Skip to main content
Book cover

Melanoma pp 549–565Cite as

Adoptive Cell Therapy for Melanoma

  • Chapter
  • First Online:

Abstract

Melanoma is a highly immunogenic cancer, and along with the combination of poor clinical outcomes and treatments with limited efficacy, these attributes have made metastatic melanoma an ideal platform to study immune-based therapies. Adoptive cell therapy (ACT) is as a highly effective personalized cancer treatment, utilizing the natural effector functions of T cells targeting tumor antigens.

This chapter will concentrate on the development and efficacy of ACT in melanoma. The chapter reviews the role of the immune system in melanoma, the identification and targeting of specific tumor antigens, and the mechanisms by which tumor cells may evade detection and eradication. The utility of tumor infiltrating lymphocyte (TIL) based ACT is described, outlining its development, success, modifications, and limitations. Finally the chapter describes T cell engineering and the development and use of chimeric antigen receptors (CAR) as an alternative strategy in this exciting and rapidly expanding area of immuno-oncology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schatton T, Scolyer RA, Thompson JF, Mihm MC. Tumor-infiltrating lymphocytes and their significance in melanoma prognosis. Methods Mol Biol. Totowa, NJ: Humana Press (Chapter 16). 2014;1102:287–324.

    Article  CAS  PubMed  Google Scholar 

  2. Hadrup S, Donia M, Thor Straten P. Effector CD4 and CD8 T cells and their role in the tumor microenvironment. Cancer Microenviron. 2012;6(2):123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Friedman KM, DeVillier LE, Feldman SA, Rosenberg SA, Dudley ME. Augmented lymphocyte expansion from solid tumors with engineered cells for Costimulatory enhancement. J Immunother. 2011;34(9):651–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. American Association for the Advancement of Science. 2015;348(6230):62–8.

    Article  CAS  Google Scholar 

  5. Delves PJ, Martin SJ, Burton DR, Roitt IM. Roitt's essential immunology. Chichester, West Sussex; Hoboken, NJ: Wiley Blackwell; 2011.

    Google Scholar 

  6. Acuto O, Michel F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol. 2003;3(12):939–51.

    Article  CAS  PubMed  Google Scholar 

  7. Acuto O, Mise-Omata S, Mangino G, Michel F. Molecular modifiers of T cell antigen receptor triggering threshold: the mechanism of CD28 costimulatory receptor. Immunol Rev. 2003;192:21–31.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng LE, Ohlén C, Nelson BH, Greenberg PD. Enhanced signaling through the IL-2 receptor in CD8+ T cells regulated by antigen recognition results in preferential proliferation and expansion of responding CD8+ T cells rather than promotion of cell death. Proc Natl Acad Sci U S A. 2002;99(5):3001–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Janeway CA, Travers P, Walport M, Capra JD. Immunobiology: the immune system in health and disease. London: Current Biology Publications; 1999.

    Google Scholar 

  10. Phan GQ, Rosenberg SA. Adoptive cell transfer for patients with metastatic melanoma: the potential and promise of cancer immunotherapy. Cancer Control. 2013;20(4):289–97.

    Article  PubMed  Google Scholar 

  11. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8(4):299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  Google Scholar 

  13. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29(1):235–71.

    Article  CAS  PubMed  Google Scholar 

  14. Fourcade J, Zarour HM. Strategies to reverse melanoma-induced T-cell dysfunction. Clin Dermatol. 2013;31(3):251–6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ilyas S, Yang JC. Landscape of tumor antigens in T cell immunotherapy. J Immunol. 2015;195(11):5117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Knuth A, Wölfel T, Klehmann E, Boon T. Meyer zum Büschenfelde KH. Cytolytic T-cell clones against an autologous human melanoma: specificity study and definition of three antigens by immunoselection. Proc Natl Acad Sci U S A. 1989;86(8):2804–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stevanovic S. Identification of tumor-associated T-cell epitopes for vaccine development. Nat Rev Cancer. 2002;2(7):514–20.

    Article  CAS  PubMed  Google Scholar 

  18. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254(5038):1643–7.

    Article  PubMed  Google Scholar 

  19. Molecular diagnostics for melanoma. 2016:1–711.

    Google Scholar 

  20. Katz KA, Jonasch E, Hodi FS, Soiffer R, Kwitkiwski K, Sober AJ, et al. Melanoma of unknown primary: experience at Massachusetts General Hospital and Dana-Farber Cancer Institute. Melanoma Res. 2005;15(1):77–82.

    Article  PubMed  Google Scholar 

  21. Gyorki DE, Callahan M, Wolchok JD, Ariyan CE. The delicate balance of melanoma immunotherapy. Clin Trans Immunol. 2013;2(8):e5–8.

    Article  CAS  Google Scholar 

  22. MacKie RM, Reid R, Junor B. Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N Engl J Med. 2003;348(6):567–8.

    Article  PubMed  Google Scholar 

  23. Akbani R, Akdemir KC, Aksoy BA, Albert M, Ally A, Amin SB, et al. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96.

    Article  CAS  Google Scholar 

  24. MacCarty WC. Longevity in cancer: a study of 293 cases. Ann Surg. 1922;76(2):238–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hershkovitz L, Schachter J, Treves AJ, Besser MJ. Focus on adoptive T cell transfer trials in melanoma. Clin Dev Immunol. 2010;2010:260267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988;319(25):1676–80.

    Article  CAS  Google Scholar 

  27. Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst. 1994;86(15):1159–66.

    Article  CAS  PubMed  Google Scholar 

  28. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=21498393&retmode=ref&cmd=prlinks

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Radvanyi LG, Bernatchez C, Zhang M, Fox PS, Miller P, Chacon J, et al. Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res. American Association for Cancer Research. 2012;18(24):6758–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Itzhaki O, Hovav E, Ziporen Y, Levy D, Kubi A, Zikich D, et al. Establishment and large-scale expansion of minimally cultured “young” tumor infiltrating lymphocytes for adoptive transfer therapy. J Immunother. 2011;34(2):212–20.

    Article  PubMed  Google Scholar 

  31. Hinrichs CS, Rosenberg SA. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev. Royal Australasian College of Surgeons (RACS). 2014;257(1):56–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. Royal Australasian College of Surgeons (RACS). 2015;348(6230):62–8.

    Article  CAS  Google Scholar 

  33. Donia M, Junker N, Ellebaek E, Andersen MH, Straten PT, Svane IM. Characterization and Comparison of ‘Standard’ and ‘Young’ Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy at a Danish Translational Research Institution. Scand J Immunol. Blackwell Publishing Ltd. 2012;75(2):157–67.

    Article  CAS  PubMed  Google Scholar 

  34. Fousek K, Ahmed N. The evolution of T-cell therapies for solid malignancies. Clin Cancer Res. 2015;21(15):3384–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bernatchez C, Radvanyi LG, Hwu P. Advances in the treatment of metastatic melanoma: adoptive T-cell therapy. Semin Oncol. 2012;39(2):215–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1986;233(4770):1318–21.

    Article  CAS  Google Scholar 

  37. Topalian SL, Solomon D, Avis FP, Chang AE, Freerksen DL, Linehan WM, et al. Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin-2: a pilot study. J Clin Oncol. 1988;6(5):839–53.

    Article  CAS  PubMed  Google Scholar 

  38. Dudley ME, Gross CA, Somerville RPT, Hong Y, Schaub NP, Rosati SF, et al. Randomized selection design trial evaluating CD8+-enriched versus unselected tumor-infiltrating lymphocytes for adoptive cell therapy for patients with melanoma. J Clin Oncol. 2013;31(17):2152–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu R, Forget M-A, Chacon J, Bernatchez C, Haymaker C, Chen JQ, et al. Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes for metastatic melanoma: current status and future outlook. Cancer J. 2012;18(2):160–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goff SL, Dudley ME, Citrin DE, Somerville RP, Wunderlich JR, Danforth DN, et al. Randomized, prospective evaluation comparing intensity of Lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol. 2016;34(20):2389–97.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sharpe M, Mount N. Genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech. 2015;8(4):337–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol. 2009;21(2):233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005;202(7):907–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Muranski P, Boni A, Wrzesinski C, Citrin DE, Rosenberg SA, Childs R, et al. Increased intensity lymphodepletion and adoptive immunotherapy--how far can we go? Nat Clin Pract Oncol. 2006;3(12):668–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Merhavi-Shoham E, Itzhaki O, Markel G, Schachter J, Besser MJ. Adoptive cell therapy for metastatic melanoma. Cancer J. 2017;23(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  46. Goff SL, Smith FO, Klapper JA, Sherry R, Wunderlich JR, Steinberg SM, et al. Tumor infiltrating lymphocyte therapy for metastatic melanoma: analysis of tumors resected for TIL. J Immunother. 2010;33(8):840–7.

    Article  PubMed  Google Scholar 

  47. Dudley ME, Gross CA, Langhan MM, Garcia MR, Sherry RM, Yang JC, et al. CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res. American Association for Cancer Research. 2010;16(24):6122–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sim GC, Chacon J, Haymaker C, Ritthipichai K, Singh M, Hwu P, et al. Tumor-infiltrating lymphocyte therapy for melanoma: rationale and issues for further clinical development. BioDrugs. Royal Australasian College of Surgeons (RACS). 2014;28(5):421–37.

    Article  CAS  PubMed  Google Scholar 

  49. Ellebaek E, Iversen TZ, Junker N, Donia M. Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. J Transl Med. 2012;10:169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mantovani G, Macciò A, Melis G, Mura L, Massa E, Mudu MC. Restoration of functional defects in peripheral blood mononuclear cells isolated from cancer patients by thiol antioxidants alpha-lipoic acid and N-acetyl cysteine. Int J Cancer. 2000;86(6):842–7.

    Article  CAS  PubMed  Google Scholar 

  51. Scheffel MJ, Scurti G, Simms P, Garrett-Mayer E, Mehrotra S, Nishimura MI, et al. Efficacy of adoptive T-cell therapy is improved by treatment with the antioxidant N-acetyl cysteine, which limits activation-induced T-cell death. Can Res. American Association for Cancer Research. 2016;76(20):6006–16.

    Article  CAS  Google Scholar 

  52. Ye Q, Loisiou M, Levine BL, Suhoski MM, Riley JL, June CH, et al. Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes. J Transl Med. 2011;9(1):131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ullenhag GJ, Sadeghi AM, Carlsson B. Adoptive T-cell therapy for malignant melanoma patients with TILs obtained by ultrasound-guided needle biopsy. Cancer Immunol Immunother. 2012;61(5):725–32.

    Article  PubMed  Google Scholar 

  54. Nguyen LT, Yen PH, Nie J, Liadis N, Ghazarian D, Al-Habeeb A, et al. Expansion and characterization of human melanoma tumor-infiltrating lymphocytes (TILs). Unutmaz D, editor. PLoS One. 2010;5(11):e13940–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF, Zhou J, et al. Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol. 2004;173(12):7125–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ellebaek E, Iversen TZ, Junker N, Donia M, Engell-Noerregaard L, Met Z, et al. Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. J Transl Med. 2012;10(1):1.

    Article  CAS  Google Scholar 

  57. Andersen R, Donia M, Borch T, Steensgaard E, Iversen T, Kongsted P, et al. Adoptive cell therapy with tumor infiltrating lymphocytes and intermediate dose IL-2 for metastatic melanoma. J Immunother Cancer. 2014;2(Suppl 3):1.

    Article  Google Scholar 

  58. Besser MJ, Shapira-Frommer R, Treves AJ, Zippel D, Itzhaki O, Hershkovitz L, et al. Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res. 2010;16(9):2646–55.

    Article  CAS  PubMed  Google Scholar 

  59. Zhou J, Shen X, Huang J, Hodes RJ, Rosenberg SA, Robbins PF. Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J Immunol. American Association of Immunologists. 2005;175(10):7046–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Russo A, Ficili B, Candido S, Pezzino FM, Guarneri C, Biondi A, et al. Emerging targeted therapies for melanoma treatment (review). Int J Oncol. 2014;45(2):516–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. American Society of Hematology. 2009;114(3):535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan D-AN, Feldman SA, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2011;19(3):620–6.

    Article  CAS  PubMed  Google Scholar 

  63. Duong CPM, Yong CSM, Kershaw MH, Slaney CY, Darcy PK. Cancer immunotherapy utilizing gene-modified T cells: from the bench to the clinic. Mol Immunol. Royal Australasian College of Surgeons (RACS). 2015;67(2 Pt A):46–57.

    Article  CAS  PubMed  Google Scholar 

  64. Akers SN, Odunsi K, Karpf AR. Regulation of cancer germline antigen gene expression: implications for cancer immunotherapy. Future Oncol. 2010;6(5):717–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29(7):917–24.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kershaw MH, Westwood JA, Slaney CY, Darcy PK. Clinical application of genetically modified T cells in cancer therapy. Clin Trans Immunol. 2014;3(5):e16.

    Article  CAS  Google Scholar 

  67. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36(2):133–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013;122(6):863–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rooney CM, Leen AM, Vera JF, Heslop HE. T lymphocytes targeting native receptors. Immunol Rev. 2014;257(1):39–55.

    Article  CAS  PubMed  Google Scholar 

  70. Bollard CM, Gottschalk S, Leen AM, Weiss H, Straathof KC, Carrum G, et al. Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood. American Society of Hematology. 2007;110(8):2838–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Louis CU, Straathof K, Bollard CM, Ennamuri S, Gerken C, Lopez TT, et al. Adoptive transfer of EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma. J Immunother. 2010;33(9):983–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bendle GM, Linnemann C, Hooijkaas AI, Bies L, de Witte MA, Jorritsma A, et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med. 2010;16(5):565–70. 1pfollowing570

    Article  CAS  PubMed  Google Scholar 

  73. Beavis PA, Slaney CY, Kershaw MH, Gyorki D, Neeson PJ, Darcy PK. Reprogramming the tumor microenvironment to enhance adoptive cellular therapy. Semin Immunol. 2015:1–9.

    Google Scholar 

  74. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res. American Association for Cancer Research. 2006;12(20 Pt 1):6106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Westwood JA, Smyth MJ, Teng MWL, Moeller M, Trapani JA, Scott AM, et al. Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis-Y-expressing tumors in mice. Proc Natl Acad Sci U S A. 2005;102(52):19051–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yong CSM, Dardalhon V, Devaud C, Taylor N, Darcy PK, Kershaw MH. CAR T-cell therapy of solid tumors. Immunol Cell Biol. 2017;95(4):356–63.

    Article  CAS  PubMed  Google Scholar 

  77. Ahmed N, Salsman VS, Yvon E, Louis CU, Perlaky L, Wels WS, et al. Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression. Mol Ther. 2009;17(10):1779–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shou D, Wen L, Song Z, Yin J, Sun Q, Gong W. Suppressive role of myeloid-derived suppressor cells (MDSCs) in the microenvironment of breast cancer and targeted immunotherapies. Oncotarget. 2016;7(39):64505–11.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rudolph M, Hebel K, Miyamura Y, Maverakis E, Brunner-Weinzierl MC. Blockade of CTLA-4 decreases the generation of multifunctional memory CD4+ T cells in vivo. J Immunol. 2011;186(10):5580–9.

    Article  CAS  PubMed  Google Scholar 

  81. Beavis PA, Henderson MA, Giuffrida L, Mills JK, Sek K, Cross RS, et al. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J Clin Invest. American Society for Clinical Investigation. 2017;127(3):929–41.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18(4):843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C, et al. Human Epidermal Growth Factor Receptor 2 (HER2) -Specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol. 2015;33(15):1688–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vera JF, Brenner LJ, Gerdemann U, Ngo MC, Sili U, Liu H, et al. Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J Immunother. 2010;33(3):305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Somerville RPT, Dudley ME. Bioreactors get personal. Oncoimmunology. 2012;1(8):1435–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Gyorki M.B.B.S., M.D., F.R.A.C.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mills, J., Darcy, P., Gyorki, D.E. (2018). Adoptive Cell Therapy for Melanoma. In: Riker, A. (eds) Melanoma. Springer, Cham. https://doi.org/10.1007/978-3-319-78310-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78310-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78309-3

  • Online ISBN: 978-3-319-78310-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics