Skip to main content

Memristive In Situ Computing

  • Chapter
  • First Online:

Abstract

The missing link between a nonlinear circuit element that is able to self-adjust its conductance according to the history of applied voltage/current and physical realizations of two-terminal oxide-based resistive memory was discovered in early 2008, and has since then been intensively studied. This class of memory devices is called memristive devices, which includes resistive random access memories (RRAM), phase change memories (PCM) and spin-transfer torque magnetoresistive memories (STT-MRAM). Memristive devices are mostly CMOS and fab friendly, and promise simpler architecture, high scalability and stackability (3D), good selectivity, relatively, low-power consumption, high endurance and retention, and fast operation by utilizing parallelism, and the most important of all, the ability to merge logic and memory. A significantly wide range of material systems show that resistive switching can be categorized under three main redox-related effects, electrochemical metalization effects (ECM), valency change memory effect (VCM) and thermochemical memory effects (TCM). Although, the behavior of these resistive memories can be modeled using high-level finite-state machines (FSMs), the underlying switching mechanisms is yet to be fully understood. Despite this shortage, their application in memory and computing has been constantly improved. These devices can be programmed to exhibit multi-level cell (MLC) and binary cell behavior, thus analog and digital memories can be exists in one device depends on programming. In this chapter, we highlight some of the in situ computational capability of memristive devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alibart, F., Zamanidoost, E., Strukov, D.B.: Pattern classification by memristive crossbar circuits using ex situ and in situ training. Nat. Commun. 4, 2072 (2013)

    Article  Google Scholar 

  2. Backus, J.: Can programming be liberated from the von Neumann style?: a functional style and its algebra of programs. Commun. ACM 21(8), 613–641 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2(1), 32–48 (1982)

    Article  Google Scholar 

  4. Borghetti, J., Snider, G., Kuekes, P., Yang, J., Stewart, D., Williams, R.: Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464(7290), 873–876 (2010)

    Article  Google Scholar 

  5. Caporale, N., Dan, Y.: Spike timing-dependent plasticity: a hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008)

    Article  Google Scholar 

  6. Chang, T., Jo, S.-H., Lu, W.: Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5(9), 7669–7676 (2011)

    Article  Google Scholar 

  7. Chua, L.O.: Memristor - the missing circuit element. IEEE Trans. Circ. Theor. 18(5), 507–519 (1971)

    Article  Google Scholar 

  8. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  9. Hasegawa, T., Ohno, T., Terabe, K., Tsuruoka, T., Nakayama, T., Gimzewski, J., Aono, M.: Learning abilities achieved by a single solid-state atomic switch. Adv. Mater. 22(16), 1831–1834 (2010)

    Article  Google Scholar 

  10. Izhikevich, E.M., Desai, N.S.: Relating STDP to BCM. Neural Comput. 15(7), 1511–1523 (2003)

    Article  MATH  Google Scholar 

  11. Jackson, B.L., Rajendran, B., Corrado, G.S., Breitwisch, M., Burr, G.W., Cheek, R., Gopalakrishnan, K., Raoux, S., Rettner, C.T., Padilla, A., et al.: Nanoscale electronic synapses using phase change devices. ACM J. Emerg. Technol. Comput. Syst. (JETC) 9(2), 12 (2013)

    Google Scholar 

  12. Jeong, D.S., Kim, I., Ziegler, M., Kohlstedt, H.: Towards artificial neurons and synapses: a materials point of view. RSC Adv. 3(10), 3169–3183 (2013)

    Article  Google Scholar 

  13. Jiang, H., Xia, Q.: Effect of voltage polarity and amplitude on electroforming of TiO\(_2\) based memristive devices. Nanoscale 5(8), 3257–3261 (2013)

    Article  Google Scholar 

  14. Jo, S., Chang, T., Ebong, I., Bhadviya, B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Article  Google Scholar 

  15. Kavehei, O., Iqbal, A., Kim, Y., Eshraghian, K., Al-Sarawi, S., Abbott, D.: The fourth element: characteristics, modelling and electromagnetic theory of the memristor. Proc. R. Soc. A Math. Phys. Eng. Sci. 466(2120), 2175 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kavehei, O., Al-Sarawi, S., Cho, K.-R., Eshraghian, K., Abbott, D.: An analytical approach for memristive nanoarchitectures. IEEE Trans. Nanotechnol. 11(2), 374–385 (2012)

    Article  Google Scholar 

  17. Kavehei, O., Al-Sarawi, S., Cho, K.-R., Iannella, N., Kim, S.-J., Eshraghian, K., Abbott, D.: Memristor-based synaptic networks and logical operations using in-situ computing. In: International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 137–142 (2011)

    Google Scholar 

  18. Kavehei, O., Cho, K., Lee, S., Kim, S., Al-Sarawi, S., Abbott, D., Eshraghian, K.: Fabrication and modeling of Ag/TiO\(_{2}\)/ITO memristor. In: 54th IEEE International Midwest Symposium on Circuits and Systems, pp. 1–4 (2011)

    Google Scholar 

  19. Kavehei, O., Cho, K.-R., Lee, S.-J., Al-Sarawi, S., Eshraghian, K., Abbott, D.: Integrated memristor-mos (m2) sensor for basic pattern matching applications. J. Nanosci. Nanotechnol. 13(5), 3638–3640 (2013)

    Article  Google Scholar 

  20. Kavehei, O., Lee, S.-J., Cho, K.-R., Al-Sarawi, S., Abbott, D.: A pulse-frequency modulation sensor using memristive-based inhibitory interconnections. J. Nanosci. Nanotechnol. 13(5), 3505–3510 (2013)

    Article  Google Scholar 

  21. Kavehei, O., Linn, E., Nielen, L., Tappertzhofen, S., Skafidas, E., Valov, I., Waser, R.: An associative capacitive network based on nanoscale complementary resistive switches for memory-intensive computing. Nanoscale 5(11), 5119–5128 (2013)

    Article  Google Scholar 

  22. Kim, K.-H., Gaba, S., Wheeler, D., Cruz-Albrecht, J.M., Hussain, T., Srinivasa, N., Lu, W.: A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12(1), 389–395 (2011)

    Article  Google Scholar 

  23. Li, S., Zeng, F., Chen, C., Liu, H., Tang, G., Gao, S., Song, C., Lin, Y., Guo, D., et al.: Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system. J. Mater. Chem. C 1(34), 5292–5298 (2013)

    Article  Google Scholar 

  24. Lim, H., Jang, H.-W., Lee, D.-K., Kim, I., Hwang, C.S., Jeong, D.S.: Elastic resistance change and action potential generation of non-faradaic Pt/TiO\(_2\)/Pt capacitors. Nanoscale 5(14), 6363–6371 (2013)

    Article  Google Scholar 

  25. Linn, E., Rosezin, R., Kügeler, C., Waser, R.: Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5), 403–406 (2010)

    Article  Google Scholar 

  26. Menzel, S., Tappertzhofen, S., Waser, R., Valov, I.: Switching kinetics of electrochemical metallization memory cells. Phys. Chem. Chem. Phys. 15(18), 6945–6952 (2013)

    Article  Google Scholar 

  27. Mott, N., Gurney, R.: Electronic processes in ionic crystals, Chap. 2. Dover (1964)

    Google Scholar 

  28. Mouttet, B.: Proposal for memristors in signal processing. Nano-Net, pp. 11–13 (2009)

    Google Scholar 

  29. Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J.K., Aono, M.: Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10(8), 591–595 (2011)

    Article  Google Scholar 

  30. Ovshinsky, S.R.: Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968)

    Article  Google Scholar 

  31. Ovshinsky, S.R.: The ovonic cognitive computer: a new paradigm. EPCOS Library (2004)

    Google Scholar 

  32. Pershin, Y., Di Ventra, M.: Practical approach to programmable analog circuits with memristors. IEEE Trans. Circ. Syst. I Reg. Pap. 57(8), 1857–1864 (2010)

    Article  MathSciNet  Google Scholar 

  33. Pershin, Y., Di Ventra, M.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2), 145–227 (2011)

    Article  Google Scholar 

  34. Pfeil, T., Potjans, T.C., Schrader, S., Potjans, W., Schemmel, J., Diesmann, M., Meier, K.: Is a 4-bit synaptic weight resolution enough?-constraints on enabling spike-timing dependent plasticity in neuromorphic hardware. Frontiers Neurosci. 6, 90 (2012)

    Article  Google Scholar 

  35. Pickett, M.D., Strukov, D.B., Borghetti, J.L., Yang, J.J., Snider, G.S., Stewart, D.R., Williams, R.S.: Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106(7), 074508 (2009)

    Article  Google Scholar 

  36. Qureshi, M.S., Pickett, M., Miao, F., Strachan, J.P.: CMOS interface circuits for reading and writing memristor crossbar array. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2954–2957 (2011)

    Google Scholar 

  37. Rosezin, R., Linn, E., Kügeler, C., Bruchhaus, R., Waser, R.: Crossbar logic using bipolar and complementary resistive switches. IEEE Electron Dev. Lett. 32(6), 710–712 (2011)

    Article  Google Scholar 

  38. Snider, G.S.: Cortical computing with memristive nanodevices. SciDAC Rev. 10, 58–65 (2008)

    Google Scholar 

  39. Snider, G.S.: Instar and outstar learning with memristive nanodevices. Nanotechnology 22(1), 015201 (2011)

    Article  MathSciNet  Google Scholar 

  40. Song, S., Miller, K., Abbott, L.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000)

    Article  Google Scholar 

  41. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  42. Suri, M., Querlioz, D., Bichler, O., Palma, G., Vianello, E., Vuillaume, D., Gamrat, C., DeSalvo, B.: Bio-inspired stochastic computing using binary CBRAM synapses. IEEE Trans. Electron Dev. 60(7), 2402–2409 (2013)

    Article  Google Scholar 

  43. Thakoor, S., Moopenn, A., Daud, T., Thakoor, A.: Solid-state thin-film memistor for electronic neural networks. J. Appl. Phys. 67(6), 3132–3135 (1990)

    Article  Google Scholar 

  44. Valov, I., Linn, E., Tappertzhofen, S., Schmelzer, S., van den Hurk, J., Lentz, F., Waser, R.: Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013)

    Article  Google Scholar 

  45. Waser, R.: Nanoelectronics and Information Technology. Wiley-VCH, Weinheim (2012)

    Google Scholar 

  46. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007)

    Article  Google Scholar 

  47. Whitehead, A., Russell, B.: Principia Mathematica, vol. 2 (1912)

    Google Scholar 

  48. Widrow, B.: An adaptive ‘ADALINE’ neuron using chemical “memistors”. Stanford Electronics Laboratories Technical Report, Tech. Rep. TR-1553-2, 23 Oct 1960

    Google Scholar 

  49. Xia, Q., Pickett, M.D., Yang, J.J., Li, X., Wu, W., Medeiros-Ribeiro, G., Williams, R.S.: Two-and three-terminal resistive switches: nanometer-scale memristors and memistors. In: Advanced Functional Materials 21(14), 2660–2665 (2011)

    Article  Google Scholar 

  50. Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat. Nanotechnol. 8(1), 13–24 (2012)

    Article  Google Scholar 

  51. Yang, J.J., Zhang, M.-X., Pickett, M.D., Miao, F., Strachan, J.P., Li, W.-D., Yi, W., Ohlberg, D.A., Choi, B.J., Wu, W., et al.: Engineering nonlinearity into memristors for passive crossbar applications. Appl. Phys. Lett. 100, 113501 (2012)

    Article  Google Scholar 

  52. Yu, S., Gao, B., Fang, Z., Yu, H., Kang, J., Wong, H.-S.P.: A neuromorphic visual system using RRAM synaptic devices with sub-pJ energy and tolerance to variability: experimental characterization and large-scale modeling. In: IEEE International Electron Devices Meeting, pp. 239–242 (2012)

    Google Scholar 

  53. Zamarreño-Ramos, C., Camuñas-Mesa, L., Pérez-Carrasco, J., Masquelier, T., Serrano-Gotarredona, T., Linares-Barranco, B.: On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Frontiers Neurosci. 5, 26 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by an Early Career Researcher grant from the Melbourne School of Engineering, University of Melbourne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Kavehei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kavehei, O., Skafidas, E., Eshraghian, K. (2019). Memristive In Situ Computing. In: Chua, L., Sirakoulis, G., Adamatzky, A. (eds) Handbook of Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-76375-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76375-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76374-3

  • Online ISBN: 978-3-319-76375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics