Skip to main content

Part of the book series: Geotechnologies and the Environment ((GEOTECH,volume 21))

Abstract

Geographical information, communication and dissemination technologies (Geo-ICDTs) is an innovative initiative that integrates state-of-the-art technologies for geospatial information collection and rapid dissemination. It ensembles core emerging technologies that lay out the platform for spatial decision-making, geo-computation and location-based services (LBS). In the past few decades, rapid developments in geolocation-based platforms and services have made significant contributions towards emerging markets and applications like spatial data infrastructure (SDI), digital earth observations (EO), precision agriculture, location-based commerce (l-commerce), mobile commerce (m-commerce), e-commerce, e-governance, etc. These technologies have also indispensably effected the institutionalization of e-agriculture in the agricultural sector (the primary driver of economy across nations), which thrives with improved productivity and sustainability (adaptive to climate change). However, Geo-ICDTs face adamant challenge in the form of developing, implementing, integrating and steering adaptability among end-users. Understanding stochastic behaviour of these parameters requires capturing real-time/near real-time data from several sources, such as sensor networks, remote sensing, crowdsourcing, experimental setups and lab-based studies. These requirements necessitate development of a “system of things” infrastructure that can capture location-specific data from several sources and can communicate with each other, thus evolving as an integrated system. This system of things is often referred as the “Internet of things (IoT)”, which works under the framework of Geo-ICDT. This chapter closely discusses the MMA (monitoring, management and adaptation) framework, its components and their implementation in precision agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi AZ, Islam N, Shaikh ZA (2014) A review of wireless sensors and networks’ applications in agriculture. Comp Stand Interf 36(2):263–270

    Article  Google Scholar 

  • Adinarayana J, Azmi S, Tewari G, Sudharsan D (2008) GramyaVikas: a distributed collaboration model for rural development planning. Comput Electron Agric 62(2):128–140

    Article  Google Scholar 

  • Adinarayana J, Sudharsan D, Ninomiya S, Hirafuji M and Kiura T (2015) GeoSense: Decision Support System for Precision Faming in India. Wulfania Multi-disciplinary Journal, 2(2):22–47

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109

    Google Scholar 

  • Badnakhe MR, Durbha S, Adinarayana J (2015) Disease stress detection on citrus using a leaf optical model and field spectroscopy. In: SPIE remote sensing. International Society for Optics and Photonics, pp 963709–963709

    Google Scholar 

  • Balzarolo M, Vicca S, Nguy-Robertson AL, Bonal D, Elbers JA, Fu YH, Grünwald T, Horemans JA, Papale D, Peñuelas J, Suyker A (2016) Matching the phenology of net ecosystem exchange and vegetation indices estimated with MODIS and FLUXNET in-situ observations. Remote Sens Environ 174:290–300

    Article  Google Scholar 

  • Baret F, Guyot G (1991) Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens Environ 35(2–3):161–173

    Article  Google Scholar 

  • Bellvert J, Zarco-Tejada PJ, Girona J, Fereres E (2014) Mapping crop water stress index in a ‘Pinot-noir’ vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precis Agric 15(4):361–376

    Article  Google Scholar 

  • Birner R, Davis K, Pender J, Nkonya E, Anandajayasekeram P, Ekboir J, Cohen M (2009) From best practice to best fit: a framework for designing and analyzing pluralistic agricultural advisory services worldwide. J Agric Educ Ext 15(4):341–355

    Article  Google Scholar 

  • Bonacin R, Nabuco OF, Junior IP (2016) Ontology models of the impacts of agriculture and climate changes on water resources: scenarios on interoperability and information recovery. Futur Gener Comput Syst 54:423–434

    Article  Google Scholar 

  • Botts M, Robin A (2007) OpenGIS sensor model language (SensorML) implementation specification. OpenGIS Implement Spec OGC 7(000)

    Google Scholar 

  • Cain JD, Jinapala K, Makin IW, Somaratna PG, Ariyaratna BR, Perera LR (2003) Participatory decision support for agricultural management. A case study from Sri Lanka. Agric Syst 76(2):457–482

    Article  Google Scholar 

  • Campbell BM, Thornton P, Zougmoré R, Van Asten P, Lipper L (2014) Sustainable intensification: what is its role in climate smart agriculture? Curr Opin Environ Sustain 8:39–43

    Google Scholar 

  • Candiago S, Remondino F, De Giglio M, Dubbini M, Gattelli M (2015) Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens 7(4):4026–4047

    Article  Google Scholar 

  • Carberry PS, Hochman Z, McCown RL, Dalgliesh NP, Foale MA, Poulton PL, Hargreaves JNG, Hargreaves DMG, Cawthray S, Hillcoat N, Robertson MJ (2002) The FARMSCAPE approach to decision support: farmers’, advisers’, researchers’ monitoring, simulation, communication and performance evaluation. Agric Syst 74(1):141–177

    Article  Google Scholar 

  • Ceccato P, Flasse S, Tarantola S, Jacquemoud S, Grégoire JM (2001) Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens Environ 77(1):22–33

    Article  Google Scholar 

  • Cervigni R, Valentini R, Santini M (eds) (2013) Toward climate-resilient development in Nigeria. World Bank Publications

    Google Scholar 

  • Chen G, Lu RQ, Jin Z (2003) Constructing virtual domain ontologies based on domain knowledge reuse. J Softw 14(3):350–355

    Google Scholar 

  • Chipeta S (2006) Demand driven agricultural advisory services, Green booklet series Neuchatel initiative

    Google Scholar 

  • Cho SE, Park HW (2011) Government organizations’ innovative use of the internet: the case of the twitter activity of South Korea’s Ministry for Food, Agriculture, Forestry and Fisheries. Scientometrics 90(1):9–23

    Article  Google Scholar 

  • Dai Y, Dickinson RE, Wang YP (2004) A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J Clim 17(12):2281–2299

    Article  Google Scholar 

  • Di Paola A, Valentini R, Santini M (2016) An overview of available crop growth and yield models for studies and assessments in agricultusre. J Sci Food Agric 96(3):709–714

    Article  Google Scholar 

  • Drewry DT, Kumar P, Long S, Bernacchi C, Liang XZ, Sivapalan M (2010a) Ecohydrological responses of dense canopies to environmental variability: 2. Role of acclimation under elevated CO2. J Geophys Res Biogeosci 115(G4)

    Google Scholar 

  • Drewry DT, Kumar P, Long S, Bernacchi C, Liang XZ, Sivapalan M (2010b) Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway. J Geophys Res Biogeosci 115(G4)

    Google Scholar 

  • Du W, Chen N, Yan S (2016) Online soil moisture retrieval and sharing using geospatial web-enabled BDS-R service. Comput Electron Agric 121:354–367

    Article  Google Scholar 

  • Feret JB, François C, Asner GP, Gitelson AA, Martin RE, Bidel LP, Ustin SL, Le Maire G, Jacquemoud S (2008) PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens Environ 112(6):3030–3043

    Article  Google Scholar 

  • Fileto R, Liu L, Pu C, Assad ED, Medeiros CB (2003) POESIA: an ontological workflow approach for composing web services in agriculture. VLDB J Int J Very Large Data Bases 12(4):352–367

    Article  Google Scholar 

  • Fountas S, Wulfsohn D, Blackmore BS, Jacobsen HL, Pedersen SM (2006) A model of decision-making and information flows for information-intensive agriculture. Agric Syst 87(2):192–210

    Article  Google Scholar 

  • Gitelson AA (2016) 15 remote sensing estimation of crop biophysical characteristics at various scales. Hyperspectral remote sensing of vegetation, p 329

    Google Scholar 

  • Gómez-Candón D, De Castro AI, López-Granados F (2014) Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat. Precis Agric 15(1):44–56

    Article  Google Scholar 

  • Grenzdörffer GJ, Engel A, Teichert B (2008) The photogrammetric potential of low-cost UAVs in forestry and agriculture. Int Arch Photogramm Remote Sens Spat Inf Sci 31(B3):1207–1214

    Google Scholar 

  • Guan K, Berry JA, Zhang Y, Joiner J, Guanter L, Badgley G, Lobell DB (2016) Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence. Glob Chang Biol 22(2):716–726

    Article  Google Scholar 

  • Han W, Yang Z, Di L, Mueller R (2012) CropScape: a web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Comput Electron Agric 84:111–123

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1982) Estimating potential evapotranspiration. J Irrig Drain Div 108(3):225–230

    Google Scholar 

  • Herwitz SR, Johnson LF, Dunagan SE, Higgins RG, Sullivan DV, Zheng J, Lobitz BM, Leung JG, Gallmeyer BA, Aoyagi M, Slye RE (2004) Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support. Comput Electron Agric 44(1):49–61

    Article  Google Scholar 

  • Honkavaara E, Kaivosoja J, Mäkynen J, Pellikka I, Pesonen L, Saari H, Salo H, Hakala T, Marklelin L, Rosnell T (2012) Hyperspectral reflectance signatures and point clouds for precision agriculture by light weight UAV imaging system. ISPRS Ann Photogramm Remote Sens Spat Inform Sci I-7:353–358

    Article  Google Scholar 

  • Hoogenboom G, Jones JW, Wilkens PW, Porter CH, Boote KJ, Hunt LA, Singh U, Lizaso JL, White JW, Uryasev O, Ogoshi R (2015) Decision support system for agrotechnology transfer (DSSAT). Version 4.6. 1.0 (www. DSSAT. net). DSSAT Foundation, Prosser, Washington

    Google Scholar 

  • Host GE, Stech HW, Lenz KE, Roskoski K, Mather R (2008) Forest patch modeling: using high performance computing to simulate aboveground interactions among individual trees. Funct Plant Biol 35(10):976–987

    Article  Google Scholar 

  • Hu S, Wang H, She C, Wang J (2010, October) AgOnt: ontology for agriculture internet of things. In: International conference on computer and computing technologies in agriculture. Springer, Berlin/Heidelberg, pp 131–137

    Google Scholar 

  • Huang CY, Asner GP (2009) Applications of remote sensing to alien invasive plant studies. Sensors 9(6):4869–4889

    Article  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1):195–213

    Article  Google Scholar 

  • IMD (2016) Automatic Weather Station (AWS) Lab. India MeteorologicalDepartment, Pune. http://www.imdaws.com/ViewAwsData.aspx. Accessed on 12 Jan 2016

  • ISRO (2015) Bhuvan Indian geo-platform of Indian Space Research Organization (ISRO), National Remote Sensing Centre (NRSC). http://bhuvan.nrsc.gov.in/bhuvan. Accessed on 26 Aug 2017

  • Jacquemoud S, Baret F (1990) PROSPECT: a model of leaf optical properties spectra. Remote Sens Environ 34(2):75–91

    Article  Google Scholar 

  • Jaimes LG, Vergara-Laurens I, Labrador MA (2012, March) A location-based incentive mechanism for participatory sensing systems with budget constraints. In: Proceedings of IEEE international conference on ‘Pervasive Computing and Communications (PerCom), pp 103–108

    Google Scholar 

  • Jain N, Madan S, Malik SK (2018) Review of multiparameter techniques for precision agriculture using wireless sensor network. J Network Commun Emerg Technol (JNCET) 8(2). www.jncet.org

  • Jame YW, Cutforth HW (1996) Crop growth models for decision support systems. Can J Plant Sci 76(1):9–19

    Article  Google Scholar 

  • Janssen SJ, Porter CH, Moore AD, Athanasiadis IN, Foster I, Jones JW, Antle JM (2017) Towards a new generation of agricultural system data, models and knowledge products: information and communication technology. Agric Syst 155:200–212

    Article  Google Scholar 

  • Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18(3):235–265

    Article  Google Scholar 

  • Jones JW, Antle JM, Basso B, Boote KJ, Conant RT, Foster I, Keating BA (2017) Toward a new generation of agricultural system data, models, and knowledge products: state of agricultural systems science. Agric Syst 155:269–288

    Article  Google Scholar 

  • Kalluri SNV, Zhang Z, JaJa J, Liang S, Townshend JRG (2010) Characterizing land surface anisotropy from AVHRR data at a global scale using high performance computing. Int J Remote Sens 22(11):2171–2191

    Article  Google Scholar 

  • Kar S, Rathore VS, Sharma R, Swain SK (2016) Classification of river water pollution using hyperion data. J Hydrol 537:221–233

    Article  Google Scholar 

  • Kar S, Mandal D, Bhattacharya A, Adinarayana J (2017, July) Temporal analysis of Touzi parameters for wheat crop characterization using L-band AgriSAR 2006 data. In: Geoscience and Remote Sensing symposium (IGARSS), 2017 I.E. International, pp 3909–3912. IEEE

    Google Scholar 

  • Karim L, Nasser N, El Salti T (2011, March) Efficient zone-based routing protocol of sensor network in agriculture monitoring systems. In: International conference on communications and information technology (ICCIT), 2011, pp 167–170. IEEE

    Google Scholar 

  • Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JN, Meinke H, Hochman Z, McLean G (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18(3):267–288

    Article  Google Scholar 

  • Khanal S, Fulton J, Shearer S (2017) An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput Electron Agric 139:22–32

    Article  Google Scholar 

  • Kropff MJ, Bouma J, Jones JW (2001) Systems approaches for the design of sustainable agro-ecosystems. Agric Syst 70(2):369–393

    Article  Google Scholar 

  • Lauser B, Sini M, Liang A, Keizer J, Katz S (2006) From AGROVOC to the agricultural ontology service/concept server. An OWL model for creating ontologies in the agricultural domain. In: Dublin core conference proceedings. Dublin Core DCMI

    Google Scholar 

  • Leroy P, Guilhot N, Sakai H, Bernard A, Choulet F, Theil S, Reboux S, Amano N, Flutre T, Pelegrin C, Ohyanagi H (2012) TriAnnot: a versatile and high performance pipeline for the automated annotation of plant genomes. Front Plant Sci 3

    Google Scholar 

  • Lindblom J, Lundström C, Ljung M, Jonsson A (2017) Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies. Precis Agric 18(3):309–331

    Article  Google Scholar 

  • Lopez-Sanchez JM, Cloude SR, Ballester-Berman JD (2012) Rice phenology monitoring by means of SAR polarimetry at X-band. IEEE Trans Geosci Remote Sens 50(7):2695–2709

    Article  Google Scholar 

  • Ma Y, Wu H, Wang L, Huang B, Ranjan R, Zomaya A, Jie W (2015) Remote sensing big data computing: challenges and opportunities. Futur Gener Comput Syst 51:47–60

    Article  Google Scholar 

  • Mahaman BD, Passam HC, Sideridis AB, Yialouris CP (2003) DIARES-IPM: a diagnostic advisory rule-based expert system for integrated pest management in Solanaceous crop systems. Agric Syst 76(3):1119–1135

    Article  Google Scholar 

  • Mäkelä A, Landsberg J, Ek AR, Burk TE, Ter-Mikaelian M, Ågren GI, Oliver CD, Puttonen P (2000) Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol 20(5–6):289–298

    Article  Google Scholar 

  • Matthies M, Giupponi C, Ostendorf B (2007) Environmental decision support systems: current issues, methods and tools. Environ Model Softw 22(2):123–127

    Article  Google Scholar 

  • Maurya S, Jain VK (2016) Fuzzy based energy efficient sensor network protocol for precision agriculture. Comput Electron Agric 130:20–37

    Article  Google Scholar 

  • Minet J, Curnel Y, Gobin A, Goffart JP, Mélard F, Tychon B, Wellens J, Defourny P (2017) Crowdsourcing for agricultural applications: a review of uses and opportunities for a farmsourcing approach. Comput Electron Agric 142:126–138

    Article  Google Scholar 

  • Mirschel W, Wenkel KO, Berg M, Wieland R, Nendel C, Köstner B, Topazh AG, Terleev VV, Badenko VL (2016) A spatial model-based decision support system for evaluating agricultural landscapes under the aspect of climate change. In: Novel methods for monitoring and managing land and water resources in Siberia. Springer, Cham, pp 519–540

    Chapter  Google Scholar 

  • mKRISHI (2016) Mobile based agro advisory system. TCS Innovation Labs Mumbai, Tata Consultancy Services http://tcsinnovations.com. Accessed on 25 Jan 2016

  • Mohite J, Karale Y, Gupta P, Kulkarni S, Jagyasi B, Zape A (2015, March) RuPS: rural participatory sensing with rewarding mechanisms for crop monitoring. In: Pervasive computing and communication workshops (PerCom Workshops), 2015, IEEE International Conference. IEEE, pp 378–383

    Google Scholar 

  • Montanarella L, Wilson P, Cox S, McBratney A, Ahamed S, MacMillan R, Jacquier D, Fortner J (2010, May) Developing SoilML as a global standard for the collation and transfer of soil data and information. In: Geophysical research abstracts, vol 12

    Google Scholar 

  • Murakami E, Saraiva AM, Ribeiro LC, Cugnasca CE, Hirakawa AR, Correa PL (2007) An infrastructure for the development of distributed service-oriented information systems for precision agriculture. Comput Electron Agric 58(1):37–48

    Article  Google Scholar 

  • Nash E, Korduan P, Bill R (2009) Applications of open geospatial web services in precision agriculture: a review. Precis Agric 10(6):546–560

    Article  Google Scholar 

  • Navarro-Hellín H, Martínez-del-Rincon J, Domingo-Miguel R, Soto-Valles F, Torres-Sánchez R (2016) A decision support system for managing irrigation in agriculture. Comput Electron Agric 124:121–131

    Article  Google Scholar 

  • Ojha T, Misra S, Raghuwanshi NS (2015) Wireless sensor networks for agriculture: the state-of-the-art in practice and future challenges. Comput Electron Agric 118:66–84

    Article  Google Scholar 

  • Palosuo T, Kersebaum KC, Angulo C, Hlavinka P, Moriondo M, Olesen JE, Patil RH, Ruget F, Rumbaur C, Takáč J, Trnka M (2011) Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. Eur J Agron 35(3):103–114

    Article  Google Scholar 

  • Raes D, Steduto P, Hsiao TC, Fereres E (2009) AquaCrop the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agron J 101(3):438–447

    Article  Google Scholar 

  • Ramirez-Villegas J, Jarvis A, Läderach P (2013) Empirical approaches for assessing impacts of climate change on agriculture: the EcoCrop model and a case study with grain sorghum. Agric For Meteorol 170:67–78

    Article  Google Scholar 

  • Rao M, Fan G, Thomas J, Cherian G, Chudiwale V, Awawdeh M (2007) A web-based GIS decision support system for managing and planning USDA’s conservation reserve program (CRP). Environ Model Softw 22(9):1270–1280

    Article  Google Scholar 

  • Rhoades E, Aue K (2010, February) Social agriculture: adoption of social media by agricultural editors and broadcasters. In: Proceedings of the annual meeting of the southern association of agricultural scientists, agricultural communication section, Orlando, FL

    Google Scholar 

  • Riquelme JL, Soto F, Suardíaz J, Sánchez P, Iborra A, Vera JA (2009) Wireless sensor networks for precision horticulture in southern Spain. Comput Electron Agric 68(1):25–35

    Article  Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, Neumann K (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111(9):3268–3273

    Article  Google Scholar 

  • Sahitya G, Balaji N, Naidu CD (2016, July) Wireless sensor network for smart agriculture. In: Proceedings of IEEE-2016 2nd international conference on applied and theoretical computing and communication technology (iCATccT), pp 488–493

