Skip to main content

On ARL-Unbiased Charts to Monitor the Traffic Intensity of a Single Server Queue

  • Conference paper
  • First Online:

Part of the book series: Frontiers in Statistical Quality Control ((FSQC))

Abstract

We know too well that the effective operation of a queueing system requires maintaining the traffic intensity ρ at a target value ρ 0.This important measure of congestion can be monitored by using control charts, such as the one found in the seminal work by Bhat and Rao (Oper Res 20:955–966, 1972) or more recently in Chen and Zhou (Technometrics 57:245–256, 2015).

For all intents and purposes, this chapter focus on three control statistics chosen by Morais and Pacheco (Seq Anal 35:536–559, 2016) for their simplicity, recursive and Markovian character. Since an upward and a downward shift in ρ are associated with a deterioration and an improvement (respectively) of the quality of service, the timely detection of these changes is an imperative requirement, hence, begging for the use of ARL-unbiased charts (Pignatiello et al., The performance of control charts for monitoring process dispersion. In: 4th industrial engineering research conference, pp 320–328, 1995), in the sense that they detect any shifts in the traffic intensity sooner than they trigger a false alarm.

In this chapter, we focus on the design of these type of charts for the traffic intensity of the three single server queues mentioned above.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \({\mathcal {L}}(z) = 1 + (1-\gamma _L) \times F_{S-A}(-z) \times {\mathcal {L}}(0) + \int _0^U f_{S-A}(y-z) \times {\mathcal {L}}(y) \, dy\), where \({\mathcal {L}}(z)\) represents the ARL of the W n -chart when W 0 = z; the default value of z is zero.

References

  • Acosta-Mejía, C. A., & Pignatiello, J. J. Jr. (2000). Monitoring process dispersion without subgrouping. Journal of Quality Technology, 32, 89–102.

    Article  Google Scholar 

  • Adan, I., & Resing, J. (2015). Queueing Theory. Department of Mathematics and Computing Science, Eindhoven University of Technology. http://www.win.tue.nl/~iadan/queueing.pdf. Accessed 27 May 2016.

  • Beneš, V. E. (1957). A sufficient set of statistics for a simple telephone exchange model. Bell System Technical Journal, 36, 939–964.

    Article  Google Scholar 

  • Bhat, U. N. (1987). A statistical technique for the control of traffic intensity in Markovian queue. Annals of Operations Research, 8, 151–164.

    Article  Google Scholar 

  • Bhat, U. N., & Rao, S. S. (1972). A statistical technique for the control of traffic intensity in the queuing systems M/G/1 and GI/M/1. Operations Research, 20, 955–966.

    Article  MathSciNet  Google Scholar 

  • Brook, D., & Evans, D. A. (1972). An approach to the probability distribution of CUSUM run length. Biometrika, 59, 539–549.

    Article  MathSciNet  Google Scholar 

  • Chen, N., Yuan, Y., & Zhou, S. (2011). Performance analysis of queue length monitoring of M/G/1 systems. Naval Research Logistics, 58, 782–794.

    Article  MathSciNet  Google Scholar 

  • Chen, N., & Zhou, S. (2015). CUSUM statistical monitoring of M/M/1 queues and extensions. Technometrics, 57, 245–256.

    Article  MathSciNet  Google Scholar 

  • Cheng, C.-S., & Chen, P.-W. (2011). An ARL-unbiased design of time-between-events control charts with runs rules. Journal of Statistical Computation and Simulation, 81, 857–871.

    Article  MathSciNet  Google Scholar 

  • Clarke, A. B. (1957). Maximum likelihood estimates in a simple queue. The Annals of Mathematical Statistics, 28, 1036–1040.

    Article  MathSciNet  Google Scholar 

  • Cohen, J. W. (1982). The single server queue (revised edition). Amsterdam: North-Holland.

    Google Scholar 

  • Cox, D. R. (1965). Some problems of statistical analysis connected with congestion. In W. L. Smith & W. E. Wilkinson (Eds.), Proceedings of the Symposium on Congestion Theory (pp. 289–316). Chapel Hill: University of North Carolina Press.

    Google Scholar 

  • Erlang, A. K. (1909). Sandsynlighedsregning og Telefonsamtaler. Nyt Tidsskrift for Matematik B (Copenhagen), 20, 33–41; Translation: The theory of probabilities and telephone conversations. In: Brockmeyer, Halstrøm & Jensen (1948, pp. 131–137).

    Google Scholar 

  • Erlang, A. K. (1917). Løsning af nogle Problemer fra Sandsynlighedsregningen af Betydning for de automatiske Telefoncentraler. Elektrotkeknikeren (Copenhagen), 13, 5–13; Translation: Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges. In: Brockmeyer, Halstrøm & Jensen (1948, pp. 138–155).

    Google Scholar 

  • Erlang, A. K. (1920). Telefon-Ventetider. Et Stykke Sandsynlighedsregning. Matematisk Tidsskrift B (Copenhagen), 31, 25–42; Translation: Telephon waiting times: an example of probability calculus. In: Brockmeyer, Halstrøm & Jensen (1948, pp. 156–171).

    Google Scholar 

  • Feller, W. (1971). An introduction to probability theory and its applications (2nd ed.). New York: John Wiley & Sons.

    Google Scholar 

  • Greenberg, I. (1997). Markov chain approximation methods in a class of level-crossing problems. Operations Research Letters, 21, 153–158.

    Article  MathSciNet  Google Scholar 

  • Guo, B., & Wang, B. X. (2015). The design of the ARL-unbiased S 2 chart when the in-control variance is estimated. Quality and Reliability Engineering International, 31, 501–511.

    Article  Google Scholar 

  • Guo, B., Wang, B. X., & Xie, M. (2014). ARL-unbiased control charts for the monitoring of exponentially distributed characteristics based on type-II censored samples. Journal of Statistical Computation and Simulation, 84, 2734–2747.

    Article  MathSciNet  Google Scholar 

  • Huang, X., & Pascual, F. (2011). ARL-unbiased control charts with alarm and warning lines for monitoring Weibull percentiles using the first-order statistic. Journal of Statistical Computation and Simulation, 81, 1677–1696.

    Article  MathSciNet  Google Scholar 

  • Hung, Y.-C., Michailidis, G., & Chuang, S.-C. (2012). Estimation and monitoring of traffic intensities with application to control of stochastic systems. Applied Stochastic Models in Business and Industry, 30, 200–217.

    Article  MathSciNet  Google Scholar 

  • Huwang, L., Huang, C.-J., & Wang, Y.-H. T. (2010). New EWMA control charts for monitoring process dispersion. Computational Statistics and Data Analysis, 54, 2328–2342.

    Article  MathSciNet  Google Scholar 

  • Jain, S. (2000). An autoregressive process and its application to queueing model. Metron-International Journal of Statistics, 58, 131–138.

    Google Scholar 

  • Jain, S., & Templeton, J. G. C. (1989). Problem of statistical inference to control the traffic intensity. Sequential Analysis, 8, 135–146.

    Article  MathSciNet  Google Scholar 

  • Kendall, D. G. (1951). Some problems in the theory of queues. Journal of the Royal Statistical Society, Series B (Methodological), 13, 151–185.

    Google Scholar 

  • Kendall, D. G. (1953). Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded Markov chain. The Annals of Mathematical Statistics, 24, 338–354.

    Article  MathSciNet  Google Scholar 

  • Kim, S.-H., Alexopoulos, C., Tsui, K.-L., & Wilson, J. R. (2007). A distribution-free tabular CUSUM chart for autocorrelated data. IIE Transactions, 39, 317–330.

    Article  Google Scholar 

  • Kleinrock, L. (1975). Queueing systems, volume I: Theory. New York: John Wiley & Sons.

    Google Scholar 

  • Knoth, S. (2005). Accurate ARL computation for EWMA-S 2 control charts. Statistics and Computing, 15, 341–352.

    Article  MathSciNet  Google Scholar 

  • Knoth, S. (2010). Control charting normal variance–reflections, curiosities, and recommendations. In H.-J. Lenz & P.-T. Wilrich (Eds.), Frontiers in statistical quality control (Vol. 9, pp. 3–18). Heidelberg: Physica.

    Chapter  Google Scholar 

  • Knoth, S., & Morais, M. C. (2013). On ARL-unbiased control charts. In S. Knoth, W. Schmid, & R. Sparks (Eds.), Proceedings of the XIth International Workshop on Intelligent Statistical Quality Control (pp. 31–50), Sydney, Australia, 20–23 August 2013.

    Google Scholar 

  • Knoth, S., & Morais, M. C. (2015). On ARL-unbiased control charts. In S. Knoth, & W. Schmid (Eds.), Frontiers in Statistical Quality Control (Vol. 11, pp. 95–117). Switzerland: Springer.

    MATH  Google Scholar 

  • Krumbholz, W. (1992). Unbiased control charts based on the range. Österreichische Zeitschrift für Statistik und Informatik, 22, 207–218.

    Google Scholar 

  • Lilliefors, H. W. (1966). Some confidence intervals for queues. Operations Research, 14, 723–727.

    Article  Google Scholar 

  • Montgomery, D. C. (2009). Introduction to statistical quality control (6th ed.). New York: John Wiley & Sons.

    Google Scholar 

  • Morais, M. C. (2016). An ARL-unbiased np-chart. Economic Quality Control, 31, 11–21.

    Google Scholar 

  • Morais, M. C. (2017). ARL-unbiased geometric and CCC G control charts. Sequential Analysis, 36, 513–527.

    Article  MathSciNet  Google Scholar 

  • Morais, M. C., & Pacheco, A. (1998). Comparing first passage times of Markovian processes. Proceedings of the Second International Symposium on Semi-Markov Models: Theory and Applications. Compiègne, France, December 9–11, 1998.

    Google Scholar 

  • Morais, M. C., & Pacheco, A. (2016). On stochastic ordering and control charts for the traffic intensity. Sequential Analysis, 35, 536–559.

    Article  MathSciNet  Google Scholar 

  • Nadarajah, S., & Kotz, S. (2005). On the linear combination of exponential and gamma random variables. Entropy, 7, 161–171.

    Article  MathSciNet  Google Scholar 

  • Pascual, F. (2010). EWMA charts for the Weibull shape parameter. Journal of Quality Techonology, 42, 400–416.

    Article  Google Scholar 

  • Pascual, F. (2012). Individual and Moving Ratio Charts for Weibull Processes. Technical Report (#2012-3), Department of Mathematics, Washington State University.

    Google Scholar 

  • Paulino, S., Morais, M. C., & Knoth, S. (2016a). An ARL-unbiased c-chart. Quality and Reliability Engineering International, 32, 2847–2858.

    Article  Google Scholar 

  • Paulino, S., Morais, M. C. & Knoth, S. (2016b). On ARL-unbiased c-charts for INAR(1) Poisson counts. Statistical Papers. http://rdcu.be/nGs8

  • Pignatiello, J. J. Jr., Acosta-Mejía, C. A., & Rao, B. V. (1995). The performance of control charts for monitoring process dispersion. In: 4th Industrial Engineering Research Conference (pp. 320–328).

    Google Scholar 

  • R Core Team (2013).R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org

  • Ramalhoto, M. F., & Morais, M. (1995). Cartas de controlo para o parâmetro de escala da população Weibull tri-paramétrica (Control charts for the scale parameter of the Weibull population). In: Actas do II Congresso Anual da Sociedade Portuguesa de Estatística (Proceedings of the Annual Congress of the Portuguese Statistical Society) (pp. 345–371).

    Google Scholar 

  • Ramalhoto, M. F., & Morais, M. (1999). Shewhart control charts for the scale parameter of a Weibull control variable with fixed and variable sampling intervals. Journal of Applied Statistics, 26, 129–160.

    Article  Google Scholar 

  • Rao, S. S., Bhat, U. N., & Harishchandra, K. (1984). Control of traffic intensity in a queue–a method based on SPRT. Opsearch, 21, 63–80.

    Google Scholar 

  • Santos, M. D. M. (2016). On Control Charts and the Detection of Increases in the Traffic Intensity of Queueing Systems. M. Sc. thesis, Instituto Superior Técnico, Universidade de Lisboa.

    Google Scholar 

  • Shore, H. (2000). General control charts for attributes. IIE Transactions, 32, 1149–1160.

    Google Scholar 

  • Shore, H. (2006). Control charts for the queue length in a G/G/s system. IIE Transactions, 38, 1117–1130.

    Article  Google Scholar 

  • Uhlmann, W. (1982). Statistische Qualitätskontrolle (2. Aufl.). Stuttgart: Teubner.

    Book  Google Scholar 

  • Western Electrical (1956). Statistical Quality Control Handbook. Indianopolis: Western Electrical Corporation.

    Google Scholar 

  • Wolfram Research, Inc. (2015). Mathematica, Version 10.3, Champaign, IL. http://reference.wolfram.com/language/. Accessed 31 March 2016.

  • Yang, S.-F., & Arnold, B. C. (2015). Monitoring process variance using an ARL-unbiased EWMA-p control chart. Quality and Reliability Engineering International, 32, 1227–1235.

    Article  Google Scholar 

  • Zobu, M., & Saǧlam, V. (2013). Control of traffic intensity in hyperexponential and mixed Erlang queueing systems with a method based on SPRT. Mathematical Problems in Engineering. Article ID 241241, 9 pages. http://www.hindawi.com/journals/mpe/2013/241241/. Accessed 11 November 2015.

Download references

Acknowledgements

The first author gratefully acknowledges: the financial support received from CEMAT (Center for Computational and Stochastic Mathematics) to attend the XIIth International Workshop on Intelligent Statistical Quality Control, Hamburg, Germany, August 16–19, 2016; the partial support given by FCT (Fundação para a Ciência e a Tecnologia) through projects UID/Multi/04621/2013, PEst-OE/MAT/UI0822/2014 and PEst-OE/MAT/UI4080/2014.

We are greatly indebted to: Prof. António Pacheco, for drawing our attention to the potential of the application of SPC in the monitoring of the traffic intensity of queueing systems; Prof. Christian Weiss, for having alerted us to the publication of Chen and Zhou (2015); Marta Santos, for the stimulating discussions during the preparation of her M.Sc. thesis (Santos 2016); Profs. Peter-Theodor Wilrich, William H. Woodall, Eugénio K. Epprecht and Murat C. Testik, and Dr. Detlef Steuer, for the encouraging words and the valuable feedback following our presentation in the IWISQC2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Cabral Morais .

Editor information

Editors and Affiliations

Appendix

Appendix

If the service times of an MG∕1 queueing system have an Erlang distribution with \(k\ (k \in \mathbb {N})\) phases and probability density function (p.d.f.) given by

$$\displaystyle \begin{aligned} f_S(s) = (k \mu)^k \, s^{k-1} \, e^{-k \mu s} / (k-1)!, \quad s \geq 0, \end{aligned}$$

then

$$\displaystyle \begin{aligned} \alpha_i = {k+i-1 \choose k-1} \left( \frac{\rho}{k+\rho} \right)^i \left( \frac{k}{k+\rho}\right)^k, \quad i \in \mathbb{N}_0 \end{aligned} $$
(15)

(Feller 1971, p. 57). In other words, Y  has a negative binomial distribution with parameters k and k(k + ρ)−1, when we are dealing with the ME k ∕1 queueing system.

If the GIM∕1 queueing system is associated with interarrival times with an Erlang distribution with density

$$\displaystyle \begin{aligned} f_A(a) = (k \lambda)^k \, a^{k-1} \, e^{-k \lambda a} / (k-1)!, \quad a \geq 0, \end{aligned}$$

Morais and Pacheco (2016) adds that

$$\displaystyle \begin{aligned} \hat{\alpha}_i = {k+i-1 \choose k-1} \left( \frac{k^{-1}}{k^{-1}+\rho} \right)^i \left( \frac{\rho}{k^{-1}+\rho}\right)^k, \quad i \in \mathbb{N}_0. \end{aligned} $$
(16)

This is to say that Y  has a negative binomial distribution with parameters k and ρ (k −1 + ρ)−1, for the E k M∕1 queue.

When it comes to the GIG∕1 queueing system, the results derived by Nadarajah and Kotz (2005), for the c.d.f. and p.d.f. of a linear combination (αX + βY ) of exponential (X) and gamma (Y ) independent r.v. (with α > 0), come in handy.

For the MM∕1 queueing system with arrival rate λ = 1∕E(A) and service rate μ = 1∕E(S), Morais and Pacheco (2016) wrote

$$\displaystyle \begin{aligned} F_{S-A}(x) = \left\{ \begin{array}{l} \frac{\mu \, e^{\lambda x}}{\lambda + \mu}, \quad x \leq 0 \\ 1- \frac{\lambda \, e^{-\mu x}}{\lambda + \mu}, \quad x > 0. \end{array} \right. \end{aligned} $$
(17)

Similar calculations led Morais and Pacheco (2016) to conclude that:

$$\displaystyle \begin{aligned} F_{S-A}(x) = \left\{ \begin{array}{ll} e^{\lambda x} \, \left( \frac{k\mu}{k\mu + \lambda} \right)^k, \quad x \leq 0\\ F_{Gamma(k,k\mu)}(x) + e^{\lambda x} \, \left( \frac{k\mu}{k\mu + \lambda} \right)^k \, \bar{F}_{Gamma(k,k\mu+\lambda)}(x), \quad x > 0, \end{array} \right. \end{aligned} $$
(18)

for the ME k ∕1 queueing system; and

$$\displaystyle \begin{aligned} F_{S-A}(x) = \left\{ \begin{array}{ll} \bar{F}_{Gamma(k,k\lambda)}(-x) \\ \quad \quad - e^{-\mu x} \, \left( \frac{k\lambda}{k\lambda + \mu} \right)^k \, \bar{F}_{Gamma(k,k\lambda+\mu)}(-x), \quad x \leq 0 \\ 1 - e^{-\mu x} \, \left( \frac{k\lambda}{k\lambda + \mu} \right)^k, \quad x > 0, \end{array} \right. \end{aligned} $$
(19)

for the E k M∕1 system.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morais, M.C., Knoth, S. (2018). On ARL-Unbiased Charts to Monitor the Traffic Intensity of a Single Server Queue. In: Knoth, S., Schmid, W. (eds) Frontiers in Statistical Quality Control 12. Frontiers in Statistical Quality Control. Springer, Cham. https://doi.org/10.1007/978-3-319-75295-2_5

Download citation

Publish with us

Policies and ethics