Skip to main content

New Results for Two-Sided CUSUM-Shewhart Control Charts

  • Conference paper
  • First Online:

Part of the book series: Frontiers in Statistical Quality Control ((FSQC))

Abstract

Already Yashchin (IBM J Res Dev 29(4):377–391, 1985), and of course Lucas (J Qual Technol 14(2):51–59, 1982) 3 years earlier, studied CUSUM chart supplemented by Shewhart limits. Interestingly, Yashchin proposed to calibrate the detecting scheme via P (RL > K) ≥ 1 − α for the run length (stopping time) RL in the in-control case. Calculating the RL distribution or related quantities such as the ARL (Average Run Length) are slightly complicated numerical tasks. Similarly to Capizzi and Masarotto (Stat Comput 20(1):23–33, 2010) who utilized Clenshaw-Curtis quadrature to tackle the ARL integral equation, we deploy less common numerical techniques such as collocation to determine the ARL. Note that the two-sided CUSUM chart consisting of two one-sided charts leads to a more demanding numerical problem than the single two-sided EWMA chart.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abel, V. (1990). On one-sided combined Shewhart-CUSUM quality control schemes for Poisson counts. Computational Statistics Quarterly, 6(1), 31–39.

    Google Scholar 

  • Abujiya, M. R., Riaz, M., & Lee, M. H. (2013). Improving the performance of combined Shewhart-cumulative SumControl charts. Quality and Reliability Engineering International, 29(8), 1193–1206.

    Article  Google Scholar 

  • Blacksell, S. D., Gleeson, L. J., Lunt, R. A., & Chamnanpood, C. (1994). Use of combined Shewhart-CUSUM control charts in internal quality control of enzyme-linked immunosorbent assays for the typing of foot and mouth disease virus antigen. Revue Scientifique et Technique, 13(3), 687–699.

    Article  Google Scholar 

  • Brook, D., & Evans, D. A. (1972). An approach to the probability distribution of CUSUM run length. Biometrika, 59(3), 539–549.

    Article  MathSciNet  Google Scholar 

  • Capizzi, G., & Masarotto, G. (2010). Evaluation of the run-length distribution for a combined Shewhart-EWMA control chart. Statistics and Computing, 20(1), 23–33.

    Article  MathSciNet  Google Scholar 

  • Crosier, R. B. (1986). A new two-sided cumulative quality control scheme. Technometrics, 28(3), 187–194.

    Article  MathSciNet  Google Scholar 

  • Gibbons, R. D. (1999). Use of combined Shewhart-CUSUM control charts for ground water monitoring applications. Ground Water, 37(5), 682–691.

    Article  Google Scholar 

  • Henning, E., Konrath, A. C., da Cunha Alves, C., Walter, O. M. F. C., & Samohyl, R. W. (2015). Performance of a combined Shewhart-Cusum control chart with binomial data for large shifts in the process mean. International Journal of Engineering Research and Application, 5(8), 235–243.

    Google Scholar 

  • Knoth, S. (2006). Computation of the ARL for CUSUM-S 2 schemes. Computational Statistics and Data Analysis, 51(2), 499–512.

    Google Scholar 

  • Lucas, J. M. (1976). The design and use of V-mask schemes. Journal of Quality Technology, 8(1), 1–12.

    Article  MathSciNet  Google Scholar 

  • Lucas, J. M. (1982). Combined Shewhart-CUSUM quality control schemes. Journal of Quality Technology, 14(2), 51–59.

    Article  Google Scholar 

  • Lucas, J. M., & Crosier, R. B. (1982). Fast initial response for CUSUM quality-control schemes: Give your CUSUM a head start. Technometrics, 24(3), 199–205.

    Article  Google Scholar 

  • Lucas, J. M., & Saccucci, M. S. (1990). Exponentially weighted moving average control schemes: Properties and enhancements. Technometrics, 32(1), 1–12.

    Google Scholar 

  • Montgomery, D. C. (2009). Statistical Quality Control: A Modern Introduction (6th ed., internat. student version edition). Hoboken: Wiley.

    Google Scholar 

  • Morais, M. C., & Pacheco, A. (2006). Combined CUSUM-Shewhart schemes for binomial data. Economic Quality Control, 21(1), 43–57.

    Google Scholar 

  • Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1–2), 100–115.

    Article  MathSciNet  Google Scholar 

  • Qu, L., Wu, Z., & Liu, T.-I. (2011). A control scheme integrating the T chart and TCUSUM chart. Quality and Reliability Engineering International, 27(4), 529–539.

    Article  Google Scholar 

  • Reynolds, M. R., & Stoumbos, Z. G. (2005). Should Exponentially Weighted Moving Average and Cumulative Sum Charts Be Used With Shewhart Limits? Technometrics, 47(4), 409–424.

    Article  MathSciNet  Google Scholar 

  • Roberts, S. W. (1959). Control chart tests based on geometric moving averages. Technometrics, 1(3), 239–250.

    Article  Google Scholar 

  • Shewhart, W. A. (1926). Quality control charts. Bell System Technical Journal, 5(4), 593–603.

    Article  Google Scholar 

  • Starks, T. H. (1988). Evaluation of control chart methodologies for RCRA waste sites. Technical Report 37480, U.S. Environmental Protection Agency (EPA).

    Google Scholar 

  • Vance, L. C. (1986). Average run lengths of cumulative sum control charts for controlling normal means. Journal of Quality Technology, 18(3), 189–193.

    Article  Google Scholar 

  • Westgard, J. O., Groth, T., Aronsson, T., & de Verdier, C.-H. (1977). Combined Shewhart-Cusum control chart for improved quality control in clinical chemistry. Clinical Chemistry, 23(10), 1881–1887.

    Google Scholar 

  • Wu, Z., Yang, M., Jiang, W., & Khoo, M. B. C. (2008). Optimization designs of the combined Shewhart-CUSUM control charts. Computational Statistics and Data Analysis, 53(2), 496–506.

    Article  MathSciNet  Google Scholar 

  • Yashchin, E. (1985a). On a unified approach to the analysis of two-sided cumulative sum control schemes with headstarts. Advances in Applied Probability, 17, 562–593.

    Article  MathSciNet  Google Scholar 

  • Yashchin, E. (1985b). On the analysis and design of CUSUM-Shewhart control schemes. IBM Journal of Research and Development, 29(4), 377–391.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Knoth .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Collocation Design for More Than r = 2 Intervals

Here we provide the generalization from r = 2, dealt with in Sect. 2, to general r ∈{2, 3, …}. To start with the first interval, 0 ≤ s ≤ h − ε, we simply state that the shape of the collocation design does not change for greater r. For the succeeding intervals, h − (r − m + 1)ε < s ≤ h − (r − m)ε with m = 2, …, r − 1, the following structure is utilized.

$$\displaystyle \begin{aligned} \sum_{j=1}^N c_{mj} T_{mj} (s) & = 1 + \Phi(k-s) \mathcal{L}(0) \\ & \quad + \sum_{j=1}^N c_{1j} \int_0^{h -(r-1)\varepsilon} \varphi(z+k-s) T_{1j}(z) \, dz \\ & \quad + \sum_{t=2}^m \sum_{j=1}^N c_{tj} \int_{h -(r-t+1)\varepsilon}^{h -(r-t)\varepsilon} \varphi(z+k-s) T_{tj}(z) \, dz \\ & \quad + \sum_{j=1}^N c_{m+1,j} \int_{h -(r-m+1)\varepsilon}^{\varepsilon+s} \varphi(z+k-s) T_{m+1,j}(z) \, dz \,. \end{aligned} $$

Note that these equations are not present for r = 2. However, the last interval, h − ε < s ≤ h, is considered for all r ≥ 2. The general structure of the corresponding collocation equation is similar to the above one (now with m = r) except for the upper limit of the last integral where ε + s has to be replaced by h.

Appendix 2: Two-Sided CUSUM Chart

Starting with case (i), s + + s ≤ 2k, and re-writing the corresponding integral equation results in:

$$\displaystyle \begin{aligned} \mathcal{L}(s^+,s^-) & = \Phi(k - s^+) \mathcal{L}(0,0) + \int_{k - s^+}^{h + k - s^+} \varphi(x) \mathcal{L}(s^+ + x-k, 0) \,dx \\ & \, + \Phi(k - s^-) \mathcal{L}(0,0) + \int_{k - s^-}^{h + k - s^-} \varphi(-x) \mathcal{L}(0, s^- + x-k) \,dx \\ & \, + 1 - \mathcal{L}(0,0) \,. \end{aligned} $$

Setting s + or s to zero in (6) yields:

$$\displaystyle \begin{aligned} \mathcal{L}(0,0) & = \frac{\mathcal{L}^+(0)\mathcal{L}^-(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \,, \\ \mathcal{L}(s^+,0) & = \frac{\mathcal{L}^+(s^+)\mathcal{L}^-(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \;,\;\; \mathcal{L}(0,s^-) = \frac{\mathcal{L}^+(0)\mathcal{L}^-(s^-)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \end{aligned} $$

Using this, the first line of the integral equation’s right-hand side changes to

$$\displaystyle \begin{aligned} \frac{\mathcal{L}^-(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \left( \Phi(k - s^+)\mathcal{L}^+(0) + \int_{k - s^+}^{h + k - s^+} \varphi(x) \mathcal{L}^+(s^+ + x-k) \,dx \right) \end{aligned}$$

Substituting x = z + k − s in (2) while replacing the upper limit by h results in

$$\displaystyle \begin{aligned} \mathcal{L}(s) - 1 = \Phi(k-s) \mathcal{L}(0) + \int_{k-s}^{h+k-s} \varphi(x) \mathcal{L}(s+x-k) \, dx \,, {} \end{aligned} $$
(7)

so that the line under analysis simplifies heavily to

$$\displaystyle \begin{aligned} \frac{\mathcal{L}^-(0) (\mathcal{L}^+(s^+) - 1)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \,. \end{aligned}$$

In a similar way we treat the second line ending in

$$\displaystyle \begin{aligned} \frac{\mathcal{L}^+(0) (\mathcal{L}^-(s^-) - 1)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \,. \end{aligned}$$

For the second line we made use of φ(−x) = φ(x) in the in-control case (δ = 0), while for δ≠0 we have to change the sign of δ, hence φ δ (−x) = φ δ(x). All together resembles (the “1” consumes the disturbing parts of the above two ratios)

$$\displaystyle \begin{aligned} \frac{\mathcal{L}^+(s^+) \mathcal{L}^-(0) + \mathcal{L}^-(s^-) \mathcal{L}^+(0) - \mathcal{L}^+(0)\mathcal{L}^-(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \quad \text{ which confirms (\ref{eq:L2L1}).} \end{aligned}$$

Turning to case (ii), 2k < s + + s ≤ h + 2k, we recall the shape of the related integral equation:

$$\displaystyle \begin{aligned} \mathcal{L}(s^+,s^-) & = 1 \,+ \int_{s^- - k}^{h + k - s^+} \varphi(x) \mathcal{L}(s^+ + x-k, 0) \,dx \\ & \qquad + \int_{k - s^+}^{s^- - k} \varphi(x) \mathcal{L}(s^+ + x-k, s^- - x-k) \, dx \\ & \qquad + \int_{-h - k + s^-}^{k - s^+} \varphi(x) \mathcal{L}(0, s^- - x-k) \,dx \,. \end{aligned} $$

First we plug (6) into and transform the second line

$$\displaystyle \begin{aligned} & \int_{k - s^+}^{s^- - k} \varphi(x) \mathcal{L}(s^+ + x-k, s^- - x-k) \, dx \\ &\quad = \frac{\mathcal{L}^-(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \int_{k - s^+}^{s^- - k} \varphi(x) \mathcal{L}^+(s^+ + x-k) \, dx \\ & \quad + \frac{\mathcal{L}^+(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \int_{k - s^+}^{s^- - k} \varphi(x) \mathcal{L}^-(s^- - x-k) \, dx \\ & \quad - \frac{\mathcal{L}^-(0) \mathcal{L}^+(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \int_{k - s^+}^{s^- - k} \varphi(x) \, dx \,, \end{aligned} $$

with the last integral subsequently reduced to Φ(s − k) − Φ(k − s +). We rewrite the first line as for case (i) and merge, borrowing \(\mathcal {L}^-(0) / \big (\mathcal {L}^+(0) + \mathcal {L}^-(0)\big )\),

$$\displaystyle \begin{aligned} & \frac{\mathcal{L}^-(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \\ & + \frac{\mathcal{L}^-(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \Phi(k - s^+) \mathcal{L}^+(0) \\ & + \frac{\mathcal{L}^-(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \int_{k - s^+}^{s^- - k} \varphi(x) \mathcal{L}^+(s^+ + x-k) \, dx \\ & + \frac{\mathcal{L}^-(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \int_{s^- - k}^{h + k - s^+} \varphi(x) \mathcal{L}^+(s^+ + x-k) \,dx \end{aligned} $$

to get

$$\displaystyle \begin{aligned} \frac{\mathcal{L}^+(s^+)\mathcal{L}^-(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \end{aligned}$$

by applying again (7). Exploiting Φ(s − k) = 1 − Φ(k − s ) we proceed in a similar way with the third line by collecting after transforming both integrals as in the first case

$$\displaystyle \begin{aligned} & \frac{\mathcal{L}^+(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \\ & + \frac{\mathcal{L}^+(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \Phi(k - s^-) \mathcal{L}^-(0) \\\noalign{} & + \frac{\mathcal{L}^+(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \int_{s^- - k}^{k - s^+} \varphi(x) \mathcal{L}^-(s^- + x-k) \, dx \\ & + \frac{\mathcal{L}^+(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \int_{k - s^+}^{h + k - s^-} \varphi(x) \mathcal{L}^-(s^- + x-k) \,dx \end{aligned} $$

which results in

$$\displaystyle \begin{aligned} \frac{\mathcal{L}^-(s^-)\mathcal{L}^+(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \,. \end{aligned}$$

The two “borrowed” terms

$$\displaystyle \begin{aligned} -\frac{\mathcal{L}^-(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} - \frac{\mathcal{L}^+(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} = -1 \end{aligned} $$

are compensated with the 1 on the right-hand side of the original equation. The last remaining term forms together with the two others

$$\displaystyle \begin{aligned} \frac{\mathcal{L}^+(s^+) \mathcal{L}^-(0) + \mathcal{L}^-(s^-) \mathcal{L}^+(0) - \mathcal{L}^+(0)\mathcal{L}^-(0)}{\mathcal{L}^+(0) + \mathcal{L}^-(0)} \,. \end{aligned}$$

This completes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Knoth, S. (2018). New Results for Two-Sided CUSUM-Shewhart Control Charts. In: Knoth, S., Schmid, W. (eds) Frontiers in Statistical Quality Control 12. Frontiers in Statistical Quality Control. Springer, Cham. https://doi.org/10.1007/978-3-319-75295-2_3

Download citation

Publish with us

Policies and ethics