    Google Scholar 

  • Sawant SA, Durbha SS, Adinarayana J (2015) SenseTube: a syntactically standardized web enabled wireless sensor network system for precision agriculture applications, Indian patent file number: 2236/MUM/2015 (status: patent pending)

    Google Scholar 

  • Sawant SA, Chakraborty M, Suradhaniwar S, Adinarayana J, Durbha SS (2016) Time series analysis of remote sensing observations for citrus crop growth stage and evapotranspiration estimation. Int Arch Photogramm Remote Sens Spat Inf Sci 41:147–152

    Google Scholar 

  • Sawant S, Durbha SS, Adinarayana J (2017) Interoperable agro-meteorological observation and analysis platform for precision agriculture: a case study in citrus crop water requirement estimation. Comput Electron Agric 138:175–187

    Article  Google Scholar 

  • Schuster EW, Lee HG, Ehsani R, Allen SJ, Rogers JS (2011) Machine-to-machine communication for agricultural systems: an XML-based auxiliary language to enhance semantic interoperability. Comput Electron Agric 78(2):150–161

    Article  Google Scholar 

  • Semmens KA, Anderson MC, Kustas WP, Gao F, Alfieri JG, McKee L, Prueger JH, Hain CR, Cammalleri C, Yang Y, Xia T (2016) Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens Environ 185:155–170

    Article  Google Scholar 

  • Storkey J, Stratonovitch P, Chapman DS, Vidotto F, Semenov MA (2014) A process-based approach to predicting the effect of climate change on the distribution of an invasive allergenic plant in Europe. PLoS One 9(2):e88156

    Article  Google Scholar 

  • Sudharsan D, Adinarayana J, Tripathy AK, Ninomiya S, Hirafuji M, Kiura T, Desai UB, Merchant SN, Reddy DR, Sreenivas G (2012) GeoSense: a multimode information and communication system. ISRN Sens Network 2012:1

    Article  Google Scholar 

  • Sudharsan D, Adinarayana J, Reddy DR, Sreenivas G, Ninomiya S, Hirafuji M, Kiura T, Tanaka K, Desai UB, Merchant SN (2013) Evaluation of weather-based rice yield models in India. Int J Biometeorol 57(1):107–123

    Article  Google Scholar 

  • Sun Z, Di L, Zhang C, Fang H, Yu E, Lin L, … Guo L (2017, August) Building robust geospatial web services for agricultural information extraction and sharing. In Agro-Geoinformatics, 2017, 6th international conference on IEEE, pp 1–4

    Google Scholar 

  • Suradhaniwar S, Sawant SA, Badnakhe M, Durbha SS, Adinarayana J (2016) An interoperable wireless sensor network platform for spatio-temporal soil moisture and soil temperature estimation. In: Agro-Geoinformatics (Agro-Geoinformatics), 2016 fifth international conference on IEEE, pp 1–6

    Google Scholar 

  • Thenkabail PS, Lyon JG (eds) (2016) Hyperspectral remote sensing of vegetation. CRC Press, Boca Raton

    Google Scholar 

  • Thenkabail PS, Mariotto I, Gumma MK, Middleton EM, Landis DR, Huemmrich KF (2013) Selection of hyperspectral narrowbands (HNBs) and composition of hyperspectral twoband vegetation indices (HVIs) for biophysical characterization and discrimination of crop types using field reflectance and Hyperion/EO-1 data. IEEE J Select Topic Appl Earth Observ Remote Sens 6(2):427–439

    Article  Google Scholar 

  • Tripathy AK, Adinarayana J, Sudharsan D, Merchant SN, Desai UB, Vijayalakshmi K, Reddy DR, Sreenivas G, Ninomiya S, Hirafuji M, Kiura T (2011, December) Data mining and wireless sensor network for agriculture pest/disease predictions. In: Information and communication technologies (WICT), 2011 World Congress on. IEEE, pp 1229–1234

    Google Scholar 

  • Tripathy AK, Adinarayana J, Vijayalakshmi K, Merchant SN, Desai UB, Ninomiya S, Hirafuji M, Kiura T (2014) Knowledge discovery and leaf spot dynamics of groundnut crop through wireless sensor network and data mining techniques. Comput Electron Agric 107:104–114

    Article  Google Scholar 

  • Ueyama J, Faiçal BS, Mano LY, Bayer G, Pessin G, Gomes PH (2017) Enhancing reliability in wireless sensor networks for adaptive river monitoring systems: reflections on their long-term deployment in Brazil. Comput Environ Urban Syst 65:41–52

    Article  Google Scholar 

  • Van de Gevel JMJ, Kiambi D, Fadda C (2015) Using a crowdsourcing approach to test sorghum and cowpea varieties for climate adaptability. Procedia Environ Sci 29:243–244

    Article  Google Scholar 

  • Van Den Bergh F, Wessels KJ, Miteff S, Van Zyl TL, Gazendam AD, Bachoo AK (2012) HiTempo: a platform for time-series analysis of remote-sensing satellite data in a high-performance computing environment. Int J Remote Sens 33(15):4720–4740

    Article  Google Scholar 

  • Verhoef W (1984) Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens Environ 16(2):125–141

    Article  Google Scholar 

  • Wardlow B, Anderson T, Tadesse C, Hain W, Rodell M, Thenkabail PS (2016) Remote sensing of drought: emergence of a satellite-based monitoring toolkit for the United States. In: Remote sensing of water resources, disasters, and urban studies. CRC Press, pp 367–398

    Google Scholar 

  • White MA, Beurs D, Kirsten M, Didan K, Inouye DW, Richardson AD, Jensen OP, O’keefe JOHN, Zhang G, Nemani RR, Leeuwen V (2009) Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob Chang Biol 15(10):2335–2359

    Article  Google Scholar 

  • Willkomm M, Bolten A, Bareth G (2016) Non-destructive monitoring of rice by hyperspectral in-field spectrometry and uav-based remote sensing: case study of field-grown rice in North Rhine-Westphalia, Germany. Int Arch Photogramm Remote Sens Spat Inform Sci 41

    Google Scholar 

  • Yang HS, Dobermann A, Lindquist JL, Walters DT, Arkebauer TJ, Cassman KG (2004) Hybrid-maize—a maize simulation model that combines two crop modeling approaches. Field Crop Res 87(2):131–154

    Article  Google Scholar 

  • Zarco-Tejada PJ, Miller JR, Noland TL, Mohammed GH, Sampson PH (2001) Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Trans Geosci Remote Sens 39(7):1491–1507

    Article  Google Scholar 

  • Zhang Y, Wang L, Duan Y (2016) Agricultural information dissemination using ICTs: a review and analysis of information dissemination models in China. Inform Proces Agric 3(1):17–29

    Google Scholar 

  • Zhao G, Bryan BA, King D, Luo Z, Wang E, Bende-Michl U, Song X, Yu Q (2013) Large-scale, high-resolution agricultural systems modeling using a hybrid approach combining grid computing and parallel processing. Environ Model Softw 41:231–238

    Article  Google Scholar 

  • Zhou L, Chen N, Chen Z, Xing C (2016) ROSCC: an efficient remote sensing observation-sharing method based on cloud computing for soil moisture mapping in precision agriculture. IEEE J Select Topics Appl Earth Observ Remote Sens 9(12):5588–5598

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adinarayana Jagarlapudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suradhaniwar, S., Kar, S., Nandan, R., Raj, R., Jagarlapudi, A. (2018). Geo-ICDTs: Principles and Applications in Agriculture. In: Reddy, G., Singh, S. (eds) Geospatial Technologies in Land Resources Mapping, Monitoring and Management. Geotechnologies and the Environment, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-78711-4_5

Download citation

Publish with us

Policies and ethics