar 

  94. Johannsen, M., Gneueckow, U., Thiesen, B., Taymoorian, K., Cho, C.H., Waldofner, N., et al.: Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur. Urol. 52, 1653–1662 (2007)

    Article  Google Scholar 

  95. Johannsen, M., Jordan, A., Scholz, R., Koch, M., Lein, M., Deger, S., et al.: Evaluation of magnetic fluid hyperthermia in a standard rat model of prostate cancer. J. Endourol. 18, 495–500 (2004)

    Article  Google Scholar 

  96. Moroz, P., Jones, S.K., Winter, J., Gray, B.N.: Targeting liver tumors with hyperthermia: ferromagnetic embolization in a rabbit liver tumor model. J. Surg. Oncol. 78, 22–29 (2001)

    Article  Google Scholar 

  97. Matsumura, Y., Maeda, H.: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumor tropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986)

    Google Scholar 

  98. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., Hori, K.: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65, 271–284 (2000)

    Article  Google Scholar 

  99. Maeda, H.: The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207 (2001)

    Article  Google Scholar 

  100. Fang, J., Nakamura, H., Maeda, H.: The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011)

    Article  Google Scholar 

  101. Kwon, I.K., Lee, S.C., Han, B., Park, K.: Analysis on the current status of targeted drug delivery to tumors. J. Control. Release 164, 108–114 (2012)

    Article  Google Scholar 

  102. Lammers, T., Kiessling, F., Hennink, W.E., Storm, G.: Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J. Control. Release 161, 175–187 (2012)

    Article  Google Scholar 

  103. Maeda, H.: Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J. Control. Release 164, 138–144 (2012)

    Article  Google Scholar 

  104. Maeda, H., Nakamura, H., Fang, J.: The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 65, 71–79 (2013)

    Article  Google Scholar 

  105. Wang, A.Z., Gu, F.X., Farokhzad, O.C.: In: Webster, T.J. (ed.) Safety of Nanoparticles: From Manufacturing to Medical Applications. Springer, New York (2008)

    Google Scholar 

  106. Maeda, H.: Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug. Chem. 21, 797–802 (2010)

    Article  Google Scholar 

  107. Oliver, J.D., Deen, W.M.: Random-coil model for glomerular sieving of dextran. Bull. Math. Biol. 56, 369–389 (1994)

    Article  MATH  Google Scholar 

  108. Choi, H.S., Liu, W., Misra, P., Tanaka, E., Zimmer, J.P., Itty Ipe, B., et al.: Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007)

    Article  Google Scholar 

  109. Allémann, E., Gurny, R., Doelker, E.: Drug-loaded nanoparticles-preparation methods and drug targeting issues. Eur. J. Pharm. Biopharm. 39, 173–191 (1993)

    Google Scholar 

  110. Krishnan, K.M.: Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans. Magn. 46, 2523–2558 (2010)

    Article  Google Scholar 

  111. Weissleder, R., Bogdanov, A., Neuwelt, E.A., Papisov, M.: Long circulating iron oxides for MR imaging. Adv. Drug Del. Rev. 16, 321–334 (1959)

    Article  Google Scholar 

  112. Elsabahy, M., Wooley, K.L.: Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41, 2545–2561 (2012)

    Article  Google Scholar 

  113. Arvizo, R.R., Miranda, O.R., Moyano, D.F., Walden, C.A., Giri, K., Bhattacharya, R., Robertson, J.D., Rotello, V.M., Reid, J.M., Mukherjee, P.: Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS ONE 6, e24374 (2011)

    Article  Google Scholar 

  114. Blanco, E., Shen, H., Ferrari, M.: Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015)

    Article  Google Scholar 

  115. Xiao, K., Li, Y., Luo, J., Lee, J.S., Xiao, W., Gonik, A.M., Agarwal, R., Lam, K.S.: The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32, 3435–3446 (2011)

    Article  Google Scholar 

  116. Paciotti, G.F., Myer, L., Weinreich, D., Goia, D., Pavel, N., McLaughlin, R.E., Tamarkin, L.: Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 11, 169–183 (2004)

    Article  Google Scholar 

  117. Harris, J.M., Chess, R.B.: Effect of PEGylation on pharmaceuticals. Nat. Rev. Drug Discov. 2, 214–221 (2003)

    Article  Google Scholar 

  118. Klibanov, A.L., Maruyama, K., Torchilin, V.P., Huang, L.: Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235–237 (1990)

    Article  Google Scholar 

  119. Brigger, I., Dubernet, C., Couvreur, P.: Nanoparticles in cancer therapy and diagnosis. Adv. Drug Del. Rev. 54, 631–651 (2002)

    Google Scholar 

  120. Larson, D.R., et al.: Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436 (2003)

    Article  Google Scholar 

  121. Ahrens, E.T., Feili-Hariri, M., Xu, H., Genove, G., Morel, P.A.: Receptormediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn. Reson. Med. 49, 1006–1013 (2003)

    Article  Google Scholar 

  122. Gruttner, C., Muller, K., Teller, J., Westphal, F., Foreman, A., Ivkov, R.: Synthesis and antibody conjugation of magnetic nanoparticles with improved specific power absorption rates for alternating magnetic field cancer therapy. J. Magn. Magn. Mater. 311, 181–186 (2007)

    Article  Google Scholar 

  123. Xiong, F., Zhu, Z.-Y., Xiong, C., Hua, X.-Q., Shan, X.-H., Zhang, Y., Gu, N.: Preparation, characterization of 2-deoxy-D-glucose functionalized dimercaptosuccinic acid-coated maghemite nanoparticles for targeting tumor cells. Pharm. Res. 29, 1087–1097 (2011)

    Article  Google Scholar 

  124. Le, B., Shinkai, M., Kitade, T., Honda, H., Yoshida, J., Wakabayashi, T., Kobayashi, T.: Preparation of tumor-specific magnetoliposomes and their application for hyperthermia. J. Chem. Eng. Jpn. 34, 66–72 (2001)

    Article  Google Scholar 

  125. Yang, L., Mao, H., Wang, Y.A., Cao, Z., Peng, X., Wang, X., et al.: Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 5, 235–243 (2008)

    Article  Google Scholar 

  126. Creixell, M., Boho´rquez, A.C., Torres-Lugo, M., Rinaldi, C.: EGFR targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 5, 7124–7129 (2011)

    Google Scholar 

  127. Creixell, M., Herrera, A.P., Ayala, V., Latorre-Esteves, M., Perez-Torres, M., Torres-Lugo, M., Rinaldi, C.: Preparation of epidermal growth factor (EGF) conjugated iron oxide nanoparticles and their internalization into colon cancer cells. J. Magn. Magn. Mater. 322, 2244–2250 (2010)

    Article  Google Scholar 

  128. Wang, A.Z., Bagalkot, V., Vasilliou, C.C., Gu, F., Alexis, F., Zhang, L., et al.: Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. Chem. Med. Chem. 3, 1311–1315 (2008)

    Article  Google Scholar 

  129. Yu, M.K., Kim, D., Lee, I.-H., So, J.-S., Jeong, Y.Y., Jon, S.: Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7, 2241–2249 (2011)

    Article  Google Scholar 

  130. Bamrungsap, S., Shukoor, M.I., Chen, T., Sefah, K., Tan, W.: Detection of lysozyme magnetic relaxation switches based on aptamer-functionalized superparamagnetic nanoparticles. Anal. Chem. 83, 7795–7799 (2011)

    Article  Google Scholar 

  131. Bamrungsap, S., Chen, T., Shukoor, M.I., Chen, Z., Sefah, K., Chen, Y., Tan, W.: Pattern recognition of cancer cells using aptamer conjugated magnetic nanoparticles. ACS Nano 6, 3974–3981 (2012)

    Article  Google Scholar 

  132. Leuschner, C., et al.: LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer Metastases. Breast Cancer Res. Treat. 99, 163–176 (2006)

    Article  Google Scholar 

  133. Gleich, B., Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214–1217 (2005)

    Article  Google Scholar 

  134. Skomski, R.: Nanomagnetics. J. Phys. C: Condens. Matter 15, 841–896 (2003)

    Google Scholar 

  135. Silva, A.C., et al.: Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int. J. Nanomed. 6, 591–603 (2011)

    Google Scholar 

  136. Gneveckow, U., Jordan, A., Scholz, R., Brüss, V., Waldöfner, N., Ricke, J., et al.: Description and characterization of the novel hyperthermia- and thermoablation-system MFH 300F for clinical magnetic field hyperthermia. Med. Phys. 31, 1444–1451 (2004)

    Article  Google Scholar 

  137. Pennes, H.H.: Analysis of tissue and arterial blood temperatures in resting forearm. J. Appl. Physiol. 1, 93–122 (1948)

    Article  Google Scholar 

  138. Maier-Hauff, K., et al.: Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J. Neuro-Oncol. 81, 53–60 (2007)

    Article  Google Scholar 

  139. https://drks-neu.uniklinik-freiburg.de/drks_web/setLocale_EN.do

  140. Johannsen, M., et al.: Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int. J. Hyperth. 21, 637–647 (2005)

    Article  Google Scholar 

  141. Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)

    Article  Google Scholar 

  142. Matsumine, A., et al.: A novel hyperthermia treatment for bone metastases using magnetic materials. Int. J. Clin. Oncol. 16, 101–108 (2011)

    Article  Google Scholar 

  143. Dobson, J.: Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol. 3, 139–143 (2008)

    Article  Google Scholar 

  144. Sura, H.S., et al.: Gene expression changes in stem cells following targeted localisation in a flow system using magnetic particle technology. Eur. Cells Mater. 16, 18 (2008)

    Google Scholar 

  145. Brezovich, I.A.: Low frequency hyperthermia. Med. Phys. Monograph 16, 82–111 (1988)

    Google Scholar 

  146. Fortin, J.P., Wilhelm, C., Servais, J., Menager, C., Bacri, J.C., Gazeau, F.: Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J. Am. Chem. Soc. 129, 2628–2635 (2007)

    Article  Google Scholar 

  147. Levy, M., Wilhelm, C., Siaugue, J.M., Horner, O., Bacri, J.C., Gazeau, F.: Magnetically induced hyperthermia: size-dependent heating power of γ-Fe2O3 nanoparticles. Phys. Condens. Matter 20, 204133 (2008)

    Google Scholar 

  148. Bakoglidis, K.D., Simeonidis, K., Sakellari, D., Stefanou, G., Angelakeris, M.: Size–dependent mechanisms in AC magnetic hyperthermia response of iron-oxide nanoparticles. IEEE Trans. Magn. 48, 1320–1323 (2012)

    Article  Google Scholar 

  149. de la Presa, P., Luengo, Y., Multigner, M., Costo, R., Morales, M.P., Rivero, G., Hernando, A.: Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. J. Phys. Chem. C 116, 25602–25610 (2012)

    Article  Google Scholar 

  150. Patsula, V., Moskvin, M., Duts, S., Horák, D.: Size-dependent magnetic properties of iron oxide nanoparticles. J. Phys. Chem. Solids 88, 24–30 (2016)

    Article  Google Scholar 

  151. Goya, G.F., Lima, E., Arelaro, A.D., Torres, T., Rechenberg, H.R., Rossi, L., Marquina, C., Ibarra, M.R.: Magnetic hyperthermia with Fe3O4 nanoparticles: the influence of particle size on energy absorption. IEEE Trans. Magn. 44, 4444–4447 (2008)

    Article  Google Scholar 

  152. Gonzales-Weimuller, M., Zeisberger, M., Krishnan, K.M.: Size-depend ant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J. Magn. Magn. Mater. 321, 1947–1950 (2009)

    Article  Google Scholar 

  153. Khandhar, A.P., Ferguson, R.M., Simon, J.A., Krishnan, K.M.: Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. J. Biomed. Mater. Res. Part A 100, 728–737 (2012)

    Article  Google Scholar 

  154. Lima, E., et al.: Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic field. J. Phys. D: Appl. Phys. 46, 045002 (13 pp) (2013)

    Google Scholar 

  155. Shah, R.R., Davis, T.P., Glover, A.L., Nikles, D.E., Brazel, C.S.: Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. J. Magn. Magn. Mater. 387, 96–106 (2015)

    Article  Google Scholar 

  156. Suto, M., Hirota, Y., Mamiya, H., Fujita, A., Kasuya, R., Tohji, K., Jeyadevan, B.: Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. J. Magn. Magn. Mater. 321, 1493–1496 (2009)

    Article  Google Scholar 

  157. Purushotham, S., Ramanujan, R.V.: Modeling the performance of magnetic nanoparticles in multimodal cancer therapy. J. Appl. Phys. 107, 114701 (2010)

    Article  Google Scholar 

  158. Usov, N.A.: Low frequency hysteresis loops of superparamagnetic nanoparticles with uniaxial anisotropy. J. Appl. Phys. 107, 123909 (2010)

    Article  Google Scholar 

  159. Shiliomis, M.I., Raikher, Y.L.: Experimental investigation of magnetic fluids. IEEE Trans. Magn. 16, 237–250 (1980)

    Article  Google Scholar 

  160. Rosensweig, R.E.: Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002)

    Article  Google Scholar 

  161. Cregg, P.J., Crothers, D.S.F., Weckstead, A.W.: An approximate formula for the relaxation time of a single domain ferromagnetic particle with uniaxial anisotropy and collinear field. J. Appl. Phys. 76, 4900–4902 (1994)

    Article  Google Scholar 

  162. Malik, V., Goodwill, J., Mallapragada, S., Prozorov, T., Prozorov, R.: Comparative study of magnetic properties of nanoparticles by high-frequency heat dissipation and conventional magnetometry. IEEE Magn. Lett. 5, 1–4 (2014)

    Article  Google Scholar 

  163. Garaio, E., Sandre, O., Collantes, J., Garcia, J., Mornet, S., Plazaola, F.: Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (AC magnetometry). Nanotech 26, 015704–015722 (2015)

    Article  Google Scholar 

  164. Etheridge, M.L., Bischof, C.J.: Optimizing magnetic nanoparticle based thermal therapies within the physical limits of heating. Ann. Biomed. Eng. 41, 78–88 (2013)

    Article  Google Scholar 

  165. Hergt, R., Dutz, S., Roder, M.: Effect of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J. Phys.: Condens. Matter 20, 1–12 (2008)

    Google Scholar 

  166. Bellizzi, G., Bucci, O.M.: On the optimal choice of the exposure conditions and the nanoparticle features in magnetic nanoparticle hyperthermia. Int. J. Hyperth. 26, 389–403 (2010)

    Article  Google Scholar 

  167. Bellizzi, G., Bucci, O.M., Chirico, G.: Numerical assessment of a criterion for the optimal choice of the operative condition s in magnetic nanoparticle hyperthermia on a realistic model of the human head. Int. J. Hyperth. 32, 688–703 (2016)

    Article  Google Scholar 

  168. Carrey, J., Mehdaoui, B., Respaud, M.: Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J. Appl. Phys. 109, 083921 (2011)

    Article  Google Scholar 

  169. Arkin, H., Xu, L.X., Holmes, K.R.: Recent developments in modeling heat transfer in blood perfused tissues. IEEE Trans. Biomed. Eng. 41, 97–107 (1994)

    Article  Google Scholar 

  170. Bhowmik, A., Singh, R., Repaka, R., Mishra, S.C.: Conventional and newly developed bioheat transport models in vascularized tissues: a review. J. Therm. Biol. 38, 107–125 (2013)

    Article  Google Scholar 

  171. Jaunich, M., Raje, S., Kim, K., Mitra, K., Guo, Z.: Bio-heat transfer analysis during short pulse laser irradiation of tissues. Int. J. Heat Mass Transf. 51, 5511–5521 (2008)

    Article  MATH  Google Scholar 

  172. Rossi, M.R., Rabin, Y.: Experimental verification of numerical simulations of cryosurgery with application to computerized planning. Phys. Med. Biol. 52, 4553–4567 (2007)

    Article  Google Scholar 

  173. Lang, J., Erdmann, B., Seebass, M.: Impact of nonlinear heat transfer on temperature control in regional hyperthermia. IEEE Trans. Biomed. Eng. 46, 1129–1138 (1999)

    Article  Google Scholar 

  174. Kowalski, M.E., Jin, J.M.: Model-based optimization of phased arrays for electromagnetic hyperthermia. IEEE Trans. Microwave Theory Tech. 52, 1964–1977 (2004)

    Article  Google Scholar 

  175. Candeo, A., Dughiero, F.: Numerical FEM models for the planning of magnetic induction hyperthermia treatments with nanoparticles. IEEE Trans. Magn. 45, 1658–1661 (2009)

    Article  Google Scholar 

  176. Song, C.W.: Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Res. 44, S4721–S4730 (1984)

    Google Scholar 

  177. Zubal, I.G., Harrell, C.R., Smith, E.O., Rattner, Z., Gindi, G., Hoffer, P.B.: Computerized 3-dimensional segmented human anatomy. Med. Phys. 21, 299–302 (1994)

    Article  Google Scholar 

  178. Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41, 2271–2293 (1996)

    Article  Google Scholar 

  179. Diller, K.R., Valvano, J.W., Pearce, J.A.: Bioheat transfer. In: Goswami, D.Y. (ed.) The CRC Handbook of Mechanical Engineering. CRC Press, Boca Raton, FL (2004)

    Google Scholar 

  180. Stigliano, R.V., Shubitidze, F., Petryk, J.D., Shoshiashvili, L., Petryk, A.A., Hoopes, P.J.: Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy. Int. J. Hyperth. 32, 735–748 (2016)

    Article  Google Scholar 

  181. Ho, S.L., Jian, L., Gong, W., Fu, W.N.: Design and analysis of a novel targeted magnetic fluid hyperthermia system for tumor treatment. IEEE Trans. Magn. 48, 3262–3265 (2012)

    Article  Google Scholar 

  182. Ho, S.L., Niu, S., Fu, W.N.: Design and analysis of novel focused hyperthermia devices. IEEE Trans. Magn. 48, 3254–3257 (2012)

    Article  Google Scholar 

  183. de Dear, R.J., Arens, E., Hui, Z., Oguro, M.: Convective and radiative heat transfer coefficients for individual human body segments. Int. J. Biometeorol. 40, 141–156 (1997)

    Article  Google Scholar 

  184. Malaescu, I., Marin, C.N.: Study of magnetic fluids by means of magnetic spectroscopy. Phys. B 365, 134–140 (2005)

    Article  Google Scholar 

  185. Hergt, R., Dutz, S.: Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 311, 187–192 (2007)

    Article  Google Scholar 

  186. Golneshan, A., Lahonian, M.: Diffusion of magnetic nanoparticles in a multi-site injection process within a biological tissue during magnetic fluid hyperthermia using lattice Boltzmann method. Mech. Res. Commun. 38, 425–430 (2011)

    Article  MATH  Google Scholar 

  187. LeBrun, A., Manuchehrabadi, N., Attaluri, A., Wang, F., Ma, R., Zhu, L.: MicroCT image-generated tumour geometry and SAR distribution for tumour temperature elevation simulations in magnetic nanoparticle hyperthermia. Int. J. Hyperth. 29, 730–738 (2013)

    Article  Google Scholar 

  188. Bellizzi, G., Bucci, O.M., Catapano, I.: Microwave cancer imaging exploiting magnetic nanoparticles as contrast agent. IEEE Trans. Biomed. Eng. 58, 2528–2536 (2011)

    Article  Google Scholar 

  189. Buxxi, O.M., Bellizzi, G., Catapano, I., Crocco, L., Scapaticci, R.: MNP enhanced microwave breast cancer imaging: measurement constraints and achievable performances. IEEE Antenna Wirel. Propag. Lett. 11, 1630–1633 (2012)

    Article  Google Scholar 

  190. Scapaticci, R., Bellizzi, G., Catapano, I., Crocco, L., Bucci, O.M.: An effective procedure for MNP-enhanced breast cancer microwave imaging. IEEE Trans. Biomed. Eng. 61, 1071–1079 (2014)

    Article  Google Scholar 

  191. Centelles, M.N., Wright, M., Gedroyc, W., Thanou, M.: Focused ultrasound induced hyperthermia accelerates and increases the uptake of anti-HER-2 antibodies in a xenograft model. Pharmacol. Res. 114, 144–151 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ovidio M. Bucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bellizzi, G., Bucci, O.M. (2018). Magnetic Nanoparticle Hyperthermia. In: Crocco, L., Karanasiou, I., James, M., Conceição, R. (eds) Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-75007-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75007-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75006-4

  • Online ISBN: 978-3-319-75007-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics