Skip to main content

Towards Robust Evaluation of Super-Resolution Satellite Image Reconstruction

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2018)

Abstract

Super-resolution reconstruction (SRR) consists in processing an image or a bunch of images to generate a new image of higher spatial resolution. This problem has been intensively studied, but seldom is SRR applied in practice for satellite data. In this paper, we briefly review the state of the art on SRR algorithms and we argue that commonly adopted strategies for their evaluation do not reflect the operational conditions. We report our study on assessing the SRR outcome, relying on new quantitative measures. The obtained results allow us to outline the most important research pathways to improve the performance of SRR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is understood as the distance between the centers of two neighboring pixels, however this simplification may be incorrect in the presence of some distortions.

  2. 2.

    Available at https://users.soe.ucsc.edu/~milanfar/software/sr-datasets.html (26th Oct 2017).

  3. 3.

    Available at https://www5.cs.fau.de/research/data/multi-sensor-super-resolution-datasets (26th Oct 2017).

  4. 4.

    Available at http://www.wisdom.weizmann.ac.il/~vision/SingleImageSR.html (26th Oct 2017).

  5. 5.

    Available at http://www.vision.ee.ethz.ch/ntire17 (26th Oct 2017).

  6. 6.

    Available at https://www.usgs.gov (26th Oct 2017).

  7. 7.

    Available at http://glcf.umd.edu (26th Oct 2017).

  8. 8.

    Available at https://scihub.copernicus.eu (26th Oct 2017).

References

  1. Ahrens, B.: Genetic algorithm optimization of superresolution parameters. In: Proceedings of the GECCO, pp. 2083–2088. ACM (2005)

    Google Scholar 

  2. Akgun, T., Altunbasak, Y., Mersereau, R.M.: Super-resolution reconstruction of hyperspectral images. IEEE Trans. Image Process. 14(11), 1860–1875 (2005)

    Article  Google Scholar 

  3. Capel, D., Zisserman, A.: Super-resolution enhancement of text image sequences. In: Proceedings of the IEEE ICPR, vol. 1, pp. 600–605 (2000)

    Google Scholar 

  4. Cheng, M.H., Hwang, K.S., Jeng, J.H., Lin, N.W.: PSO-based fusion method for video super-resolution. J. Signal Process. Syst. 73(1), 25–42 (2013)

    Article  Google Scholar 

  5. Del Gallego, N.P., Ilao, J.: Multiple-image super-resolution on mobile devices: an image warping approach. EURASIP J. Image Video Process. 2017(1), 1–15 (2017)

    Google Scholar 

  6. Demirel, H., Anbarjafari, G.: Image resolution enhancement by using discrete and stationary wavelet decomposition. IEEE Trans. Image Process. 20(5), 1458–1460 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  8. Ducournau, A., Fablet, R.: Deep learning for ocean remote sensing: an application of convolutional neural networks for super-resolution on satellite-derived SST data. In: Proceedings of the IAPR WPRRS, pp. 1–6 (2016)

    Google Scholar 

  9. Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multiframe super resolution. IEEE Trans. Image Process. 13(10), 1327–1344 (2004)

    Article  Google Scholar 

  10. González-Audícana, M., Saleta, J.L., Catalán, R.G., García, R.: Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 42(6), 1291–1299 (2004)

    Article  Google Scholar 

  11. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE CVPR, pp. 5197–5206 (2015)

    Google Scholar 

  12. Jiang, J., Hu, R., Wang, Z., Han, Z.: Face super-resolution via multilayer locality-constrained iterative neighbor embedding and intermediate dictionary learning. IEEE Trans. Image Process. 23(10), 4220–4231 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, F., Jia, X., Fraser, D.: Universal HMT based super resolution for remote sensing images. In: Proceedings of the IEEE ICIP, pp. 333–336 (2008)

    Google Scholar 

  14. Liebel, L., Körner, M.: Single-image super resolution for multispectral remote sensing data using convolutional neural networks. In: Proceedings of the ISPRS Congress, pp. 883–890 (2016)

    Google Scholar 

  15. Lorenzo, P.R., Nalepa, J., Kawulok, M., Ramos, L.S., Pastor, J.R.: Particle swarm optimization for hyper-parameter selection in deep neural networks. In: Proceedings of the GECCO, pp. 481–488. ACM, New York (2017)

    Google Scholar 

  16. Lukinavičius, G., Umezawa, K., Olivier, N., Honigmann, A., Yang, G., Plass, T., et al.: A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5(2), 132–139 (2013)

    Article  Google Scholar 

  17. Miravet, C., Rodrıguez, F.B.: A two-step neural-network based algorithm for fast image super-resolution. Image Vis. Comput. 25(9), 1449–1473 (2007)

    Article  Google Scholar 

  18. Molina, R., Vega, M., Mateos, J., Katsaggelos, A.K.: Variational posterior distribution approximation in Bayesian super resolution reconstruction of multispectral images. Appl. Comput. Harmon. Anal. 24(2), 251–267 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nasrollahi, K., Moeslund, T.B.: Super-resolution: a comprehensive survey. Mach. Vis. Appl. 25(6), 1423–1468 (2014)

    Article  Google Scholar 

  20. Panagiotopoulou, A., Anastassopoulos, V.: Super-resolution image reconstruction techniques: trade-offs between the data-fidelity and regularization terms. Inf. Fusion 13(3), 185–195 (2012)

    Article  Google Scholar 

  21. Qian, S.E., Chen, G.: Enhancing spatial resolution of hyperspectral imagery using sensor’s intrinsic keystone distortion. IEEE Trans. Geosci. Remote Sens. 50(12), 5033–5048 (2012)

    Article  Google Scholar 

  22. Rubert, C., Fonseca, L., Velho, L.: Learning based super-resolution using YUV model for remote sensing images. In: Proceedings of the SIBGRAPI (2005)

    Google Scholar 

  23. Schultz, R.R., Stevenson, R.L.: Extraction of high-resolution frames from video sequences. IEEE Trans. Image Process. 5(6), 996–1011 (1996)

    Article  Google Scholar 

  24. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  25. Sheikh, H.R., Bovik, A.C., De Veciana, G.: An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Process. 14(12), 2117–2128 (2005)

    Article  Google Scholar 

  26. Sun, L., Hays, J.: Super-resolution from Internet-scale scene matching. In: Proceedings of the IEEE ICCP (2012)

    Google Scholar 

  27. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_8

    Google Scholar 

  28. Wang, Y., Fevig, R., Schultz, R.R.: Super-resolution mosaicking of UAV surveillance video. In: Proceedings of the IEEE ICIP, pp. 345–348. IEEE (2008)

    Google Scholar 

  29. Wang, Z., Bovik, A.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)

    Article  Google Scholar 

  30. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  31. Wu, B., Li, C., Zhan, X.: Integrating spatial structure in super-resolution mapping of hyper-spectral image. Procedia Eng. 29, 1957–1962 (2012)

    Article  Google Scholar 

  32. Yang, F., Chen, Y., Wang, R., Zhang, Q.: Super-resolution microwave imaging: time-domain tomography using highly accurate evolutionary optimization method. In: Proceedings of the EuCAP, pp. 1–4. IEEE (2015)

    Google Scholar 

  33. Yue, L., Shen, H., Li, J., Yuan, Q., Zhang, H., Zhang, L.: Image super-resolution: the techniques, applications, and future. Signal Process. 128, 389–408 (2016)

    Article  Google Scholar 

  34. Zhang, H., Zhang, L., Shen, H.: A super-resolution reconstruction algorithm for hyperspectral images. Signal Process. 92(9), 2082–2096 (2012)

    Article  Google Scholar 

  35. Zhang, Y.: Problems in the fusion of commercial high-resolution satelitte as well as Landsat 7 images and initial solutions. In: Proceedings of the GTPA, pp. 1–6 (2002)

    Google Scholar 

  36. Zhong, Y., Zhang, L.: Remote sensing image subpixel mapping based on adaptive differential evolution. IEEE Trans. Syst. Man Cybern. Part B 42(5), 1306–1329 (2012)

    Article  Google Scholar 

  37. Zhu, H., Song, W., Tan, H., Wang, J., Jia, D.: Super resolution reconstruction based on adaptive detail enhancement for ZY-3 satellite images. In: Proceedings of the ISPRS, pp. 213–217 (2016)

    Google Scholar 

Download references

Acknowledgments

The reported work is a part of the SISPARE project run by Future Processing and funded by European Space Agency. The authors were partially supported by Institute of Informatics funds no. BK-230/RAu2/2017 (MK) and BKM-509/RAu2/2017 (JN, DK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Kawulok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kawulok, M., Benecki, P., Nalepa, J., Kostrzewa, D., Skonieczny, Ł. (2018). Towards Robust Evaluation of Super-Resolution Satellite Image Reconstruction. In: Nguyen, N., Hoang, D., Hong, TP., Pham, H., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2018. Lecture Notes in Computer Science(), vol 10751. Springer, Cham. https://doi.org/10.1007/978-3-319-75417-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75417-8_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75416-1

  • Online ISBN: 978-3-319-75417-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics