Skip to main content

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 28))

Abstract

The performance and durability of multi-layered pavements strongly depend on interlayer bonding between layers, especially for pavements with a thin or ultra-thin surface course. These pavements, comprised of several differing material layers, are often subjected to premature distresses (corrugation, peeling, slippage or fatigue cracking, etc.) caused by poor interface bonding. This chapter summarizes the different bond characterization tests available around the world (mostly in the laboratory) available to characterize the bond between pavement layers. Many of the tests can be performed on specimens prepared in the laboratory or on cores or slabs obtained from the pavement. Mostly, “pure” fracture mode test methods (opening mode I or in-plane, shear mode II or out-of-plane, shear mode III) are currently used worldwide for determining the interlayer bond of pavement layers. Most of the mixed-mode test methods (mainly for the combination of Modes I and II) were developed by a few research teams and there are therefore no standard tests. Although tack coat type and content are the main parameters studied by researchers and engineers, surface roughness, moisture, freezing, and presence of dust or debris on the interface are additional parameters that may decrease bonding performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vanelstraete A, Francken L (1997) State-of-the-Art Report of RILEM technical committee 157 PRC, systems to prevent reflective cracking in pavements. In: Vanelstraete A, Francken L (eds) RILEM Report 18

    Google Scholar 

  2. Burmister DM (1943) The theory of stresses and displacements in layered systems and applications of the design of airport run ways. Proc Highw Res Board 23:126–148

    Google Scholar 

  3. Collop AC, Thom NH (2002) The importance of bond between pavement layers, Final summary report. School of Engineering, University of Nottingham, UK

    Google Scholar 

  4. Vandenbossche JM, Fagerness AJ (2002) Performance, analysis, and repair of ultrathin and thin whitetopping at Minnesota road research facility. Transp Res Rec J Transp Res Board Natl Res Counc Washington, DC 1809:191–198

    Article  Google Scholar 

  5. Brown SF, Brunton JM (1984) The influence of bonding between bituminous layers. Highw Transp 31(5):16–17

    Google Scholar 

  6. Raab C, Partl MN (1999) Methoden zur Beurteilung des Schichtenverbunds von Asphaltbelägen,Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation, Bundesamt für Strassen. Report No 442

    Google Scholar 

  7. Raab C, Partl MN (2004) Interlayer shear performance: experience with different pavement structures. In: The proceedings of the 3rd Eurasphalt & Eurobitume Congress, Vienna, Austria, 12–14 May, 1:535–545. ISBN 90-802884-4-6

    Google Scholar 

  8. Raab C, Partl MN (2006) Rehabilitation of Concrete pavements with Asphalt and Intermediate Layers. In: Third Gulf conference on roads (TGCR06), in Muscat, Sultanate of Oman, March 6–8, pp 48–52. ISBN 1817-4310

    Google Scholar 

  9. Khweir K, Fordyce D (2003) The influence of layer bonding on the prediction of pavement life. In: Proceedings of the institute of civil engineers transport, UK, vol 156

    Google Scholar 

  10. Pouteau B, Balay J-M, Chabot A, De Larrard F (2004) Fatigue test and mechanical study of adhesion between concrete and asphalt. In: 9th international symposium on concrete roads, 3–6 April, Istanbul, Turkey

    Google Scholar 

  11. Chabot A, Pouteau B, Balay J-M, De Larrard F (2008) FABAC accelerated loading test of bond between cement overlay and Asphalt layers. In Taylor & Francis group proceedings (ISBN 13: 978-0-415-47575-4), Sixth international RILEM conference on cracking in pavements, June 16–18, Chicago, US, pp 13–23. https://doi.org/10.1201/9780203882191.ch65

  12. Sutanto M (2009) Assessment of Bond between Asphalt Layers. Ph.D. Thesis, Nottingham University, Great Britain

    Google Scholar 

  13. Autret P, Baucheron de Boissoudy A, Marchand, JP (1982) ALIZE III Practice. In Proceedings of the 5th international conference on structural design of Asphalt pavements, Delft, Netherlands, pp 174–191. [Alize-LCPC (www.alize-LCPC.com)]

  14. Corte JF, Goux MT (1996) Design of pavement structures: the French technical guide. Transp Res Rep 1539:116–124

    Article  Google Scholar 

  15. Highways Agency (2008) Specifications for highway works, Manual of contract documents for highway works, vol 1 (MCHW_1), London, UK

    Google Scholar 

  16. NCHRP (2001) Guide for mechanistic-empirical design of new and rehabilitated pavement structures. [http://onlinepubs.trb.org/onlinepubs/archive/mepdg/home.htm]

  17. Hammoum F, Chabot A, St. Laurent D, Chollet H, Vulturescu B (2010) Accelerating and decelerating effects of tramway loads moving on Bituminous pavement. Mater Struct 43:1257–1269

    Article  Google Scholar 

  18. Ambassa ZD, Allou F, Petit C, Medjo Eko R (2013) Fatigue life prediction of asphalt pavement subjected to multiple axle loadings with viscoelastic FEM. Constr Build Mater 43:443–52. http://dx.doi.org/10.1016/j.conbuildmat.2013.02.017

    Article  Google Scholar 

  19. Diakhaté M, Phelipot A, Millien A, Petit C (2006) Shear fatigue behavior of tack coats in pavements. Road Mater Pavement Design 7(2):201–222

    Article  Google Scholar 

  20. Petit C, Diakhaté M, Millien A, Pouteau B (2009) Pavement design for curved road sections. Road Mater Pavement Design 10(3):609–624. https://doi.org/10.3166/rmpd.10.609-624

    Google Scholar 

  21. Vulcano-Greullet, N, Kerzreho JP, Mauduit V, Chabot A (2010) Stripping phenomenon of top layers of thick pavements. In: Proceedings of the 11th international conference on Asphalt Pavements, 1–6 August 2010, Nagoya Aichi, Japan. Curran Associates 1:552–561. Print ISBN: 978-1-61839-073-8

    Google Scholar 

  22. D’Andrea A, Tozzo C (2016) Dynamic tests on Bituminous layers interface. Mater Struct 49(3):917–928

    Article  Google Scholar 

  23. Mauduit V, Mauduit C, Vulcano-Greullet N, Coulon N, Hammoum F, Hamon D, Kerzreho JP, Piau JM, Chabot A (2013) Dégradation subite des enrobés bitumineux par période de gel/dégel: analyse de cas de terrain et recherche exploratoire en laboratoire. Bulletin des Laboratoires des Ponts et chaussées (279):47–63. http://hal.archives-ouvertes.fr/docs/00/85/09/49/PDF/doc00014196.pdf. (in French)

  24. Romanoschi SA, Metcalf JB (2002) The characterization of pavement layer interfaces. In: Proceedings of the 9th international conference on asphalt pavements, Copenhagen

    Google Scholar 

  25. Kruntcheva MR, Collop AC, Thom NH (2005) Effect of bond condition on flexible pavement performance. J Transp Eng, ASCE Publ 131(11):880–888

    Article  Google Scholar 

  26. Mohammad LN, Bae Elseifi A, Mostafa A (2009) Effect of tack coat materials and application rate on the interface shear strength. In: International conference on maintenance and rehabilitation of pavements and technological control (MAIREPAV6), Torino, sixth proceedings, vol II, pp 636–645

    Google Scholar 

  27. Roffé JC, Chaignon F (2002) Characterisation tests on bond coat: worldwide study, impact, tests, recommendations. In: Proceedings of the 3rd international conference bituminous mixtures and pavements, Thessaloniki

    Google Scholar 

  28. Pouteau B (2004) Durabilité mécanique du collage blanc sur noir, Ph.D. thesis from ECN Nantes (in French). http://media.lcpc.fr/ext/pdf/theses/rou/throu_pouteau.pdf

  29. Raab C, Partl MN Abd, El Halim AO (2009) Evaluation of interlayer shear bond devices for asphalt pavements. Baltic J Road Bridge Eng 4(4):176–195

    Article  Google Scholar 

  30. Partl MN, Bahia HU, Canestrari F, de la Roche C, Di Benedetto H, Piber H, Sybilski D (eds) (2013) Advances in interlaboratory testing and evaluation of bituminous materials, RILEM State-of-the-Art Reports of the RILEM technical committee 206-ATB, vol 9, XII, 453 p

    Google Scholar 

  31. Bissonnette B, Courard L, Fowler DW, Granju J-L (eds) (2011) Bonded cement-based material overlays for the repair, the lining or the strengthening of slabs or pavements. State-of-the-Art Report of the RILEM Technical Committee 193-RLS Series, vol 3, 1st edn, XIII, 177 p 76 illus edited by Publisher Springer, Netherlands. ISBN: 978-94-007-1239-3

    Google Scholar 

  32. Kaufmann N (1971) Das Sandflächenverfahren (The Sand-area method). Strassenbau Technik 24(3):31–50. (Germany)

    Google Scholar 

  33. BLPC (1979) Concrete pavements: problems raised by the presence of water in their structure (Chaussées en béton: problèmes posés par la présence d’eau dans leur structure). Bulletin de liaison des laboratoires des ponts et chaussées, special issue, 8. (In French)

    Google Scholar 

  34. Fuchs F, Jasienski A (1997) Le phénomène du Punch-Out sur les autoroutes belges en béton armé continu – causes, effets et remèdes. Bulletin from the Federation de l’industrie cimentière Belge and the Centre de Recherches routières Belge. (in French). www.brrc.be/pdf/bulletin/bul30t.pdf

  35. Bergeron G, Paradis M, Tourangeau G (2014) Réparation des nids-de-poule. Info DLC, Bulletin d’information technique 19(1). (in French)

    Google Scholar 

  36. Chabot A, Tran QD, Ehrlacher AA (2005) Simplified modeling for cracked pavements—Modèle simplifié pour le calcul des chaussées. Bulletin des Laboratoires des Ponts et chaussées, ISSN 1269-1496, (258–259):105–120

    Google Scholar 

  37. Chabot A, Tran QD, Ehrlacher A (2007) A modeling to understand where a vertical crack can propagate in pavements. In: Taylor & Francis group proceedings, international conference on advanced characterization of pavement and soil engineering Materials, Athens June 20–22 2007, 1:431–440

    Google Scholar 

  38. Chabot A, Chupin O, Deloffre L, Duhamel D (2010) Viscoroute 2.0: a tool for the simulation of moving load effects on asphalt pavement. RMPD Spec Issue Recent Adv Numerical Simul Pavements 11(2):227–250

    Google Scholar 

  39. Chupin O, Chabot A, Piau J-M, Duhamel D (2010) Influence of sliding interfaces on the response of a visco-elastic multilayered medium under a moving load. Int J Solids Struct 47(25/26):3435–3446

    Article  Google Scholar 

  40. Grellet D, Doré G, Kerzrého J-P, Piau JM, Chabot A, Hornych P (2012) Experimental and theoretical investigation of three dimensional strain occurring near the surface in asphalt concrete layers. In: Proceedings of the 7th Rilem international conference on cracking in pavements, June 20–22, Delft, The Netherlands. RILEM Bookseries, 4:1017–1027. https://doi.org/10.1007/978-94-007-4566-7_97. Print ISBN: 978-94-007-4565-0

  41. Tran QD, Chabot A, Ehrlacher A, Tamagny P (2004) A simplified modelling for cracking in pavements. In: Fifth international RILEM conference on cracking in pavements, May 5–8, Limoges. In Rilem Proceedings. ISBN 2-912143-47-0, 299–306

    Google Scholar 

  42. Berthemet F, Chabot A (2013) Apports du massif de Winkler dans la construction d’un outil de calcul d’analyse de structure multicouche fissurée reposant sur un sol. 21ème Congrès Français de Mécanique, 26-30Août, Bordeaux, 6 pages (http://hdl.handle.net/2042/52168)

  43. Nasser H, Chabot A (2015) 2D fast software analyzing mechanical fields in elastic cracked pavements. In: Proposed to the international conference on soft computing technology in civil, structural and environmental engineering (CSC2015), Soft computing in pavement engineering special session, Prague, Czech Republic, 1–4 September 2015

    Google Scholar 

  44. Nasser H, Chabot AA (2017) Half-analytical elastic solution for 2D analysis of cracked pavements. Adv Eng Softw https://doi.org/10.1016/j.advengsoft.2017.06.008

  45. Nasser H, Chupin O, Piau JM, Chabot A (2018) Mixed FEM for solving a plate type model intended for analysis of pavements with discontinuities. Road Mater Pavement Design 19(3):496–510. https://doi.org/10.1080/14680629.2018.1418653

    Article  Google Scholar 

  46. Fouchal F, Lebon F, Titeux I (2009) Contribution to the modelling of interfaces in masonry construction. Constr Build Mater 23:2428–2441

    Article  Google Scholar 

  47. Raous M, Cangémi L, Cocou M (1999) A consistent model coupling adhesion, friction and unilateral contact. Comput Methods Appl Mech Eng 177(3–4):383–399

    Article  MathSciNet  Google Scholar 

  48. Monerie Y, Raous M (2000) A model coupling adhesion to friction for the interaction between a crack and a fiber/matrix interface’, Z.A.M.M. 205–209

    Google Scholar 

  49. Lebon F, Raous M (1992) Friction modelling of a bolted junction under internal pressure loading. Comput Struct 43:925–933

    Article  Google Scholar 

  50. Kongo Kondé A, Rosu I, Lebon F, Seguin L, Brardo O, Troude F, Devésa B (2011) Thermomechanical couplings in aircraft tire rolling/sliding modeling. Adv Mater Res 274:81–90

    Article  Google Scholar 

  51. Barbié L, Ramière I, Lebon F (2014) Strategies around the local defect correction multi-level refinement method for three-dimensional linear elastic problems. Comput Struct 130:73–90

    Article  Google Scholar 

  52. Lebon F Ould, Khaoua A, Licht C (1998) Numerical study of soft adhesively bonded joints in finite elasticity’. Comput Mech 21:134–140

    Article  Google Scholar 

  53. Lebon F, Rizzoni R, Ronel-Idrissi S (2004) Analysis of non-linear soft thin interfaces’. Comput Struct 82:1929–1938

    Article  Google Scholar 

  54. Lebon F, Ronel-Idrissi S (2004) Asymptotic studies of Mohr-Coulomb and Drucker-Prager soft thin layers. Int J Steel Compos Struct 4:133–148

    Article  Google Scholar 

  55. Rizzoni R, Lebon F (2012) Asymptotic analysis of an elastic thin interphase with mismatch strain’. European J Mech A Solids 36:1–8

    Article  MathSciNet  Google Scholar 

  56. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  Google Scholar 

  57. Van der Meer FP, Sluys LJ, Moës N (2012) Toward efficient and robust computation of energy release rate and mode mix for delamination. Compos A Appl Sci Manuf 43(7):1101–1112

    Article  Google Scholar 

  58. Duarte CA, Babuška I, Oden JT (2000) Generalized finite element methods for three-dimensional structural mechanics problems. Comput Struct 7(2):215–232

    Article  MathSciNet  Google Scholar 

  59. Garzon J, Duarte CA, Buttlar W (2010) Analysis of reflective cracks in airfield pavements using a 3-D generalized finite element method. Road Mater Pavement Design 11(2):459–477

    Article  Google Scholar 

  60. prEN 12697-48. Bituminous mixtures—Test methods for hot mix asphalt—Part 48: Interlayer Bonding (2015)

    Google Scholar 

  61. Sutton M, Wolters W, Peters W, Ranson W (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139. https://doi.org/10.1016/0262-8856(83)90064-1

    Article  Google Scholar 

  62. Ktari R, Leandry I, Millien A, Fouchal F, Pop O, Phan VTP, Petit C (2013) Interfaces de chaussées: de la caractérisation du comportement mécanique de l’interface à sa modélisation, 21ème Congrès Français de Mécanique, Bordeaux, 26-30 août, (http://hdl.handle.net/2042/52216)

  63. Ktari R (2016) Mécanismes et modélisations des dégradations des interfaces entre couches de chausses. Ph.D. thesis from the Université de Limoges. (https://tel.archives-ouvertes.fr/tel-01417551/document). (in French)

  64. RVS 08.16.01 (2010) Technical contract conditions-Bituminous base and wearing courses-requirements for bituminous courses, Wien

    Google Scholar 

  65. ÖNORM B 3639-2 (1997) Technische Asphalte für den Straßenbau und verwandte Gebiete - Prüfung - Haftverbund von Asphaltschichten. Austrian Standards Institute

    Google Scholar 

  66. De Visscher J, Denolf K, Destrée A, Leprince, L, Piérard N, Vanelstraete A, Vansteenkiste S (2014) European test methods for asphalt and bituminous binders: improvements within the framework of sustainable development, Belgian Bureau for Standardisation (NBN)-funded research project, annual research report

    Google Scholar 

  67. Destrée A, De Visscher J, Vanelstraete A (2012) Evaluation of tack coat performance for thin and ultra-thin asphalt pavements. In: 5th Eurasphalt & Eurobitume congress, 13–15th June 2012, Istanbul

    Google Scholar 

  68. Destrée A, Leprince L, Piérard N, Vanelstraete A, Vansteenkiste S (2014) Belgian Bureau for Standardisation (NBN)-funded research project, annual research report

    Google Scholar 

  69. Destrée A, De Visscher J, Piérard N, Vanelstraete A (2015) Field study to investigate the impact of conditions of application of tack coats on the interlayer bond strength. In: 8th international RILEM SIB symposium, October 7–9, 2015, Ancona, Italy

    Google Scholar 

  70. BRRC (2012) MM – MPT – 02.02, Tensile adhesion test, Belgian Road research Centre—BRRC working method for the determination of bond strength to underlayers (2012)

    Google Scholar 

  71. Bergiers A, de Visscher J, Denolf K, Destrée A, Vanhooreweder B, Vuye C (2014) Test sections to study the acoustical quality and durability of thin noise reducing asphalt layers. In: International conference on noise and vibration engineering ISMA, 15–17th September 2014, Leuven, Belgium, pp 1–10

    Google Scholar 

  72. LC 25-010 (2016) Mesure de la force de liaison avec un appareil de mesure d’adhésion des couches. Méthode d’essai LC25-010, Secteur – liants hydrocarbonés, Transports Québec, December 15

    Google Scholar 

  73. MTQ Standard Clause (2016) Evaluation of the bond strength between an asphalt layer and its underlying layer. CCDG (Cahier des charges et devis généraux), Ministère des transports du Québec-MTQ

    Google Scholar 

  74. Destrée A, De Visscher J, Vanelstraete A (2016) Field study to evaluate different pre-normative interlayer adhesion tests. In: Proceedings of the 6th Eurasphalt & Eurobitume Congress, p 11, 1–3 June 2016—Prague Congress Centre

    Google Scholar 

  75. ZTV-SIB (1990) Zusätzliche Technische Vertragsbedingungen und Richtlinien für Schutz und Instandsetzung von Betonbauteilen, Verkehrsblatt-Dokument; B 5230, Verkehrsblatt-Verlag, Abb., Tab., Lit. 59

    Google Scholar 

  76. ASTM D7313-07a (2008) Standard test method for determining fracture energy of asphalt-aggregate mixtures using the disk-shaped compact tension geometry. ASTM Volume 04.03 Road and Paving Materials

    Google Scholar 

  77. Hakimzadeh S, AbayKebede N, Buttlar WG, Ahmeda S, Exline M (2012) Development of fracture-energy based interface bond test for asphalt concrete. Road Mater Pavement Design 13:76–87 Sup 1

    Article  Google Scholar 

  78. Linsbauer HN, Tschegg EK (1986) Fracture energy determination of concrete with cube shaped specimens, Zement und Beton 31:38–40. (in German)

    Google Scholar 

  79. Brühwiler E, Wittmann FH (1990) The Wedge splitting test, a new method of performing stable fracture mechanics tests. Eng Fract Mech 35(1–3):117–125

    Article  Google Scholar 

  80. Tschegg E.K, Tschegg-Stanzl SE, Litzka J (1996) Fracture behavior and bond strength of bituminous layers. In: Francken L, Beuving E, Molenaar AAAA (eds) Reflective cracking in pavements, RILEM Published by E&FN Spon, 2–6 Boundary Row, London, SE1 8HN. ISBN 0 419 22260 X

    Google Scholar 

  81. Tschegg EK, Macht J, Jamek M, Stegenberger J (2007) Mechanical and fracture-mechanical properties of asphalt-concrete interfaces. ACI Mater 104(5):474–480

    Google Scholar 

  82. Tschegg EK, Jamek M, Lugmayr R (2012) Crack growth behavior in geosynthetic asphalt interlayer systems. Road Mater Pavement Design 13(1):156–170

    Article  Google Scholar 

  83. Tschegg EK, Jamek M, Lugmayr R (2011) Fatigue crack growth in asphalt and asphalt-interfaces. Eng Fract Mech 78:1044–1054

    Article  Google Scholar 

  84. Rossi P, Brühwiler E, Chhuy S, Jenq YS, Shah SP (1991) Fracture properties of concrete as determined by means of wedge splitting tests and tapered double cantilever beam tests, Chapter 2. Chapman and Hall, pp 87–128

    Google Scholar 

  85. Tschegg EK (1986) Equipment and appropriate specimen shapes for tests to measure fracture values, AT No. 390328, Austrian Patent Office, Vienna, Austria

    Google Scholar 

  86. Tschegg EK (1991) New equipments for fracture tests on concrete. Materialprüfung 33(11/12):338–342

    Google Scholar 

  87. ÖNORM B 3592 (2011) Determination of notch tensile strength and specific fracture energy of construction materials, their compounds and composites—wedge splitting method, (in German). Bestimmung der Kerbzugfestigkeit und der spezifischen Bruchenergie von Baustoffen, Baustoffverbindungen und Verbundwerkstoffen – Keilspaltmethode. Austrian Standards Institute

    Google Scholar 

  88. Lugmayr R, Jamek M, Tschegg EK (2009) Mechanism of fatigue crack propagation and fracture behavior in bituminous roads. In: Loizos A, Partl MN, Scarpas T, Al Qadi IL (eds) Advanced testing and characterization of bituminous materials. Taylor & Francis, London, pp 807–816

    Google Scholar 

  89. Gharbi M, Nguyen ML, Trichet S, Chabot A (2017) Characterisation of the bond between asphalt layers and glass fiber grid with help of a Wedge Splitting Test. In: 10th international conference on bearing capacity of roads, railways and airfields (BCRRA 2017), Athens June 28–30. In CRC Press (Verlag) -Taylor & Francis Group proceedings: 1517–1524. ISBN: 978-1-138-29595-7. https://doi.org/10.1201/9781315100333-217

  90. Leutner R (1979) Untersuchung des Schichtverbundes beim bituminösen Oberbau. Bitumen 41(3):84–91

    Google Scholar 

  91. Uzan J, Livneh M, Eshed Y (1978) Investigation of adhesion properties between asphaltic concrete layers. Asphalt Paving Technolo 47:495–521

    Google Scholar 

  92. Sholar G, Page G, Musselman J, Upshaw P, Moseley H (2004) Preliminary investigation of a test method to evaluate bond strength of bituminous tack coats. Assoc Asphalt Paving Technolo 73:771–801

    Google Scholar 

  93. West RC, Zhang J, Moore J (2005) Evaluation of bond strength between pavement layers. National Center for Asphalt Technology, NCAT Report 05-08

    Google Scholar 

  94. Mirò R, Pérez Jiménez F, Borras Gonzalez J M (2003) Evaluation of the effect of tack coats. LCB shear test. IN: 6th RILEM symposium PTEBM”03, Zurich, Switzerland, pp 550–556

    Google Scholar 

  95. De Bondt AH de (1999) Anti-reflective cracking design of (Reinforced) asphaltic overlays. Ph.D. thesis, Delft University of Technology

    Google Scholar 

  96. Millien A, Petit C, Rosier J (1996) Comportement au cisaillement des couches d’accrochage dans les chaussées. Rapport interne Laboratoire 3MsGC, Université de Limoges, France

    Google Scholar 

  97. Canestrari F, Ferrotti G, Partl MN, Santagata E (2005) Advanced testing and characterization of interlayer shear resistance. Transp Res Record J Transp Res Board 1929(1):69–78

    Article  Google Scholar 

  98. Sanders PJ, Brown SF, Thom NH (1999) Reinforced asphalt for crack and rut control. In: 7th conference on asphalt pavements for Southern Africa, CAPSA ‘99, Victory Falls, Zimbabwe, Document transformation technologies pp 847–855

    Google Scholar 

  99. Crispino M, Festa B, Giannattasio P, Nicolosi V (1997) Evaluation of the interaction between the asphalt concrete layers by a new dynamic test. In: 8th international conference on the structural design of asphalt pavements. Washington State University, Seattle, pp 741–754

    Google Scholar 

  100. Ascher D, Wellner F (2007) Untersuchungen zur Wirksamkeit des Haftverbundes und dessen Auswirkungen auf die Lebensdauer von Asphaltbefestigungen [Investigation of the effectiveness of bonding and its influence on the service life of asphalt pavements]. Technical University of Dresden, Germany, Report No. 13589 BR/1

    Google Scholar 

  101. Piber H, Canestrari F, Ferrotti G, Lu X, Millien A, Partl MN, Petit C, Phelipot-Mardelle A, Raab C (2009) RILEM Interlaboratory test on interlayer bonding of asphalt pavements. In: 7th international RILEM symposium ATCBM09 on advanced testing and characterization of bituminous materials, Rhodes, Greece vol 2, pp 1181–1189

    Google Scholar 

  102. Choi Y, Sutanto M, Collop A, Airey G (2005) Bond between asphalt layers. Project Report to the UK Highways Agency, Scott Wilson Pavement Engineering LtD

    Google Scholar 

  103. Choi Y, Collop A, Airey G, Elliot RA (2005) comparison between interface properties measured using the Leutner test and the torque test. J Assoc Asphalt Paving Technolo 74B. ISSN 1553-5576

    Google Scholar 

  104. Raab C, Partl MN, Abd El Halim AO (2010) Effect of gap width on interlayer shear bond results. Int J Pavement Res Technolo IJPRT Ref No IJPRT-09544(3), 3(2):79–85

    Google Scholar 

  105. Codjia H (1994) Erarbeitung eines Bewertungshintergrundes für das Prüfverfahren Schichtenverbund nach Leutner und Bestimmung der Präzision. Dissertation, Institut für Straßen- und Eisenbahnwesen der Universität Karlsruhe, Heft 43

    Google Scholar 

  106. Stöckert U (2001) Schichtenverbund – Prüfung und Bewertungshintergrund. Straße + Autobahn, 11:624–631. (in German)

    Google Scholar 

  107. Raab C, Partl MN (2015) In situ service capability of tack coats. In: Conference proceedings, published by CRC Press/Balkema, 6th ICONBMP international conference bituminous mixtures and pavements, Thessaloniki, Greece, 10–12 June

    Chapter  Google Scholar 

  108. ÖNORM B 3639-1 (1997) Technische Asphalte für den Straßenbau und verwandte Gebiete - Prüfung - Schubverbund von Asphaltschichten. Austrian Standards Institute

    Google Scholar 

  109. Partl MN, Raab C (1999) Shear Adhesion between top layers of fresh asphalt pavements in Switzerland. In: Proceedings, 7th conference on asphalt pavements for Southern Africa, CAPSA ‘99, Victory Falls, Zimbabwe, pp 5.130–5.137

    Google Scholar 

  110. Raab C (2010) Development of a framework for standardisation of interlayer bond of asphalt pavements. Ph.D. thesis, Department of Civil and Environmental Engineering, Carleton University, Ottawa, Canada

    Google Scholar 

  111. Swiss Standard (2000) Schweizer Norm SN 671961. Bituminöses Mischgut, Bestimmung des Schichtenverbunds (nach Leutner), Verein Schweizerischer Straßenfachleute VSS

    Google Scholar 

  112. Diakhaté M, Petit C, Millien A, Goacolou H (2008) Interface fatigue cracking in multilayered pavements: experimental analysis. In: Taylor & Francis group proceedings (ISBN 13: 978-0-415-47575-4), Sixth international RILEM conference on cracking in pavements, June 16–18, Chicago, US, pp 281–290

    Google Scholar 

  113. Diakhaté M, Millien A, Petit C, Pouteau B (2011) Experimental investigation of tack coat fatigue performance: Towards an improved lifetime assessment of pavement structure interfaces. Constr Build Mater 25(2):1123–1133

    Article  Google Scholar 

  114. Mohammad LN, Raqib MA, Wu Z, Huang B (2002) Measurement of interlayer bond strength through shear tests. In: 3rd international conference bituminous mixtures and pavements, Thessaloniki, Greece

    Google Scholar 

  115. Mohammad L, Elseifi MA, Bae A, Patel N, Button J, Scherocman JA (2012) Optimization of tack coat for HMA placement. NCHRP report 712

    Google Scholar 

  116. Zofka A, Bernier A, Josen R, Maliszewski M (2014) Advanced shear tester for solid and layered samples. In: Proceedings of 2014 international society for asphalt pavements (ISAP) conference, Raleigh

    Chapter  Google Scholar 

  117. Zofka A, Maliszewski M, Bernier A, Josen R, Vaitkus A, Kleizienė R (2015) Advanced shear tester for evaluation of asphalt concrete under constant normal stiffness conditions. EATA conference, June 2015, Stockolm, Sweden

    Article  Google Scholar 

  118. Zahw MA (1995) Development of testing framework for evaluation of rutting resistance of asphalt mixes. Ph.D. Thesis, Carleton University, Ottawa, Canada

    Google Scholar 

  119. Abd El Halim A, Rickards IR, Haas R, Nabi R (1997) Evaluation of design and construction effects on asphalt pavement performance through a portable in-situ shear test device IN:. Eighth international conference on asphalt pavements, proceedings vol 2

    Google Scholar 

  120. British Standard (2004) Guidelines document for the assessment and certification of thin surfacing systems for highways. SG3/05/234, British Board of Agreement, Watford, UK

    Google Scholar 

  121. Sonier A, Ramberg J, Leppard B (2007) Mill ‘n’ Fill Operations, CEE 599–Pavement Construction, May 16

    Google Scholar 

  122. Lytton RL, Tsai FL, Lee SI, Luo R, Hu S, Zhou F (2010) Model for predicting reflection cracking of hot-mix asphalt overlays. NCHRP report 669. ISBN 978-0-309-15505-2

    Google Scholar 

  123. Tran Q-T, Toumi A, Granju J-L (2006) Experimental and numerical investigation of the debonding interface between an old concrete and an overlay. Mater Struct 39(3):379–389

    Article  Google Scholar 

  124. Tran Q-T, Toumi A, Turatsinze A (2007) Modelling of debonding between old concrete and overlay: fatigue loading and delayed effects. Mater Struct 40(10):1045–1059

    Article  Google Scholar 

  125. Tran Q-T, Toumi A, Turatsinze A (2008) Thin bonded cement-based overlays: numerical analysis of factors influencing their debonding under monotonic loading. Mater Struct 41(5):863–877

    Article  Google Scholar 

  126. Tran Q-T, Toumi A, Turatsinze A (2008) Thin bonded cement-based overlays: numerical analysis of factors influencing their debonding under fatigue loading. Mater Struct 41(5):951–967

    Article  Google Scholar 

  127. Tran Q-T, Toumi A, Turatsinze A (2011) Delamination of thin bonded cement-based overlays: analytical analysis. Mater Struct 44(1):43–51

    Article  Google Scholar 

  128. Turatsinze A, Beushausen H, Gagné R, Granju J-L, Silfwerbrand J, Walter R (2011) ‘Chapter Debonding’. State-of-the-Art Report of the RILEM Technical Committee 193-RLS Series, Bissonnette B, Courard L, Fowler DW, Granju J-L (Eds), 3:107–139

    Chapter  Google Scholar 

  129. Hun M (2012) Water effect on interface debonding of a bilayer urban road structure subjected to bending/Influence de l’eau dans le décollement par flexion de bicouches de chaussée urbaine. Ph.D. thesis of ECN, http://hal.archives-ouvertes.fr/tel-00777011/. (in French) (2012)

  130. Hun M, Chabot A, Hammoum F (2012) A four point bending test for the bonding evaluation of composite pavement. In: Proceedings of the 7th Rilem international conference on cracking in pavements, June 20–22 2012, Delft, The Netherlands. RILEM Bookseries, 4:51–60. https://doi.org/10.1007/978-94-007-4566-7_6

  131. Chabot A, Hammoum F, Hun M (2017) A 4pt bending bond test approach to evaluate water effect in a composite beam. Eur J Environ Civil Eng 11:54–69. https://doi.org/10.1080/19648189.2017.1320237 sup1

    Article  Google Scholar 

  132. Cole LW, Mack JW, Packard RG (1998) Whitetopping and ultra-thin whitetopping the US experience. In: 8th international symposium on concrete roads

    Google Scholar 

  133. Chabot A, Hun M, Hammoum F (2013) Mechanical analysis of a mixed mode debonding test for composite pavements. Const Build Mater 40:1076–1087. https://doi.org/10.1016/j.conbuildmat.2012.11.027

    Article  Google Scholar 

  134. Chabot A, Hun M, Hammoum F (2013) Determination of energy release rate for a mixed-mode debonding test for «composite» pavements. In: 6th international symposium on defect and material mechanics, 31–32, July 1–5, Centrale Nantes, France

    Google Scholar 

  135. Vandenbossche J, Barman M, Mu F, Gatti K (2011) Development of design guide for thin and ultra-thin concrete overlays of existing asphalt pavements. Task 1 report: compilation and review of existing performance data and information. Technical report, University of Pittsburgh, Department of Civil and Environmental Engineering, Swanson School of Engineering

    Google Scholar 

  136. Chabot A, Hammoum F, Hun M (2016) Mixed—mixed-mode debonding approach to evaluate water sensibility in bi-layer composite pavements. In: 8th international conference on mechanisms of cracking and debonding in pavements (MCD2016), Nantes, France, June 7–9. Chabot A, et al. (eds) Springer RILEM Bookseries, 13:613–618, ISBN: 978-94-024-0867-6. https://doi.org/10.1007/978-94-024-0867-6_86

  137. Chabot A, Cantournet S, Ehrlacher A (2000) Analyse de taux de restitution d’énergie par un modèle simplifié pour un quadricouche en traction fissuré à l’interface entre 2 couches. Comptes-rendus aux 12ème Journées Nationales sur les Composites (JNC12), ENS de Cachan, 2:775–784. (ISBN 2-9515965-0-2)

    Google Scholar 

  138. Caron JF, Diaz A, Carreira RP, Ehrlacher A (2006) Multi-particle modelling for the prediction of delamination in multi-layered materials. Compos Sci Technol 66(6):755–765. https://doi.org/10.1016/j.compscitech.2004.12.022

    Article  Google Scholar 

  139. Dundurs J (1969) Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. Trans ASME J Appl Mech 650–652. https://doi.org/10.1115/1.3564739

  140. Chen Y (2011) Composite specimen testing to evaluate the effects of pavement layer interface characteristics on cracking performance. Ph.D. Dissertation from the University of Florida

    Google Scholar 

  141. Chen Y, Tebaldi G, Roque R, Lopp G (2013) Development of a composite specimen interface cracking (CSIC) test for top-down cracking. J Test Eval 41(4):625–634. https://doi.org/10.1520/jte20120002

    Article  Google Scholar 

  142. Jones RM (1980) Mechanics of composite materials. McGraw-Hill, New York

    Google Scholar 

  143. Chen Y, Tebaldi G, Roque R, Lopp G, Su Y (2012) Effects of interface condition characteristics on open-graded friction course top-down cracking. Road Mater Pavement Design 13(1):56–75

    Article  Google Scholar 

  144. Partl MN (2016) Characterization and detection of debonding phenomena in asphalt pavements and on concrete bridge decks. In: Keynote lecture at the 8th international conference on mechanisms of cracking and debonding in pavements (MCD2016), Nantes, France, June 7-9, 2016. (https://mcd2016.sciencesconf.org/conference/mcd2016/Partl_Keynote_MCD2016.pdf)

  145. Chabot A, Buttlar B, Dave E, Petit, C, Tebaldi G (eds) (2016) 8th RILEM international conference on mechanisms of cracking and debonding in pavements vol 13, 1st ed. Springer Series, RILEM Bookseries. ISBN 978-94-024-0866-9. https://doi.org/10.1007/978-94-024-0867-6

    Google Scholar 

  146. Seitl S, Knésl Z, Veselý V, Routil L (2009) A refined description of the crack tip stress field in wedge-splitting specimens—a two-parameter fracture mechanics approach. Appl Comput Mech 3:375–390

    Google Scholar 

  147. Chabot A, Petit C (2017) Mechanisms of cracking and debonding in pavements: debonding mechanisms in various interfaces between layers. Eur J Environ Civil Eng 11:1–2. https://doi.org/10.1080/19648189.2017.1361649 sup1

    Article  Google Scholar 

  148. Buttlar WG, Hill BC, Kim YR, Kutay ME, Millien A, Montepara A, Paulino GH, Petit C, Pop IO, Romeo E, Roncella R, Safavizadeh SA, Tebaldi G, Wargo A (2014) Digital image correlation techniques to investigate strain fields and cracking phenomena in asphalt materials. Mater Strcutures 47(8):1373–1390

    Article  Google Scholar 

  149. Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall. ISBN 0-13-273350-1

    Google Scholar 

  150. Miradi M (2009) Knowledge discovery and pavement performance, Ph.D. Dissertation, Deft, University of Technology, Delft

    Google Scholar 

  151. Raab C, Abd El Halim AO, Partl MN (2013) Utilisation of artificial neural network for the analysis of interlayer shear properties. Baltic J Road Bridge Eng 8(2):107–116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Petit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petit, C., Chabot, A., Destrée, A., Raab, C. (2018). Interface Debonding Behavior. In: Buttlar, W., Chabot, A., Dave, E., Petit, C., Tebaldi, G. (eds) Mechanisms of Cracking and Debonding in Asphalt and Composite Pavements. RILEM State-of-the-Art Reports, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-76849-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76849-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76848-9

  • Online ISBN: 978-3-319-76849-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics