Skip to main content

Part of the book series: Comprehensive Healthcare Simulation ((CHS))

Abstract

As we believe in the statement of the philosopher Confucius “Study the past, if we would divine the future,” this chapter is dedicated to addressing the history of neurosurgical simulation. The objective of this chapter is to highlight the important historical background of simulation development over the years from the nonmedical era till it became one of the essential tools in neurosurgical training .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith R. The long history of gaming in military training. Simul Gaming. 2009;41:6–19.

    Article  Google Scholar 

  2. Murray HJR. A history of chess: the original. 1913th ed. New York: Skyhorse Pub; 2012.

    Google Scholar 

  3. Robison RA, Liu CY, Apuzzo ML. Man, mind, and machine: the past and future of virtual reality simulation in neurologic surgery. World Neurosurg. 2011;76(5):419–30.

    Article  PubMed  Google Scholar 

  4. Moore KL. A history of anatomy: The post‐Vesalian era. Clinical Anatomy. 1998;11(4):284–284.

    Article  Google Scholar 

  5. Debernardi A, Sala E, D'aliberti G, Talamonti G, Franchini AF, Collice M. Alcmaeon of Croton. Neurosurgery. 2010;66(2):247–52.

    Article  Google Scholar 

  6. Bradley P. The history of simulation in medical education and possible future directions. Med Educ. 2006;40(3):254–62.

    Article  PubMed  Google Scholar 

  7. Ghasemzadeh N, Zafari AM. A brief journey into the history of the arterial pulse. Cardiol Res Pract. 2011;28:2011.

    Google Scholar 

  8. Potter P. Herophilus of Chalcedon: an assessment of his place in the history of anatomy. Bull Hist Med. 1976;50(1):45.

    CAS  Google Scholar 

  9. Wiltse LL, Pait TG. Herophilus of Alexandria (325–255 BC): the father of anatomy. Spine. 1998;23(17):1904–14.

    Article  CAS  Google Scholar 

  10. King LS. Doctors: the biography of medicine. JAMA. 1988;260(18):2729–30.

    Article  Google Scholar 

  11. Kunkler K. The role of medical simulation: an overview. Int J Med Rob Comput Assisted Surg. 2006;2(3):203–10.

    Article  Google Scholar 

  12. Limbrick DD Jr, Dacey RG Jr. Simulation in neurosurgery: possibilities and practicalities: foreword. Neurosurgery. 2013;73:S1–3.

    Article  Google Scholar 

  13. Aufderheide AC. The scientific study of mummies. Cambridge: Cambridge University Press; 2003.

    Google Scholar 

  14. By Veloso Salgado – NOVA Medical School | Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Public Domain. https://commons.wikimedia.org/w/index.php?curid=59771497.

  15. https://commons.wikimedia.org/wiki/File:Claudius_Galenus_(1906)_-_Veloso_Salgado.pnghttps://en.wikipedia.org/wiki/Achilles#Achilles.2C_Ajax_and_a_game_of_petteia.

  16. Rocca J. Galen on the brain: anatomical knowledge and physiological speculation in the second century AD. Studies in ancient medicine. 2003;26:1.

    Google Scholar 

  17. Le Floch-Prigent P, Delaval D. The discovery of the pulmonary circulation by Ibn al Nafis during the 13th century: an anatomical approach (543.9). FASEB J. 2014;28(1 Supplement):543–9.

    Google Scholar 

  18. Da Vinci L. The notebooks of Leonardo da Vinci. Courier Corporation; 2012.

    Google Scholar 

  19. Jones R. Leonardo da Vinci: anatomist. Br J Gen Pract. 2012;62(599):319-319.

    Article  Google Scholar 

  20. By Leonardo da Vinci., http://www2.warwick.ac.uk/fac/med/study/ugr/mbchb/societies/surgical/events/invited_lecture_-/, Public Domain, https://commons.wikimedia.org/w/index.php?curid=52376553 .

    Google Scholar 

  21. Rehder R, Abd-El-Barr M, Hooten K, Weinstock P, Madsen JR, Cohen AR. The role of simulation in neurosurgery. Childs Nerv Syst. 2016;32(1):43–54.

    Article  Google Scholar 

  22. Catani M, Sandrone S. Brain renaissance: from Vesalius to modern neuroscience. Oxford: Oxford University Press; 2015.

    Google Scholar 

  23. By Attributed to Jan van Calcar – Page xii of De humani corporis fabrica (1534 edition), showing portrait of Andreas Vesalius. Original scan of page cropped to show portrait alone, contrasted slightly to 70 in Microsoft Photo Editor. The original book from which the scan arises is a copy of the 1543 edition stored in the collection of the U.S. National Library of Medicine, a division of the National Institutes of Health (NIH)., Public Domain. https://commons.wikimedia.org/w/index.php?curid=425785

    Google Scholar 

  24. Meller G. A typology of simulators for medical education. J Digit Imaging. 1997;10:194–6.

    Article  CAS  PubMed  Google Scholar 

  25. Rosen KR. The history of medical simulation. J Crit Care. 2008;23(2):157–66.

    Article  Google Scholar 

  26. Cooper JB, Taqueti V. A brief history of the development of mannequin simulators for clinical education and training. Qual Saf Health Care. 2004;13(suppl 1):i11–8.

    Article  Google Scholar 

  27. Denson JS, Abrahamson S. A computer-controlled patient simulator. JAMA. 1969;208(3):504–8.

    Article  CAS  Google Scholar 

  28. Abrahamson S, Denson JS, Wolf RM. Effectiveness of a simulator in training anesthesiology residents. Qual Saf Health Care. 2004;13(5):395–7.

    Article  CAS  Google Scholar 

  29. Cooper JB, Taqueti V. A brief history of the development of mannequin simulators for clinical education and training. Postgrad Med J. 2008;84(997):563–70.

    Article  CAS  Google Scholar 

  30. By Gene Hobbs – Own work, CC BY-SA 3.0. https://commons.wikimedia.org/w/index.php?curid=15302566 .

    Google Scholar 

  31. Gaba DM, DeAnda A. A comprehensive anesthesia simulation environment: re-creating the operating room for research and training. Anesthesiology. 1988;69(3):387–94.

    Article  CAS  Google Scholar 

  32. Good ML, Lampotang S, Gibby G, Gravenstein JS. Critical events simulation for training in anesthesiology. J Clin Monit Comput. 1988;4:140.

    Google Scholar 

  33. Byrne AJ, Hilton PJ, Lunn JN. Basic simulations for anaesthetists a pilot study of the ACCESS system. Anaesthesia. 1994;49(5):376–81.

    Article  Google Scholar 

  34. Ashpole RD. Introducing Rowena: a simulator for neurosurgical training. Bull R Coll Surg Engl. 2015;97(7):299–301.

    Article  Google Scholar 

  35. Gillies DF, Williams CB. An interactive graphic simulator for the teaching of fibrendoscopic techniques. In: Marechal G, editor. EUROGRAPHICS 1987. Amsterdam: North Holland; 1987. p. 127–38.

    Google Scholar 

  36. Baillie J, Gillies DF, Cotton PB, Williams CB. Computer-simulation for basic ERCP training-a working model. In Gastrointestinal endoscopy; 1989 Mar 1 (Vol. 35, No. 2, pp. 177–177). 11830 Westline Industrial Dr, St Louis, Mo 63146–3318: Mosby-Year Book INC.

    Google Scholar 

  37. Phillips NI, John NW. Web-based surgical simulation for ventricular catheterization. Neurosurgery. 2000;46(4):933–7.

    CAS  Google Scholar 

  38. Sharpe R, Koval V, Ronco JJ, Dodek P, Wong H, Shepherd J, FitzGerald JM, Ayas NT. The impact of prolonged continuous wakefulness on resident clinical performance in the intensive care unit: a patient simulator study. Crit Care Med. 2010;38(3):766–70.

    Article  Google Scholar 

  39. Musacchio MJ, Smith AP, McNeal CA, Munoz L, Rothenberg DM, von Roenn KA, Byrne RW. Neuro-critical care skills training using a human patient simulator. Neurocrit Care. 2010;13(2):169–75.

    Article  PubMed  Google Scholar 

  40. Gasco J, Patel A, Ortega-Barnett J, Branch D, Desai S, Kuo YF, Luciano C, Rizzi S, Kania P, Matuyauskas M, Banerjee P. Virtual reality spine surgery simulation: an empirical study of its usefulness. Neurol Res. 2014;36(11):968–73.

    Article  Google Scholar 

  41. Acosta E, Liu A, Armonda R, Fiorill M, Haluck R, Lake C, Muniz G, Bowyer M. Burrhole simulation for an intracranial hematoma simulator. Stud Health Technol Inform. 2006;125:1.

    Google Scholar 

  42. Lobel DA, Elder JB, Schirmer CM, Bowyer MW, Rezai AR. A novel craniotomy simulator provides a validated method to enhance education in the management of traumatic brain injury. Neurosurgery. 2013;73:S57–65.

    Article  Google Scholar 

  43. Banerjee PP, Luciano CJ, Lemole Jr GM, Charbel FT, Oh MY. Accuracy of ventriculostomy catheter placement using a head-and hand-tracked high-resolution virtual reality simulator with haptic feedback. Journal of Neurosurgery. 2007;107(3):515–21.

    Article  Google Scholar 

  44. Hooten KG, Lister JR, Lombard G, Lizdas DE, Lampotang S, Rajon DA, Bova F, Murad GJ. Mixed reality ventriculostomy simulation: experience in neurosurgical residency. Oper Neurosurg. 2014;10(4):565–76.

    Article  Google Scholar 

  45. Lemole GM Jr, Banerjee PP, Luciano C, Neckrysh S, Charbel FT. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback. Neurosurgery. 2007;61(1):142–9.

    Article  Google Scholar 

  46. Bova FJ, Rajon DA, Friedman WA, Murad GJ, Hoh DJ, Jacob RP, Lampotang S, Lizdas DE, Lombard G, Lister JR. Mixed-reality simulation for neurosurgical procedures. Neurosurgery. 2013;73(suppl_1):S138–45.

    Article  Google Scholar 

  47. Ng TP, Hui KP, Tan WC. Integrative haptic and visual interaction for simulation of PMMA injection during vertebroplasty. Stud Health Technol Inform. 2006;119:96–8.

    Google Scholar 

  48. Aboud E, Al-Mefty O, Yaşargil MG. New laboratory model for neurosurgical training that simulates live surgery. J Neurosurg. 2002;97(6):1367–72.

    Article  PubMed  Google Scholar 

  49. Oliveira Magaldi M, Nicolato A, Godinho JV, Santos M, Prosdocimi A, Malheiros JA, Lei T, Belykh E, Almefty RO, Almefty KK, Preul MC. Human placenta aneurysm model for training neurosurgeons in vascular microsurgery. Oper Neurosurg. 2014;10(4):592–601.

    Article  Google Scholar 

  50. Kwok JC, Huang W, Leung WC, Chan SK, Chan KY, Leung KM, Chu AC, Lam AK. Human placenta as an ex vivo vascular model for neurointerventional research. J Neurointerv Surg. 2013:neurintsurg-2013.

    Google Scholar 

  51. Higurashi M, Qian Y, Zecca M, Park YK, Umezu M, Morgan MK. Surgical training technology for cerebrovascular anastomosis. J Clin Neurosci. 2014;21(4):554–8.

    Article  Google Scholar 

  52. Fargen KM, Arthur AS, Bendok BR, Levy EI, Ringer A, Siddiqui AH, Veznedaroglu E, Mocco J. Experience with a simulator-based angiography course for neurosurgical residents: beyond a pilot program. Neurosurgery. 2013;73(suppl_1):S46–50.

    Article  Google Scholar 

  53. Mashiko T, Otani K, Kawano R, Konno T, Kaneko N, Ito Y, Watanabe E. Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping. World Neurosurg. 2015;83(3):351–61.

    Article  PubMed  Google Scholar 

  54. Wurm G, Lehner M, Tomancok B, Kleiser R, Nussbaumer K. Cerebrovascular biomodeling for aneurysm surgery: simulation-based training by means of rapid prototyping technologies. Surg Innov. 2011;18(3):294–306.

    Article  PubMed  Google Scholar 

  55. Coelho G, Warf B, Lyra M, Zanon N. Anatomical pediatric model for craniosynostosis surgical training. Childs Nerv Syst. 2014;30(12):2009–14.

    Article  Google Scholar 

  56. Mattei TA, Frank C, Bailey J, Lesle E, Macuk A, Lesniak M, Patel A, Morris MJ, Nair K, Lin JJ. Design of a synthetic simulator for pediatric lumbar spine pathologies. J Neurosurg Pediatr. 2013;12(2):192–201.

    Article  PubMed  Google Scholar 

  57. Anil SM, Kato Y, Hayakawa M, Yoshida K, Nagahisha S, Kanno T. Virtual 3-dimensional preoperative planning with the dextroscope for excision of a 4th ventricular ependymoma. min-Minimally Invasive. Neurosurgery. 2007;50(02):65–70.

    CAS  Google Scholar 

  58. Delorme S, Laroche D, DiRaddo R, Del Maestro RF. NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Oper Neurosurg. 2012;71(suppl_1):ons32–42.

    Article  Google Scholar 

  59. Nash R, Sykes R, Majithia A, Arora A, Singh A, Khemani S. Objective assessment of learning curves for the Voxel-Man TempoSurg temporal bone surgery computer simulator. J Laryngol Otol. 2012;126(7):663–9.

    Article  CAS  Google Scholar 

  60. Radetzky A, Rudolph M, Starkie S, Davies B, Auer LM. ROBO-SIM: a simulator for minimally invasive neurosurgery using an active manipulator. Stud Health Technol Inform. 2000;77:1165–9.

    CAS  Google Scholar 

  61. Freudenstein D, Bartz D, Skalej M, Duffner F. New virtual system for planning of neuroendoscopic interventions. Comput Aided Surg. 2001;6(2):77–84.

    Article  CAS  Google Scholar 

  62. Delorme S, Laroche D, DiRaddo R, Del Maestro RF. NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Oper Neurosurg. 2012;71(suppl_1):ons32–42.

    Article  Google Scholar 

  63. Boudou C, Balosso J, Estève F, Elleaume H. Monte Carlo dosimetry for synchrotron stereotactic radiotherapy of brain tumours. Phys Med Biol. 2005;50(20):4841.

    Article  Google Scholar 

  64. Dieterich S, Cavedon C, Chuang CF, Cohen AB, Garrett JA, Lee CL, Lowenstein JR, Taylor DD, Wu X, Yu C. Report of AAPM TG 135: quality assurance for robotic radiosurgery. Med Phys. 2011;38(6):2914–36.

    Article  PubMed  Google Scholar 

  65. Hamamoto Y, Manabe T, Nishizaki O, Takahashi T, Isshiki N, Murayama S, Nishina K, Umeda M. Influence of collimator size on three-dimensional conformal radiotherapy of the cyberknife. Radiat Med. 2004;22(6):442–8.

    Google Scholar 

  66. Nowinski WL, Chua BC, Volkau I, Puspitasari F, Marchenko Y, Runge VM, Knopp MV. Simulation and assessment of cerebrovascular damage in deep brain stimulation using a stereotactic atlas of vasculature and structure derived from multiple 3-and 7-tesla scans. J Neurosurg. 2010;113(6):1234–41.

    Article  Google Scholar 

  67. Noordmans HJ, Van Rijen PC, Van Veelen CW, Viergever MA, Hoekema R. Localization of implanted EEG electrodes in a virtual-reality environment. Comput Aided Surg. 2001;6(5):241–58.

    Article  CAS  Google Scholar 

  68. Pieters TA, Conner CR, Tandon N. Recursive grid partitioning on a cortical surface model: an optimized technique for the localization of implanted subdural electrodes. J Neurosurg. 2013;118(5):1086–97.

    Article  Google Scholar 

  69. Barrows HS, Abrahamson S. The programmed patient: a technique for appraising student performance in clinical neurology. Acad Med. 1964;39(8):802–5.

    CAS  Google Scholar 

  70. Wallace P. Following the threads of an innovation: the history of standardized patients in medical education. Caduceus (Springfield, Ill). 1997;13(2):5.

    CAS  Google Scholar 

  71. Musacchio MJ, Smith AP, McNeal CA, Munoz L, Rothenberg DM, von Roenn KA, Byrne RW. Neuro-critical care skills training using a human patient simulator. Neurocrit Care. 2010;13(2):169–75.

    Article  Google Scholar 

  72. Ullrich WF. A history of simulation: part II-early days. Military Simulation & Training. 2008. p. 27–30.

    Google Scholar 

  73. Singh H, Kalani M, Acosta-Torres S, El Ahmadieh TY, Loya J, Ganju A. History of simulation in medicine: from Resusci Annie to the Ann Myers Medical Center. Neurosurgery. 2013;73:S9–14.

    Article  Google Scholar 

  74. The Link Trainer. Stark Ravings Web site. http://www.starksravings.com/linktrainer/linktrainer.htm.

  75. https://en.wikipedia.org/w/index.php?curid=32934125.

  76. A brief history and lineage of our CAE-Link Silver Spring operation. http://lifeafterlink.org/brochure.shtml.

  77. Setting the Standard in Simulation and Training for 80+ Years. https://www.link.com/about/pages/history.aspx.

  78. Satava RM. Historical review of surgical simulation—a personal perspective. World J Surg. 2008;32(2):141–8.

    Article  Google Scholar 

  79. Lanier J. Virtual reality: the promise of the future. Interact Learn Int. 1992;8(4):275–9.

    Google Scholar 

  80. By Canticle at en.wikipedia, CC BY-SA 3.0. https://commons.wikimedia.org/w/index.php?curid=9074729

  81. Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng. 1990;37(8):757–67.

    Article  CAS  Google Scholar 

  82. Satava RM. Virtual reality surgical simulator. Surg Endosc. 1993;7(3):203–5.

    Article  CAS  Google Scholar 

  83. Seymour NE, Gallagher AG, Roman SA, O’brien MK, Bansal VK, Andersen DK, Satava RM. Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg. 2002;236(4):458.

    Article  PubMed  Google Scholar 

  84. Edmond CV, Wiet GJ, Bolger LB. Virtual environments: surgical simulation in otolaryngology. Otolaryngol Clin N Am. 1998;31(2):369–81.

    Article  Google Scholar 

  85. Datta V, Mackay S, Mandalia M, Darzi A. The use of electromagnetic motion tracking analysis to objectively measure open surgical skill in the laboratory-based model. J Am Coll Surg. 2001;193(5):479–85.

    Article  CAS  Google Scholar 

  86. Mylonas G, Darzi A, Yang GZ. Gaze contingent depth recovery and motion stabilization for minimally invasive robotic surgery. Medical Imaging and Augmented Reality. 2004. p. 311–9.

    Google Scholar 

  87. Albani JM, Lee DI. Virtual reality-assisted robotic surgery simulation. J Endourol. 2007;21(3):285–7.

    Article  Google Scholar 

  88. Spicer MA, Van Velsen M, Caffrey JP, Apuzzo ML. Virtual reality neurosurgery: a simulator blueprint. Neurosurgery. 2004;54(4):783–98.

    Article  Google Scholar 

  89. https://neurosurgerycns.wordpress.com/2010/02/08/free-article-alcmaeon-of-croton/.

    Google Scholar 

  90. Alaraj A, Charbel FT, Birk D, Tobin M, Luciano C, Banerjee PP, Rizzi S, Sorenson J, Foley K, Slavin K, Roitberg B. Role of cranial and spinal virtual and augmented reality simulation using immersive touch modules in neurosurgical training. Neurosurgery. 2013;72(suppl_1):A115–23.

    Article  Google Scholar 

  91. Rodt T, Schlesinger A, Schramm A, Diensthuber M, Rittierodt M, Krauss JK. 3D visualization and simulation of frontoorbital advancement in metopic synostosis. Childs Nerv Syst. 2007;23(11):1313–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alshafai, N.S., Alduais, W. (2018). History of Simulation. In: Alaraj, A. (eds) Comprehensive Healthcare Simulation: Neurosurgery. Comprehensive Healthcare Simulation. Springer, Cham. https://doi.org/10.1007/978-3-319-75583-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75583-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75582-3

  • Online ISBN: 978-3-319-75583-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics