Skip to main content

Communication When Learning and Teaching Mathematics with Technology

  • Chapter
  • First Online:
Uses of Technology in Primary and Secondary Mathematics Education

Part of the book series: ICME-13 Monographs ((ICME13Mo))

Abstract

In this chapter the role of technology in supporting interactions between students, between students and teachers and between students and technology is investigated. The way that interactions in the presence of technology support the development of different types of mathematical knowledge—conceptual, procedural and metacognitive knowledge—is also considered. These considerations led to our investigation of different types of technology specific to mathematics education and the type of communication supported by these technologies. We developed the distinction between ‘communication through technology’ (e.g. through use of social networks to work collaboratively on problems), ‘communication with technology’ (e.g. syntax entry to obtain a result), and ‘communication of technology displays’ (e.g. when technology displays are used as a stimulus for communication ). Opportunities for the development of students’ knowledge are discussed from the perspectives of the different types of communication and collaboration enabled through the presence of technology in mathematics education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainley, J., Bills, L., & Wilson, K. (2005). Designing spreadsheet-based tasks for purposeful algebra. International Journal of Computers for Mathematical Learning, 10, 191–215.

    Article  Google Scholar 

  • Barzel, B. (2006). Mathematikunterricht zwischen Instruktion und Konstruktion - Evaluation einer Lernwerkstatt im 11.Jahrgang mit integriertem Einsatz von Computeralgebra (Dissertation). Fakultät für Mathematik, Universität Duisburg-Essen.

    Google Scholar 

  • Barzel, B. (2012). Computeralgebra – Mehrwert beim Lernen von Mathematik – aber wann? Münster: Waxmann Verlag.

    Google Scholar 

  • Barzel, B., Leuders, T., Prediger, S., & Hußmann, S. (2013). Designing tasks for engaging students in active knowledge organization. In C. Margolinas (Ed.), Proceedings of ICMI Study Group 22: Task design in Mathematics Education (Vol. 1, pp. 285–294). Oxford: University of Oxford.

    Google Scholar 

  • Blume, G. W. & Heid, M. K. (Eds.). (2008). Research on technology and the teaching and learning of mathematics: Volume 2 cases and perspectives. Charlotte, NC: IAP.

    Google Scholar 

  • Clark-Wilson, A. (2010a). Emergent pedagogies and the changing role of the teacher in the TI-Nspire Navigator-networked mathematics classroom. ZDM—The International Journal on Mathematics Education, 42, 747–761.

    Article  Google Scholar 

  • Clark-Wilson, A. (2010b). How does a multi-representational mathematical ICT tool mediate teachers’ mathematical and pedagogical knowledge concerning variance and invariance? (Ph.D. thesis). London: Institute of Education, University of London.

    Google Scholar 

  • Dick, T., & Edwards, B. (2008). Multiple representations and local linearity. In G. W. Blume & M. K. Heid (Eds.), Research on technology and the teaching and learning of mathematics: Volume 2 cases and perspectives (pp. 255–275). Charlotte, NC: IAP.

    Google Scholar 

  • Drijvers, P., Ball, L., Barzel, B., Heid, M. K., Cao, Y., & Maschietto, M. (2016). Uses of technology in lower secondary mathematics education: A concise topical survey. Springer Open. Cham: Springer.

    Google Scholar 

  • Drijvers, P., Barzel, B., Maschietto, M., & Trouche, L. (2006). Tools and technologies in mathematical didactics. In M. Bosch (Ed.), Proceedings of the fourth congress of the European Society for research in mathematics education (pp. 927–938). Barcelona, Spain: Universitat Ramon Llull.

    Google Scholar 

  • Drijvers, P., Monaghan, J., Thomas, M., & Trouche, L. (2015). Use of technology in secondary mathematics: Final report for the international baccalaureate. The Netherlands: Utrecht University Repository.

    Google Scholar 

  • Duval, R. (2000). Basic issues for research in mathematics education. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th Conference of the International Group for the Psychology of Mathematics Education (Vol. I, pp. 55–69). Japan: Hiroshima University.

    Google Scholar 

  • Fitzallen, N., & Watson, J. (2014). Extending the curriculum with TinkerPlots: Opportunities for early development of informal inference. In K. Makar, B. de Sousa, & R. Gould (Eds.). Proceedings of the 9th International Conference on Teaching Statistics (pp. 1–6). Voorburg: International Statistical Institute.

    Google Scholar 

  • Fuglestad, A. B. (2009). ICT for inquiry in mathematics: A developmental research approach. Journal of Computers in Mathematics and Science Teaching, 28(2), 191–202.

    Google Scholar 

  • Goodchild, S. (2014). Mathematics teaching development: learning from developmental research in Norway. The International Journal on Mathematics Education, 46(2), S. 305–316.

    Article  Google Scholar 

  • Goos, M., Soury-Lavergne, S., Assude, T., Brown, J., Kong, C. M., Glover, D., et al. (2009). Teachers and teaching: Theoretical perspectives and issues concerning classroom implementation. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology—Rethinking the terrain (pp. 311–2328). New York: Springer.

    Chapter  Google Scholar 

  • Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: The case of calculators. International Journal of Computers for Mathematical Learning, 3, 195–227.

    Article  Google Scholar 

  • Gulkilik, H. (2016). The role of virtual manipulatives in high school students’ understanding of geometric transformations. In P. S. Moyer-Packenham (Ed.), International perspectives on teaching and learning mathematics with virtual manipulatives [electronic resource] (pp. 213–243). Cham: Springer International Publishing.

    Google Scholar 

  • Heid, M. K. & Blume, G. W. (Eds.). (2008). Research on technology and the teaching and learning of mathematics: Volume 1 research syntheses. Charlotte, NC: IAP.

    Google Scholar 

  • Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65–97). New York: Macmillan.

    Google Scholar 

  • Isoda, M., McCrae, B., & Stacey, K. (2006). Cultural awareness arising from internet communication between Japanese and Australian classrooms. In F. K. S. Leung, K.-D. Graf, & F. J. Lopez-Real (Eds.), Mathematics education in different cultural traditions: A comparative study of east Asia and the west (The 13th ICMI Study) (pp. 397–408). USA: Springer.

    Google Scholar 

  • Kahveci, M., & Imamoglu, Y. (2007). Interactive learning in mathematics education: Review of recent literature. In R. Carlsen & D. A. Willis (Eds.), Proceedings of the Annual Conference of the Society for Information Technology & Teacher Education (pp. 3269–3276). Chesapeake: Association for the Advancement of Computing in Education.

    Google Scholar 

  • Lamon, S. J. (2012). Teaching fractions and ratios for understanding: Essential content knowledge and instructional strategies for teachers. New York: Routledge.

    Google Scholar 

  • Luhmann, N. (1994). Das Wissen der Gesellschaft. Frankfurt am Main: Suhrkamp.

    Google Scholar 

  • Maturana, H. R., & Varela, F. J. (2009). Der Baum der Erkenntnis: Die biologischen Wurzeln menschlichen Erkennens. Berlin: Fischer.

    Google Scholar 

  • Mueller, M., Yankelewitz, D., & Maher, C. (2012). A framework for analyzing the collaborative construction of arguments and its interplay with agency. Educational Studies in Mathematics, 80(3), 369–387.

    Article  Google Scholar 

  • Muir, T. (2014). Google, Mathletics and Khan academy: Students’ self-initiated use of online mathematical resources. Mathematics Education Research Journal, 26, 833–852.

    Article  Google Scholar 

  • Peschek, W. (2007). The impact of CAS on our understanding of mathematics education. International Journal for Technology in Mathematics Education, 14(2), 95–101.

    Google Scholar 

  • Pierce, R., & Stacey, K. (2004). Monitoring progress in algebra in a CAS active context: Symbol sense, algebraic insight and algebraic expectation. The International Journal of Computer Algebra in Mathematics Education, 11(1), 3–11.

    Google Scholar 

  • Pierce, R., & Stacey, K. (2010). Mapping pedagogical opportunities provided by mathematics analysis software. International Journal of Computers for Mathematical Learning, 15(1), 1–20.

    Article  Google Scholar 

  • Reimer, K., & Moyer, P. S. (2005). Third graders learn about fractions using virtual manipulatives: A classroom study. Journal of Computers in Mathematics and Science Teaching, 24(1), 5–25.

    Google Scholar 

  • Rezat, S., & Sträßer, R. (2012). From the didactical triangle to the socio-didactical tetrahedron: Artifacts as fundamental constituents of the didactical situation. ZDM—The International Journal on Mathematics Education, 44, 641–651.

    Article  Google Scholar 

  • Roschelle, J., Rafanan, K., Bhanot, R., Estrella, G., Penuel, B., Nussbaum, M., et al. (2010). Scaffolding group explanation and feedback with handheld technology: Impact on students’ mathematics learning. Educational Technology Research and Development, 58(4), 399–419.

    Article  Google Scholar 

  • Schneider, E. (2002). Kommunikationsfähigkeit mit Expert/inn/en und Computeralgebrasysteme. In S. Prediger, K. Lengnink, & F. Siebel (Eds.), Mathematik und Kommunikation. Darmstädter Texte zur Allgemeinen Wissenschaft 3 (pp. 137–150). Mühltal: Verlag Allgemeine Wissenschaft.

    Google Scholar 

  • Steinbring, H. (2009). The construction of new mathematical knowledge in classroom interaction – an epistemological perspective, mathematics education library, (Vol. 38). Berlin, New York: Springer.

    Google Scholar 

  • Steinbring, H. (2015). Mathematical interaction shaped by communication, epistemological constraints and enactivism. ZDM—The International Journal on Mathematics Education, 47(2), 281–293.

    Article  Google Scholar 

  • Suh, J., & Moyer, P. (2007). Developing students’ representational fluency using virtual and physical algebra balances. Journal of Computers in Mathematics and Science Teaching, 26(2), 155–173.

    Google Scholar 

  • Symons, D., & Pierce, R. (2015). Mathematical language development and talk types in computer supported collaborative learning environments. In M. Marshman, V. Geiger, & A. Bennison (Eds.). Mathematics education in the margins. Proceedings of the 38th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 579–586). Sunshine Coast: MERGA.

    Google Scholar 

  • Trouche, L. (2004). Managing the complexity of human/machine interactions in computerized learning environments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281–307.

    Article  Google Scholar 

  • Trouche, L., & Drijvers, P. (2014). Webbing and orchestration. Two interrelated views on digital tools in mathematics education. Teaching Mathematics and Its Applications, 33, 193–209.

    Article  Google Scholar 

  • Vincent, J., Chick, H., & McCrae, B. (2005). Argumentation profile charts as tools for analysing students’ argumentations. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 281–288). Melbourne: PME.

    Google Scholar 

  • Woo, Y., & Reeves, T. C. (2006). Meaningful online learning: Exploring interaction in a Web-based learning environment using authentic tasks (Unpublished dissertation). University of Georgia, Athens, GA.

    Google Scholar 

  • Yackel, E. (2002). What we can learn from analyzing the teacher’s role in collective argumentation. Journal of Mathematical Behavior, 21, 423–440.

    Article  Google Scholar 

  • Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27(4), 458–477.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their insightful comments about our chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynda Ball .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ball, L., Barzel, B. (2018). Communication When Learning and Teaching Mathematics with Technology. In: Ball, L., Drijvers, P., Ladel, S., Siller, HS., Tabach, M., Vale, C. (eds) Uses of Technology in Primary and Secondary Mathematics Education. ICME-13 Monographs. Springer, Cham. https://doi.org/10.1007/978-3-319-76575-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76575-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76574-7

  • Online ISBN: 978-3-319-76575-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics